首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Koala kimberlite, Northwest Territories, Canada, is a small pipe-like body that was emplaced into the Archean Koala granodiorite batholith and the overlying Cretaceous to Tertiary sediments at ~53 Ma. Koala is predominantly in-filled by a series of six distinct clastic deposits, the lowermost of which has been intruded by a late stage coherent kimberlite body. The clastic facies are easily distinguished from each other by variations in texture, and in the abundance and distribution of the dominant components. From facies analysis, we infer that the pipe was initially partially filled by a massive, poorly sorted, matrix-supported, olivine-rich lapilli tuff formed from a collapsing eruption column during the waning stage of the pipe-forming eruption. This unit is overlain by a granodiorite cobble-boulder breccia and a massive, poorly sorted, mud-rich pebbly-sandstone. These deposits represent post-eruptive gravitational collapse of the unstable pipe walls and mass wasting of tephra forming the crater rim. The crater then filled with water within which ~20 m of non-kimberlitic, wood-rich, silty sand accumulated, representing up to 47,000 years of quiescence. The upper two units in the Koala pipe are both olivine rich and show distinct grain-size grading. These units are interpreted to have been deposited sub-aqueously, from pyroclastic flows sourced from one or more other kimberlite volcanoes. The uppermost units in the Koala pipe highlight the likelihood that some kimberlite pipes may be only partially filled by their own eruptive products at the cessation of volcanic activity, enabling them to act as depocentres for pyroclastic and sedimentary deposits from the surrounding volcanic landscape. Recognition of these exotic kimberlite deposits has implications for kimberlite eruption and emplacement processes.  相似文献   

2.
Phreatomagmatic deposits at Narbona Pass, a mid-Tertiary maar in the Navajo volcanic field (NVF), New Mexico (USA), were characterized in order to reconstruct the evolution and dynamic conditions of the eruption. Our findings shed light on the temporal evolution of the eruption, dominant depositional mechanisms, influence of liquid water on deposit characteristics, geometry and evolution of the vent, efficiency of fragmentation, and the relative importance of magmatic and external volatiles. The basal deposits form a thick (5–20 m), massive lapilli tuff to tuff-breccia deposit. This is overlain by alternating bedded sequences of symmetrical to antidune cross-stratified tuff and lapilli tuff; and diffusely-stratified, clast-supported, reversely-graded lapilli tuffs that pinch and swell laterally. This sequence is interpreted to reflect an initial vent-clearing phase that produced concentrated pyroclastic density currents, followed by a pulsating eruption that produced multiple density currents with varying particle concentrations and flow conditions to yield the well-stratified deposits. Only minor localized soft-sediment deformation was observed, no accretionary lapilli were found, and grain accretion occurs on the lee side of dunes. This suggests that little to no liquid water existed in the density currents during deposition. Juvenile material is dominantly present as blocky fine ash and finely vesiculated fine to coarse lapilli pumice. This indicates that phreatomagmatic fragmentation was predominant, but also that the magma was volatile-rich and vesiculating at the time of eruption. This is the first study to document a significant magmatic volatile component in an NVF maar-diatreme eruption. The top of the phreatomagmatic sequence abruptly contacts the overlying minette lava flows, indicating no gradual drying-out period between the explosive and effusive phases. The lithology of the accidental clasts is consistent throughout the vertical pyroclastic stratigraphy, suggesting that the diatreme eruption did not penetrate below the base of the uppermost country rock unit, a sandstone aquifer ∼360 m thick. By comparison, other NVF diatremes several tens of kilometers away were excavated to depths of ∼1,000 m beneath the paleosurface (e.g., Delaney PT. Ship Rock, New Mexico: the vent of a violent volcanic eruption. In: Beus SS (ed) Geological society of America Centennial Field Guide, Rocky Mountain Section 2:411–415 (1987)). This can be accounted for by structurally controlled variations in aquifer thickness beneath different regions of the volcanic field. Variations in accidental clast composition and bedding style around the edifice are indicative of a laterally migrating or widening vent that encountered lateral variations in subsurface geology. We offer reasonable evidence that this subsurface lithology controlled the availability of external water to the magma, which in turn controlled characteristics of deposits and their distribution around the vent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Ground-penetrating radar (GPR) is used to image and characterize fall and pyroclastic flow deposits from the 1815 eruption of Tambora volcano in Indonesia. Analysis of GPR common-mid-point (CMP) data indicate that the velocity of radar in the sub-surface is 0.1 m/ns, and this is used to establish a preliminary traveltime to-depth conversion for common-offset reflection profiles. Common-offset radar profiles were collected along the edge of an erosional gully that exposed approximately 1–2 m of volcanic stratigraphy. Additional trenching at select locations in the gully exposed the contact between the pre-1815 eruption surface and overlying pyroclastic deposit from the 1815 eruption. The deepest continuous, prominent reflection is shown to correspond to the interface between pre-eruption clay-rich soil and pyroclastics that reach a maximum thickness of 4 m along our profiles. This soil surface is distinctly terraced and is interpreted as the ground surface augmented for agriculture and buildings by people from the kingdom of Tambora. The correlation of volcanic stratigraphy and radar data at this location indicates that reflections are produced by the soil-pyroclastic deposit interface and the interface between pyroclastic flows (including pyroclastic surge) and the pumice-rich fall deposits. In the thickest deposits an additional reflection marks the interface between two pyroclastic flow units.  相似文献   

4.
The edifice of Stromboli volcano gravitationally collapsed several times during its volcanic history (>100 ka–present). The largest Holocene event occurred during the final stage of the Neostromboli activity (∼13–5 ka), and was accompanied by the emplacement of phreatomagmatic and lahar deposits, known as the Secche di Lazzaro succession. A stratigraphic and paleomagnetic study of the Secche di Lazzaro deposits allows the interpretation of the emplacement and the eruptive processes. We identify three main units within the succession that correspond to changing eruption conditions. The lower unit (UA) consists of accretionary lapilli-rich, thinly bedded, parallel- to cross-stratified ash deposits, interpreted to indicate the early stages of the eruption and emplacement of dilute pyroclastic density currents. Upward, the second unit (UB) of the deposit is more massive and the beds thicker, indicating an increase in the sedimentation rate from pyroclastic density currents. The upper unit (UC) caps the succession with thick, immediately post-eruptive lahars, which reworked ash deposited on the volcano’s slope. Flow directions obtained by Anisotropy of Magnetic Susceptibility (AMS) analysis of the basal bed of UA at the type locality suggest a provenance of pyroclastic currents from the sea. This is interpreted to be related to the initial base-surges associated with water–magma interaction that occurred immediately after the lateral collapse, which wrapped around the shoulder of the sector collapse scar. Upward in the stratigraphy (upper beds of UA and UB) paleoflow directions change and show a provenance from the summit vent, probably related to the multiple collapses of a vertical, pulsatory eruptive column.  相似文献   

5.
The Filakopi Pumice Breccia (FPB) is a very well exposed, Pliocene volcaniclastic unit on Milos, Greece, and has a minimum bulk volume of 1 km3. It consists of three main units: (A) basal lithic breccia (4–8 m) mainly composed of angular to subangular, andesitic and dacitic clasts up to 2.6 m in diameter; (B) very thickly bedded, poorly sorted pumice breccia (16–17 m); and (C) very thick, reversely graded, grain-supported, coarse pumice breccia (6.5–20 m), at the top. The depositional setting is well constrained as shallow marine (up to a few hundred metres) by overlying fossiliferous and bioturbated mudstone. This large volume of fine pumice clasts is interpreted to be the product of an explosive eruption from a submarine vent because: (1) pumice clasts are the dominant component; (2) the coarse pumice clasts (>64 mm) have complete quenched margins; (3) very large (>1 m) pumice clasts are common; (4) overall, the formation shows good hydraulic sorting; and (5) a significant volume of ash was deposited together with the coarsest pyroclasts.The bed forms in units A and B suggest deposition from lithic-rich and pumiceous, respectively, submarine gravity currents. In unit C, the coarse (up to 6.5 m) pumice clasts are set in matrix that grades upwards from diffusely stratified, fine (1–2 cm) pumice clasts at the base to laminated shard rich mud at the top. The coarse pumice clasts in unit C were settled from suspension and the framework was progressively infilled by fine pumice clasts from waning traction currents and then by water-settled ash. The FPB displays important features of the products of submarine explosive eruptions that result from the ambient fluid being seawater, rather than volcanic gas or air. In particular, submarine pyroclastic deposits are characterised by the presence of very coarse juvenile pumice clasts, pumice clasts with complete quenched rims, and good hydraulic sorting.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: J. Donelly-Nolan  相似文献   

6.
Tsunami deposits in Kyushu Island, Southwestern Japan, have been attributed to the 7.3 ka Kikai caldera eruption, but their origin has not been confirmed. We analyzed an 83-cm-thick Holocene event deposit in the SKM core, obtained from incised valley fill in the coastal lowlands near Sukumo Bay, Southwestern Shikoku Island. We confirmed that the event deposit contains K-Ah volcanic ash from the 7.3 ka eruption. The base of the event deposit erodes the underlying inner-bay mud, and the deposit contains material from outside the local terrestrial and marine environment, including angular quartz porphyry from a small inland exposure, oyster shell debris, and a coral fragment. Benthic foraminifers and ostracods in the deposit indicate various habitats, some of which are outside Sukumo Bay. The sand matrix contains low-silica volcanic glass from the late stage of the Kikai caldera eruption. We also documented the same glass in an event deposit in the MIK1 core, from the incised Oyodo River valley in the Miyazaki Plain on Southeastern Kyushu. These two 7.3 ka tsunami deposits join other documented examples that are widely distributed in Southwestern Japan including the Bungo Channel and Beppu Bay in Eastern Kyushu, Tachibana Bay in Western Kyushu, and Zasa Pond on the Kii Peninsula as well as around the caldera itself. The tsunami deposits near the caldera have been divided into older and younger 7.3 ka tsunami deposits, the younger ones matching the set of widespread deposits. We attribute the younger 7.3 ka tsunami deposits to a large tsunami generated by a great interplate earthquake in the Northern part of the Ryukyu Trench and (or) the Western Nankai Trough just after the late stage of the Kikai caldera eruption and the older 7.3 ka tsunami deposits to a small tsunami generated by an interplate earthquake or Kikai caldera eruption.  相似文献   

7.
The Campanian Ignimbrite (36000 years B.P.) was produced by the explosive eruption of at least 80 km3 DRE of trachytic ash and pumice which covered most of the southern Italian peninsula and the eastern Mediterranean region. The eruption has been related to the 12-x15-km-diameter caldera located in the Phlegraean Fields, west of Naples. Proximal deposits on the periphery of the Phlegraean Fields comprise the following pyroclastic sequence from base to top: densely welded ignimbrite and lithic-rich breccias (unit A); sintered ignimbrite, low-grade ignimbrite and lithic-rich breccia (unit B); lithic-rich breccia and spatter agglutinate (unit C); and low-grade ignimbrite (unit D). Stratigraphic and componentry data, as well as distribution of accidental lithic types and the composition of pumice clasts of different units, indicate that coarse, lithic-rich breccias were emplaced at different stages during the eruption. Lower breccias are associated with fines-rich ignimbrites and are interpreted as co-ignimbrite lag breccia deposits. The main breccia unit (C) does not grade into a fines-rich ignimbrite, and therefore is interpreted as formed from a distinct lithic-rich flow. Units A and B exhibit a similar pattern of accidental lithic types, indicating that they were erupted from the same area, probably in the E of the caldera. Units C and D display a distinct pattern of lithics indicating expulsion from vent(s) that cut different areas. We suggest that unit C was ejected from several vents during the main stage of caldera collapse. Field relationships between spatter agglutinate and the breccia support the possibility that these deposits were erupted contemporaneously from vents with different eruptive style. The breccia may have resulted from a combination of magmatic and hydrothermal explosive activity that accompanied extensive fracturing and subsidence of the magma-chamber roof. The spatter rags probably derived from sustained and vigorous pyroclastic fountains. We propose that the association lithic-rich breccia and spatter agglutinate records the occurrence of catastrophic piecemeal collapse.  相似文献   

8.
The lithological and compositional characteristics of eighteen different pyroclastic deposits of Campanian origin, dated between 125 cal ky BP and 22 cal ky BP, were described. The pyroclastic deposits were correlated among different outcrops mainly located on the Apennine slopes that border the southern Campanian Plain. They were grouped in two main stratigraphic and chronologic intervals of regional significance: a) between Pomici di Base (22.03 cal ky BP; Somma–Vesuvius) and Campanian Ignimbrite (39 cal ky BP; Campi Flegrei) eruptions; and b) older than Campanian Ignimbrite eruption. Three new 14C AMS datings support the proposed correlations. Six eruptions were attributed to the Pomici di Base-Campanian Ignimbrite stratigraphic interval, while twelve eruptions are older than Campanian Ignimbrite. Of the studied deposits two originated from Ischia island, five are related to Campi Flegrei, and three to Somma–Vesuvius. Two eruptions have an uncertain correlation with Somma–Vesuvius or Campi Flegrei, while six eruptions remain of uncertain source. Minimum volumes of five eruptions were assessed, ranging between 0.5 km3 and 4 km3. Two of the studied deposits were correlated with Y-3 and X-5 tephra layers, which are widely dispersed in the central Mediterranean area. The new stratigraphic and chronologic data provide an upgraded chrono-stratigraphy for the explosive activity of Neapolitan volcanoes in the period between 125 and 22 cal ky BP.  相似文献   

9.
Batur volcanic field (BVF) in Bali, Indonesia, underwent two successive caldera-forming eruptions, CI and CII (29,300 and 20,150 years b.p., respectively) that resulted in the deposition of dacitic ignimbrites. The respective ignimbrites show contrasted stratigraphies, exemplify the variability of dynamics associated with caldera-forming eruptions and provide insights into the possible controls exerted by caldera collapse mechanisms. The Ubud Ignimbrite is widespread and covers most of southern Bali. The deposits consist dominantly of pyroclastic flow with minor pumice fall deposits. The intra-caldera succession comprises three distinct, partially to densely welded cooling units separated by non-welded pyroclastic flow and fall deposits. The three cooling units consist of pyroclastic flow deposits only and together represent up to 16 distinct flow units, each including a thin, basal, lithic-rich breccia. This eruption was related to a 13.5×10 km caldera (CI) with a minimum collapsed volume of 62 km3. The floor of caldera CI is inferred to have a piecemeal geometry. The Ubud Ignimbrite is interpreted as the product of a relatively long-lasting, pulsating, collapsing fountain that underwent at least two time breaks. A stable column developed during the second time break. Discharge rate was high overall, but oscillatory, and increased toward the end of the eruption. These dynamics are thought to reflect sequential collapse of the CI structure. The Gunungkawi Ignimbrite is of more limited extent outside the source caldera and occurs only in central southern Bali. The Gunungkawi Ignimbrite proximal deposits consist of interbedded accretionary lapilli-bearing ash surge, ash fall, pumice lapilli fall and thin pyroclastic flow deposits, overlain by a thick and massive pyroclastic flow deposit with a thick basal lag breccia. The caldera (CII) is 7.5×6 km in size, with a minimum collapsed volume of 9 km3. The CII eruption included two distinct phases. During the first, eruption intensity was low to moderate and an unstable, essentially phreatomagmatic column developed. During the second phase, the onset of caldera collapse drastically increased the eruption intensity, resulting in column collapse. The caldera floor is believed to have subsided rapidly, producing a single, short-lived burst of high eruption intensity that resulted in the deposition of the uppermost massive pyroclastic flow.Editorial responsibility: T. Druitt  相似文献   

10.
The Pucón eruption was the largest Holocene explosive outburst of Volcán Villarrica, Chile. It discharged >1.0 km3 of basaltic-andesite magma and >0.8 km3 of pre-existing rock, forming a thin scoria-fall deposit overlain by voluminous ignimbrite intercalated with pyroclastic surge beds. The deposits are up to 70 m thick and are preserved up to 21 km from the present-day summit, post-eruptive lahar deposits extending farther. Two ignimbrite units are distinguished: a lower one (P1) in which all accidental lithic clasts are of volcanic origin and an upper unit (P2) in which basement granitoids also occur, both as free clasts and as xenoliths in scoria. P2 accounts for ∼80% of the erupted products. Following the initial scoria fallout phase, P1 pyroclastic flows swept down the northern and western flanks of the volcano, magma fragmentation during this phase being confined to within the volcanic edifice. Following a pause of at least a couple of days sufficient for wood devolatilization, eruption recommenced, the fragmentation level dropped to within the granitoid basement, and the pyroclastic flows of P2 were erupted. The first P2 flow had a highly turbulent front, laid down ignimbrite with large-scale cross-stratification and regressive bedforms, and sheared the ground; flow then waned and became confined to the southeastern flank. Following emplacement of pyroclastic surge deposits all across the volcano, the eruption terminated with pyroclastic flows down the northern flank. Multiple lahars were generated prior to the onset of a new eruptive cycle. Charcoal samples yield a probable eruption age of 3,510 ± 60 14C years BP.  相似文献   

11.
The 1883 eruption of Augustine Volcano produced a tsunami when a debris avalanche traveled into the waters of Cook Inlet. Older debris avalanches and coeval paleotsunami deposits from sites around Cook Inlet record several older volcanic tsunamis. A debris avalanche into the sea on the west side of Augustine Island ca. 450 years ago produced a wave that affected areas 17 m above high tide on Augustine Island. A large volcanic tsunami was generated by a debris avalanche on the east side of Augustine Island ca. 1600 yr BP, and affected areas more than 7 m above high tide at distances of 80 km from the volcano on the Kenai Peninsula. A tsunami deposit dated to ca. 3600 yr BP is tentatively correlated with a southward directed collapse of the summit of Redoubt Volcano, although little is known about the magnitude of the tsunami. The 1600 yr BP tsunami from Augustine Volcano occurred about the same time as the collapse of the well-developed Kachemak culture in the southern Cook Inlet area, suggesting a link between volcanic tsunamis and prehistoric cultural changes in this region of Alaska.  相似文献   

12.
The Volcanic Sedimentary Complex (VSC) of the Iberian Pyrite Belt (IPB) in southern Portugal and Spain, comprises an Upper Devonian to Lower Carboniferous submarine succession with a variety of felsic volcanic lithofacies. The architecture of the felsic volcanic centres includes felsic lavas/domes, pyroclastic units, intrusions and minor mafic units that define lava–cryptodome–pumice cone volcanoes. The diversity of volcanic lithofacies recognized in different areas of the IPB mainly reflects variations in proximity to source, but also differences in the eruption style. The IPB volcanoes are intrabasinal, range in length from 2 km to > 8 km and their thickest sections vary from ∼ 400 m to > 800 m. These volcanoes are dominated by felsic lavas/domes that occur at several stratigraphic positions within the volcanic centre, however the pyroclastic units are also abundant and are spatially related to the lavas/domes. The intrusions are minor, and define cryptodomes and partly-extrusive cryptodomes. The hydrothermal systems that formed the Neves Corvo and Lousal massive sulfide ore deposits are associated with effusive units of felsic volcanic centres. At Neves Corvo, the massive sulfide orebodies are associated to rhyolitic lavas that overlie relatively thick fiamme-rich pyroclastic unit. In several other locations within the belt, pyroclastic units contain sulfide clasts that may have been derived from yet to be discovered coeval massive sulfide deposits at or below the sea floor, which enhances the exploration potential of these pyroclastic units and demonstrates the need for volcanic facies analysis in exploration.  相似文献   

13.
An extremely large magnitude eruption of the Ebisutoge-Fukuda tephra, close to the Plio-Pleistocene boundary, central Japan, spread volcanic materials widely more than 290,000 km2 reaching more than 300 km from the probable source. Characteristics of the distal air-fall ash (>150 km away from the vent) and proximal pyroclastic deposits are clarified to constrain the eruptive style, history, and magnitude of the Ebisutoge-Fukuda eruption.Eruptive history had five phases. Phase 1 is phreatoplinian eruption producing >105 km3 of volcanic materials. Phases 2 and 3 are plinian eruption and transition to pyroclastic flow. Plinian activity also occurred in phase 4, which ejected conspicuous obsidian fragments to the distal locations. In phase 5, collapse of eruption column triggered by phase 4, generated large pyroclastic flow in all directions and resulted in more than 250–350 km3 of deposits. Thus, the total volume of this tephra amounts over 380–490 km3. This indicates that the Volcanic Explosivity Index (VEI) of the Ebisutoge-Fukuda tephra is greater than 7. The huge thickness of reworked volcaniclastic deposits overlying the fall units also attests to the tremendous volume of eruptive materials of this tephra.Numerous ancient tephra layers with large volume have been reported worldwide, but sources and eruptive history are often unknown and difficult to determine. Comparison of distal air-fall ashes with proximal pyroclastic deposits revealed eruption style, history and magnitude of the Ebisutoge-Fukuda tephra. Hence, recognition of the Ebisutoge-Fukuda tephra, is useful for understanding the volcanic activity during the Pliocene to Pleistocene, is important as a boundary marker bed, and can be used to interpret the global environmental and climatic impact of large magnitude eruptions in the past.  相似文献   

14.
Stratigraphic reconstruction of the Upper Pollara eruption has allowed for the inference of eruptive mechanisms and the distillation of a sedimentological model for pyroclastic density currents (PDCs) moving across variable topography. The pre-eruptive topography in the study area was characterised by a tuff ring-like morphology, with both inward and outward dipping slopes. Highly viscous, moderately porphyritic, dacitic to rhyolitic magmas fed the eruption, which was characterised by a Vulcanian eruptive style. The stratigraphic succession was divided into five eruption units (EUs), which result from different phases of the eruption separated by stases. Sustained columns occurred only during EU1, while PDC generation dominates EU2–5. Lithofacies analysis of the PDC deposits indicates the prevalence of massive coarse-grained deposits on the inner slopes of the Pollara crater, which are interpreted as the deposits of a flow-boundary zone dominated by granular flow or fluid escape regimes. Dune-bedded, massive to stratified lithofacies dominate the outer slopes of the Pollara crater, and are interpreted as the deposits of PDCs with flow-boundary zones in which traction played a major role. Thin, massive PDC deposits are exposed on the sub-horizontal Malfa terrace, and are interpreted as representative of flow-boundary zones dominated by a granular flow regime. The occurrence of stacked deposits indicates that most of the PDCs were characterised by unsteady pulsatory behaviour, with development of trains of pulses during their transport. The downcurrent lithofacies transitions observed for the Upper Pollara deposits have finally been compared with other similar lithofacies associations which have been described for short-lived PDCs at tuff rings, in order to discuss the influence of pre-eruptive topography on lithofacies association.  相似文献   

15.
The youngest dacitic Plinian eruption in west-central Nicaragua, forming the 18 km3 Chiltepe Tephra (CT), occurred about nineteen hundred years ago at Apoyeque stratovolcano, which dominates the Chiltepe volcanic complex 15 km north of the capital Managua, where the CT is 2 m thick. We have traced the CT from its proximal facies at the crater rim, through the medial facies in the lowlands around Apoyeque, and to the distal facies up to 550 km offshore in the Pacific. While medial and distal facies consist of widespread Plinian fall deposits, the proximal facies reveals the complexity of this eruption, which we divide into four phases (I–IV). Interaction of rising magma with a pre-existing crater lake generated the phreatomagmatic opening phase I of the eruption, which produced ash fall with accretionary lapilli. Phase II marked a rapid change to persistent magmatic activity that yielded several large Plinian eruptions, declining through a period of unstable eruption conditions, followed by a short hiatus. Phase III began with unstable conditions, probably as a result of eastward migration and widening of the vent, leading to a second period of Plinian eruptions with three major events reaching magma discharge rates five times larger than those of phase II. Phase III again declined through unstable eruption conditions before magmatic activity terminated. Numerous explosions in the shallow hydrothermal system during the final phase IV resulted in the formation of a phreatic tuff ring on the rim of Apoyeque crater. The white, highly-vesicular, dacitic CT pumice contains plagioclase (An45–68), orthopyroxene, clinopyroxene, and minor hornblende, apatite and titanomagnetite phenocrysts. A very subordinate fraction of gray pumice has the highest crystal content, the least evolved bulk-rock, but the most evolved matrix-glass composition. The CT dacite has two unusual compositional features: (1) all white dacite has the same melt (matrix-glass) composition such that variations in bulk-rock compositions (64–68 wt% SiO2) simply reflect different phenocryst contents of 10–35%, interpreted as the result of gradual phenocryst settling in the magma chamber. (2) Abundant olivine crystals with a bimodal distribution in Mg# (modes at Mg# = 0.75 and Mg# = 0.8) are dispersed throughout the erupted dacite. These are clearly out of equilibrium with the dacitic melt and are interpreted as xenocrysts derived from the basaltic Nejapa-Miraflores volcanic lineament that intersects the Chiltepe volcanic complex and was contemporaneously active. Thermobarometric estimates place the dacitic CT magma reservoir in the upper crust (<250 MPa), with a temperature of about 890°C and about 5 wt% water dissolved in the melt. Comparing water and chlorine contents with respective solubility models suggests that volatile degassing began in the magma reservoir and triggered the CT eruption. From the vertical compositional variation pattern of the CT we deduce that the conduit tapped the magma chamber not at the top but from the side, at some deeper level, and that subsequent magma withdrawal was governed by both variations in discharge rate and possible upward migration and/or widening of the conduit entrance.  相似文献   

16.
Fifteen seismic reflection lines from AGIP surveys, in and around the Campanian Plain and Mt. Somma–Vesuvius (south Italy) have been interpreted. The attention has been focused to the horizon pertinent to the top of the Mesozoic carbonate sequence and the Quaternary faults dissecting it. As a matter of fact, both are very important elements for understanding the origin of the volcanic activity in the area, that often in the past, has been the topic of debates not supported by reliable data. In the study area, referring to the depth of the carbonate basement, comparison between the result achieved by the seismic prospecting and previous gravity studies has been made. It shows coherence in some areas but large discrepancy within others. Near the town of S. Anastasia, the gravity and seismic depth estimates differ as much as 1000 m or more. Furthermore, the seismic data show that the source of the greatest volcanic eruption in the area (the so-called ‘Campanian Ignimbrite') is probably not located in the Acerra depression, as suggested by other authors. A main NE–SW fault directed toward Vesuvius, considered as playing a primary role on volcanogenetic processes and previously recognised only offshore by marine seismic survey, has been now identified also inland using this new seismic information. The results presented here strengthen the hypothesis that Mt. Vesuvius is located at the crossing point of two regional Quaternary sets of fault heading NW–SE and NE–SW.  相似文献   

17.
Tofua Island is the largest emergent mafic volcano within the Tofua arc, Tonga, southwest Pacific. The volcano is dominated by a distinctive caldera averaging 4 km in diameter, containing a freshwater lake in the south and east. The latest paroxysmal (VEI 5–6) explosive volcanism includes two phases of activity, each emplacing a high-grade ignimbrite. The products are basaltic andesites with between 52 wt.% and 57 wt.% SiO2. The first and largest eruption caused the inward collapse of a stratovolcano and produced the ‘Tofua’ ignimbrite and a sub-circular caldera located slightly northwest of the island’s centre. This ignimbrite was deposited in a radial fashion over the entire island, with associated Plinian fall deposits up to 0.5 m thick on islands >40 km away. Common sub-rounded and frequently cauliform scoria bombs throughout the ignimbrite attest to a small degree of marginal magma–water interaction. The common intense welding of the coarse-grained eruptive products, however, suggests that the majority of the erupted magma was hot, water-undersaturated and supplied at high rates with moderately low fragmentation efficiency and low levels of interaction with external water. We propose that the development of a water-saturated dacite body at shallow (<6 km) depth resulted in failure of the chamber roof to cause sudden evacuation of material, producing a Plinian eruption column. Following a brief period of quiescence, large-scale faulting in the southeast of the island produced a second explosive phase believed to result from recharge of a chemically distinct magma depleted in incompatible elements. This similar, but smaller eruption, emplaced the ‘Hokula’ Ignimbrite sheet in the northeast of the island. A maximum total volume of 8 km3 of juvenile material was erupted by these events. The main eruption column is estimated to have reached a height of ∼12 km, and to have produced a major atmospheric injection of gas, and tephra recorded in the widespread series of fall deposits found on coral islands 40–80 km to the east (in the direction of regional upper-tropospheric winds). Radiocarbon dating of charcoal below the Tofua ignimbrite and organic material below the related fall units imply this eruption sequence occurred post 1,000 years BP. We estimate an eruption magnitude of 2.24 × 1013 kg, sulphur release of 12 Tg and tentatively assign this eruption to the AD 1030 volcanic sulphate spike recorded in Antarctic ice sheet records.  相似文献   

18.
A combination of photogeologic mapping, analysis of Viking Orbiter thermal inertia data, and numerical modelling of eruption conditions has permitted us to construct a new model for the evolution of the martian volcano Alba Patera. Numerous digitate channel networks on the flanks of the volcano are interpreted to be carved by sapping due to the release of non-juvenile water from unconsolidated flank deposits. Using the thermal inertia measurements, we estimate the particle size of these deposits to be 3–10 µm, which, together with theoretical modelling of the disperison of explosively derived volcanic materials, leads us to conclude that the flank deposits on Alba Patera are low-relief pyroclastic flows. The recognition of numerous late-stage summit and sub-terminal lava flows thus makes Alba Patera a unique martian volcano that is transitional between the older pyroclastic-dominated highland paterae and the more recent effusive central-vent volcanoes such as the Tharsis Montes.  相似文献   

19.
Mt Somma-Vesuvius is a composite volcano on the southern margin of the Campanian Plain which has been active since 39 ka BP and which poses a hazard and risk for the people living around its base. The volcano last erupted in 1944, and since this date has been in repose. As the level of volcanic risk perception is very high in the scientific community, in 1995 a hazard and risk evaluation, and evacuation plan, was published by the Italian Department of Civil Protection (Dipartimento della Protezione Civile). The plan considered the response to a worst-case scenario, taken to be a subplinian eruption on the scale of the 1631 AD eruption, and based on a volcanological reconstruction of this eruption, assumes that a future eruption will be preceded by about two weeks of ground uplift at the volcano's summit, and about one week of locally perceptible seismic activity. Moreover, by analogy with the 1631 events, the plan assumes that ash fall and pyroclastic flow should be recognized as the primary volcanic hazard. To design the response to this subplinian eruption, the emergency plan divided the Somma-Vesuvius region into three hazard zones affected by pyroclastic flows (Red Zone), tephra fall (Yellow and Green Zone), and floods (Blue Zone). The plan at present is the subject of much controversy, and, in our opinion, several assumptions need to be modified according to the following arguments: a) For the precursory unrest problem, recent scientific studies show that at present neither forecast capability is realistic, so that the assumption that a future eruption will be preceded by about two weeks of forecasts need to be modified; b) Regarding the exposure of the Vesuvius region to flow phenomena, the Red Zone presents much inconsistency near the outer border as it has been defined by the administrative limits of the eighteen municipality area lying on the volcano. As this outer limit shows no uniformity, a pressing need exists to define appropriately the flow hazard zone, since there are some important public structures not considered in the current Red Zone that could be exposed to flow risk; c) Modern wind records clearly indicate that at the time of a future eruption winds could blow not only from the west, but also from the east, so that the Yellow Zone (the area with the potential to be affected by significant tephra fall deposits) must be redefined. As a result the relationship between the Yellow Zone and Green Zone (the area within and beyond which the impact of tephra fall is expected to be insignificant) must be reconsidered mainly in the Naples area; d) The May 1998 landslide, caused in the Apennine region east of the volcano by continuous rain fall, led to the definition of a zone affected by re-mobilisation of tephra (Blue Zone), confined in the Nola valley. However, as described in the 1631 chronicles of the eruption, if generation of debris flows occurs during and after a future eruption, a much wider region east of the Somma-Vesuvius must be affected by events of this type.  相似文献   

20.
Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy)   总被引:4,自引:2,他引:2  
Tephra fallout associated with renewal of volcanism at the Campi Flegrei caldera is a serious threat to the Neapolitan area. In order to assess the hazards related with tephra loading, we have considered three different eruption scenarios representative of past activity: a high-magnitude event similar to the 4.1 ka Agnano-Monte Spina eruption, a medium-magnitude event, similar to the ∼3.8 ka Astroni 6 eruption, and a low-magnitude event similar to the Averno 2 eruption. The fallout deposits were reconstructed using the HAZMAP computational model, which is based on a semi-analytical solution of the two-dimensional advection–diffusion–sedimentation equation for volcanic tephra. The input parameters into the model, such as total erupted mass, eruption column height, and bulk grain-size and components distribution, were obtained by best-fitting field data. We carried out tens of thousands simulations using a statistical set of wind profiles, obtained from NOAA re-analysis. Probability maps, relative to the considered scenarios, were constructed for several tephra loads, such as 200, 300 and 400 kg/m2. These provide a hazard assessment for roof collapses due to tephra loading that can be used for risk mitigation plans in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号