首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
In Canyonlands National Park, south-east Utah, at least 29 partly exhumed, aligned sandstone ridges trending generally N20°W occur at the upper unconformable surface of the Lower Permian (Leonardian) White Rim Sandstone. The ridges are at least 1·5 km long, 250 m wide and have up to 14 m of vertical relief (mean of 9 m). A thin lag of coarse sandstone that contains wind-ripple laminae and granule ripples directly overlies the ridges. Angular blocks of sandstone within the lag and sand-filled fissures immediately below the lag, within the ridges, attest to early cementation of the ridge-forming material. SE-dipping aeolian cross-strata within the White Rim Sandstone and within the lag closely parallel the ridge trend. The ridges are interpreted as wind-sculpted desert landforms (yardangs) that developed on the lithified upper surface of the White Rim Sandstone during an extended period of hyperaridity towards the end of the Permian.  相似文献   

2.
Characteristics of ribbed moraines, the dominating moraine type in southern Finnish Lapland, have been studied in detail. The ridges are composed of several till units, of which the bottommost units consist of mature basal tills and the surficial parts are enriched with local, short‐transport rock fragments and boulders in till and at the surface of ridges. As a result of this re‐examination a two‐step model of the formation process of ribbed moraines is presented. In the first stage, while cold‐based conditions prevailed, both the bottommost part of the ice sheet and the frozen, substrate fractured under compressive ice flow. Following glacial transport of fractured blocks and formation of the transverse ridge morphology, erosion between the ridges continued owing to freeze–thaw process under variable pressure conditions. In the areas with a low pre‐existing till sheet, the process caused quarrying of the bedrock surface and subsequent deposition of rock fragments and boulders under high pressure on the next ridge. The most suitable conditions for ribbed moraine formation existed during Late Weichselian deglaciation, after the Younger Dryas when the climate warmed very quickly, leading to an imbalance between a warm glacier surface and a cold base. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The Permian White Rim Sandstone of the Canyonlands National Park, Utah, contains a wide variety of sedimentary structures and features that largely result from stages in erg migration and marine influence on an erg margin. Three spatially distinct lithological and depositional facies are recognized and can be distinguished as informal units within the formation. The aeolian dune facies is composed predominantly of fine-grained cross-stratified sandstone of the White Rim erg. This facies is the most widespread and comprises the bulk of the formation. Within the aeolian dune facies are small subfacies that represent interdune deposits. A sheet sand facies, composed of parallel-bedded sandstone, makes up a significant part of the lowest part of the White Rim Formation. This facies appears to have been the precursor or leading (progradational) edge to the main erg system. The final facies is a reworked or veneer facies of rippled to disturbed sandstone that is localized in its extent. It is restricted to the upper few metres of the formation and is transitional in some places to the Triassic Moenkopi Formation. This veneer facies contains many structures which indicate marine reworking as well as periods of desiccation or subaerial exposure. Some previous interpretations of the White Rim Sandstone have tended to classify the whole formation as one depositional setting. It is clear that at the margin of a sand sea, as shown in the White Rim Sandstone, there are transitional facies due to the interactions with other environments. Additionally, variation in the stratigraphic relationships of facies can be related to stages of erg migration. Erg margin deposits preceded central erg development. Erg initiation occurred during a probable relative sea level low. Sea level influence is recorded at the top of the formation because erg termination accompanied a relative sea level high with cut-off of sand supply. Transgression of the Permian Kaibab Sea over the White Rim erg was probably the main process in preservation of original dune topographic relief. Sea level fluctuations also may have affected distribution of facies and the complexities of structures at the erg margin. Subsequent fluvial reworking of the veneer facies may have obliterated Late Permian features during lowest Triassic Moenkopi deposition.  相似文献   

4.
Approximately 35 parallel, discontinuous glacial ridges occur in an area of about 100 km2 in north‐central Wisconsin. The ridges are located between about 6 and 15 km north (formerly up‐ice) of the maximum extent of the Wisconsin Valley Lobe of the Laurentide Ice Sheet. The ridges are between 1 and 4 m high, up to 1 km long, and spaced between 30 and 80 m apart. They are typically asymmetrical with a steep proximal (ice‐contact) slope and gentle distal slope. The ridges are composed primarily of subglacial till on their proximal sides and glacial debris‐flow sediment on the distal sides. In some ridges the till and debris‐flow sediment are underlain by sorted sediment that was deformed in the former direction of ice flow. We interpret the ridges to be recessional moraines that formed as the Wisconsin Valley Lobe wasted back from its maximum extent, with each ridge having formed by a sequence of (1) pushing of sorted ice‐marginal sediment, (2) partial overriding by the glacier and deposition of subglacial till on the proximal side of the ridge, and (3) deposition of debris‐flow sediment on the distal side of the ridge after the frozen till at the crest of the ridge melted. The moraines are similar to annual recessional moraines described at several modern glaciers, especially the northern margin of Myrdalsjokull, Iceland. Thus, we believe the ridges probably formed as a result of minor winter advances of the ice margin during deglaciation. Based on this assumption, we calculate the net rate of ice‐surface lowering of the Wisconsin Valley Lobe during the period when the moraines formed. Various estimates of ice‐surface slope and rates of ice‐margin retreat yield a wide range of values for ice‐surface lowering (1.7–14.5 m/yr). Given that ablation rates must exceed those of ice‐surface lowering, this range of values suggests relatively high summer temperatures along the margin of the Wisconsin Valley Lobe when it began retreating from its maximum extent. In addition, the formation of annual moraines indicates that the glacier toe was thin, the ice surface was clean, and the ice margin experienced relatively cold winters.  相似文献   

5.
Basal rocks of the Upper Carboniferous to Lower Permian Pagoda Formation at Mount Butters provide an unusual view of periglacial conditions in the central Transantarctic Mountains region prior to the initial advance of the Gondwanide ice sheet. These rocks were deposited on a high relief unconformity that developed on granite. Deposition within relief on the unconformity, possibly in the lee of a granite buttress, protected the rocks from erosion during subsequent overriding by the ice sheet. The succession reflects deposition in a glacial‐fed to ice‐contact lake that contained a freshwater crustacean fauna. Centimetre‐ to decimetre‐scale basal layers include breccia and coarse‐grained sandstone. The occurrence of breccia resting on weathered granite suggests sedimentation as scree and as mass flow deposits. Overlying decimetre‐to metre‐scale stratified diamictites interbedded with metre‐scale, coarsening‐upward successions of siltstone to cross‐laminated sandstone suggest lacustrine deposition by suspension settling, rain out of ice‐rafted debris, and deltaic progradation. Thin zones with abundant conchostracans and/or with prolific trace fossils, in addition to less common remains of other crustaceans, attest to the presence of a low diversity benthic fauna. Conchostracans are concentrated in a series of thin beds that reflect moderately lengthy, perhaps seasonal, periods of free‐flowing water. Patchy vertical and lateral distribution of intense bioturbation and profuse trace fossils probably reflect repeated colonization events during times of favourable environmental conditions. Massive diamictite overlies the basal rocks and indicates that the ice‐marginal lake was subsequently overridden by the late Palaeozoic ice sheet. Occurrences of lodgement till, glacitectonite and deformation till suggest deposition from temperate or warm‐based ice, whereas underlying lacustrine and deltaic deposits, along with a crustacean and trace fossil fauna, suggest temperate periglacial conditions. Previous studies have stressed that upper Palaeozoic glacigenic deposits in Antarctica, and in Gondwanaland, record deglaciation events. In contrast, rocks at Mt. Butters provide an unusual glimpse into an ice‐margin lake and its fauna just prior to ice sheet advance.  相似文献   

6.
Traditionally, geometrical ridge networks are interpreted as the product of the flow of subglacial sediment into open basal crevasses at the cessation of a glacier surge (‘crevasse-fill’ ridges). They are widely regarded as a characteristic landform of glacier surges. Understanding the range of processes by which these ridge networks form is therefore of importance in the recognition of palaeosurges within the landform record. The geometrical ridge network at the surge-type glacier Kongsvegen in Svalbard, does not form by crevasse filling. The networks consist of transverse and longitudinal ridges that can be seen forming at the current ice margin. The transverse ridges form as a result of the incorporation of basal debris along thrust planes within the ice. The thrusts were apparently formed during a glacier surge in 1948. Longitudinal ridges form through the meltout of elongated pods of debris, which on the glacier surface are subparallel to the ice foliation and pre-date the surge. This work adds to the range of landforms associated with glacier surges.  相似文献   

7.
The origin of Illinois Episode (OIS 6) glacial ridges (formerly: ‘Ridged Drift’) in the Kaskaskia Basin of southwestern Illinois is controversial despite a century of research. Two studied ridges, containing mostly fluvial sand (OSL ages: ~ 150 ± 19 ka), with associated debris flows and high-angle reverse faults, are interpreted as ice-walled channels. A third studied ridge, containing mostly fine-grained till, is arcuate and morainal. The spatial arrangement of various ridge types can be explained by a glacial sublobe in the Kaskaskia Basin, with mainly fine-grained ridges along the sublobe margins and coarse-grained glaciofluvial ridges in a paleodrainage network within the sublobe interior. Illinois Episode till fabric and striation data demonstrate southwesterly ice flow that may diverge near the sublobe terminus. The sublobe likely formed as glacial ice thinned and receded from its maximum extent. The Kaskaskia Basin contains some of the best-preserved Illinois Episode constructional glacial landforms in the North American midcontinent. Such distinctive features probably result from ice flow and sedimentation into this former lowland, in addition to minimal postglacial erosion. Other similar OIS 6 glacial landforms may exist in association with previously unrecognized sublobes in the midcontinent, where paleo-lowlands might also have focused glacial sedimentation.  相似文献   

8.
Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502‐3885.2009.00138.x. ISSN 0300‐9483. Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice‐stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice‐sheet reconstructions.  相似文献   

9.
The impact of modern cold glaciers on arid periglacial landscapes has received little attention compared with other glacial regimes, and there is a widely held assumption that cold glaciers are not effective geomorphological agents, despite recent studies to the contrary. This paper focuses on the processes operating at the margins of a number of glaciers in the Dry Valleys of Victoria Land, notably the Wright Lower Glacier. The glaciers are entraining primarily older drift deposits and highly weathered regolith which texturally are sandy gravels, as well as well‐sorted sands of fluvial origin. Despite basal temperatures of the order of ?16°C, frozen layers and blocks of sand and gravel are being incorporated into the base of the glaciers by folding and thrusting. The sedimentary products are ridges and aprons several metres high within which the principal lithofacies are sand, gravel, foliated glacier ice, lake ice and snow. These facies are glaciotectonized strongly. Draped over these landforms is a veneer of well‐sorted aeolian sand up to half a metre thick. Supraglacial streams flowing off the glaciers incise these landforms and the sediment is redeposited as alluvial fans, lake deltas and lake‐bottomset deposits. Overall the sediment/landform association differs markedly from those of other glacial regimes, with sand and gravel being the dominant facies, while the usual indicators of glacier working (such as facets and striations on clasts) are lacking. The preservation potential for these landforms on a thousand‐year time scale is high, as modification in this arid regime by slope processes and running water is limited. Sublimation of buried ice is so slow that ridge features are likely to remain ice‐cored almost indefinitely, modified only by wind transport and weathering.  相似文献   

10.
High‐resolution swath bathymetry and TOPAS sub‐bottom profiler acoustic data from the inner and middle continental shelf of north‐east Greenland record the presence of streamlined mega‐scale glacial lineations and other subglacial landforms that are formed in the surface of a continuous soft sediment layer. The best‐developed lineations are found in Westwind Trough, a bathymetric trough connecting Nioghalvfjerdsfjorden Gletscher and Zachariae Isstrøm to the continental shelf edge. The geomorphological and stratigraphical data indicate that the Greenland Ice Sheet covered the inner‐middle shelf in north‐east Greenland during the most recent ice advance of the Late Weichselian glaciation. Earlier sedimentological and chronological studies indicated that the last major delivery of glacigenic sediment to the shelf and Fram Strait was prior to the Holocene during Marine Isotope Stage 2, supporting our assertion that the subglacial landforms and ice sheet expansion in north‐east Greenland occurred during the Late Weichselian. Glacimarine sediment gravity flow deposits found on the north‐east Greenland continental slope imply that the ice sheet extended beyond the middle continental shelf, and supplied subglacial sediment direct to the shelf edge with subsequent remobilisation downslope. These marine geophysical data indicate that the flow of the Late Weichselian Greenland Ice Sheet through Westwind Trough was in the form of a fast‐flowing palaeo‐ice stream, and that it provides the first direct geomorphological evidence for the former presence of ice streams on the Greenland continental shelf. The presence of streamlined subglacially derived landforms and till layers on the shallow AWI Bank and Northwind Shoal indicates that ice sheet flow was not only channelled through the cross‐shelf bathymetric troughs but also occurred across the shallow intra‐trough regions of north‐east Greenland. Collectively these data record for the first time that ice streams were an important glacio‐dynamic feature that drained interior basins of the Late Weichselian Greenland Ice Sheet across the adjacent continental margin, and that the ice sheet was far more extensive in north‐east Greenland during the Last Glacial Maximum than the previous terrestrial–glacial reconstructions showed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The deeply dissected Southwest Grand Banks Slope offshore the Grand Banks of Newfoundland was investigated using multiple data sets in order to determine how canyons and intercanyon ridges developed and what sedimentary processes acted on glacially influenced slopes. The canyons are a product of Quaternary ice‐related processes that operated along the margin, such as ice stream outwash and proglacial plume fallout. Three types of canyon are defined based on their dimensions, axial sedimentary processes and the location of the canyon head. There are canyons formed by glacial outwash with aggradational and erosional floors, and canyons formed on the slope by retrogressive failure. The steep, narrow intercanyon ridges that separate the canyons are composite morphological features formed by a complex history of sediment aggradation and degradation. Ridge aggradation occurred as a result of mid to late Quaternary background sedimentation (proglacial plume fallout and hemipelagic settling) and turbidite deposition. Intercanyon ridge degradation was caused mainly by sediment removal due to local slump failures and erosive sediment gravity flows. Levée‐like deposits are present as little as 15 km from the shelf break. At 30 km from the shelf, turbidity currents spilled over a 400 m high ridge and reconfined in a canyon formed by retrogressive failure, where a thalweg channel was developed. These observations imply that turbidity currents evolved rapidly in this slope‐proximal environment and attained flow depths of hundreds of metres over distances of a few tens of kilometres, suggesting turbulent subglacial outwash from tunnel valleys as the principal turbidity current‐generating mechanism.  相似文献   

12.
The most complete terrestrial sequence of Anglian (Elsterian) glacial sediments in western Europe was investigated in northeast Norfolk, England in order to reconstruct the evolution of the contemporary palaeoenvironments. Lithostratigraphically the glacial sediments in the northeast Norfolk coastal cliffs can be divided into the Northn Sea Drift and Lowestoft Till Formations. Three of the diamicton members of the North Sea Drift Formation (Happisburgh, Walcott and Cromer Diamictons) were deposited as lodgement and/or subglacial deformation till by grounded ice, but one, the Mundesley Diamicton, is waterlain and was deposited in an extensive glacial lake. Sands and fine sediments interbedded between the diamictons represent deltaic sands and glaciolacustrine sediments derived not solely from the melting ice in the north but also from extra-marginal rivers in the south. The Lowestoft Till Formation is not well preserved in the cliffs but includes lodgement till (Marly Drift till) and, most probably, associated meltwater deposits. Extensive glaciotectonism in the northern part of the area is shown to relate to oscillating ice that deposited the Cromer Diamicton and also partially to the ice sheet that deposited the Marly Drift till. It is suggested that during the Anglian Stage the present day northeast Norfolk coast was situated on the northwestern margin of an extensive glaciolacustrine basin. This basin was dammed by the Scandinavian ice sheet in the north and northeast. Because the grounding line of this ice sheet oscillated in space and time, part of the North Sea Drift diamictons were deposited directly by this ice. However, during ice retreat phases glaciolacustrine deposition comprised waterlain diamicton, sands and fines. When the Scandinavian ice sheet was situated in northernmost Norfolk, the British ice sheet (responsible for depositing the Marly Drift facies) entered the area from the west. This ice sheet partially deformed the North Sea Drift Formation sediments in the northern part of the area but not in the south, where the British ice sheet apparently terminated in water. The interplay of these two ice sheets on the northern and western margins of the glacial lake is thought to be the major determining factor for the accumulation of thick glacial deposits in this area during the Anglian glaciation.  相似文献   

13.
Key locations within an extensive area of the northeastern Tibetan Plateau, centred on Bayan Har Shan, have been mapped to distinguish glacial from non‐glacial deposits. Prior work suggests palaeo‐glaciers ranging from valley glaciers and local ice caps in the highest mountains to a regional or even plateau‐scale ice sheet. New field data show that glacial deposits are abundant in high mountain areas in association with large‐scale glacial landforms. In addition, glacial deposits are present in several locations outside areas with distinct glacial erosional landforms, indicating that the most extensive palaeo‐glaciers had little geomorphological impact on the landscape towards their margins. The glacial geological record does indicate extensive maximum glaciation, with local ice caps covering entire elevated mountain areas. However, absence of glacial traces in intervening lower‐lying plateau areas suggests that local ice caps did not merge to form a regional ice sheet on the northeastern Tibetan Plateau around Bayan Har Shan. No evidence exists for past ice sheet glaciation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Late Ordovician glaciation in southern Turkey   总被引:1,自引:0,他引:1  
ABSTRACT We present a new survey of several Palaeozoic sections in both the Taurus range and the Border Folds that documents typical glacial features including a glacial pavement and striated dropstones (Halevikdere Formation) and demonstrates the former presence of an ice sheet in southern and south-eastern Turkey. Evidence for the late Ashgill (Hirnantian) age of this episode is provided by macro- and microfossils found within the glacial formation. The extension of ice-related deposits into the northernmost part of the Arabian Platform (Mardin region) implies a much wider distribution of the Ordovician ice sheet than was previously believed, and strongly suggests that southern Turkey lay close to Egypt during the Lower Palaeozoic.  相似文献   

16.
The Gulf of Bothnia hosted a variety of palaeo‐glaciodynamic environments throughout the growth and decay of the last Fennoscandian Ice Sheet, from the main ice‐sheet divide to a major corridor of marine‐ and lacustrine‐based deglaciation. Ice streaming through the Bothnian and Baltic basins has been widely assumed, and the damming and drainage of the huge proglacial Baltic Ice Lake has been implicated in major regional and hemispheric climate changes. However, the dynamics of palaeo‐ice flow and retreat in this large marine sector have until now been inferred only indirectly, from terrestrial, peripheral evidence. Recent acquisition of high‐resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo‐ice sheet behaviour. Here we report on a rich glacial landform record: in particular, a palaeo‐ice stream pathway, abundant traces of high subglacial meltwater volumes, and widespread basal crevasse squeeze ridges. The Bothnian Sea ice stream is a narrow flow corridor that was directed southward through the basin to a terminal zone in the south‐central Bothnian Sea. It was activated after initial margin retreat across the Åland sill and into the Bothnian basin, and the exclusive association of the ice‐stream pathway with crevasse squeeze ridges leads us to interpret a short‐lived stream event, under high extension, followed by rapid crevasse‐triggered break‐up. We link this event with a c. 150‐year ice‐rafted debris signal in peripheral varved records, at c. 10.67 cal. ka BP. Furthermore, the extensive glacifluvial system throughout the Bothnian Sea calls for considerable input of surface meltwater. We interpret strongly atmospherically driven retreat of this marine‐based ice‐sheet sector.  相似文献   

17.
Recent studies on Neoproterozoic climate change have prompted renewed interest in Neoproterozoic glacial deposits and renewed debate over the criteria used to identify the nature of glacial influence on sedimentation. Analyses of soft sediment deformation structures have provided important clues to distinguish between competing palaeoenvironmental interpretations of Quaternary glacial deposits; a similar approach is presented here in the analysis of Neoproterozoic glacial deposits of the Smalfjord Formation, northern Norway. A detailed sedimentological and structural analysis at several sites in the Varangerfjorden area reveals complex soft sediment deformation at various scales in conglomerate, sandstone and diamictite. Deformation is predominantly ductile and includes anticlinal and synclinal folding, flow noses, flame structures, recumbent folding and shear structures. The deformed sediments are associated predominantly with conglomerate and sandstone, which record glaciofluvial and deltaic depositional conditions. Some deformations can be attributed to rapid deposition and slumping, whereas others appear to record shear stress associated with overriding ice. The scale, style and range of deformation, together with the coarse-grained nature of the deformed sediments and facies associations, suggest that these were unfrozen outwash sediments that were overridden by ice and resedimented in a dynamic ice-proximal setting. Whereas recent studies of diamictite-bearing strata of the Smalfjord Formation had revealed no clear evidence of glacial influence on deposition, deformation structures documented here suggest that glacial conditions prevailed on the basin margin during deposition of Smalfjord Formation sediments, with sedimentary facies and deformation structures typical of temperate ice-proximal settings.  相似文献   

18.
Submarine geomorphology is one of the main tools for understanding past fluctuations of tidewater glaciers. In this study we investigate the glacial history of Mohnbukta, on the east coast of Spitsbergen, Svalbard, by combining multibeam‐bathymetric data, marine sediment cores and remote sensing data. Presently, three tidewater glaciers, Heuglinbreen, Königsbergbreen and Hayesbreen calve into Mohnbukta. Hayesbreen surged at the end of the Little Ice Age, between 1901 and 1910. The submarine landform assemblage in Mohnbukta contains two large transverse ridges, interpreted as terminal moraines, with debrisflow lobes on their distal slopes and sets of well‐preserved geometric networks of ridges, interpreted as crevasse‐squeeze ridges inshore of the moraines. The arrangement of crevasse‐squeeze ridges suggests that both landform sets were produced during surge‐type advances. The terminus position of the 1901–1910 Hayesbreen surge correlates with the inner (R.2) terminal moraine ridge suggesting that the R.1 ridge formed prior to 1901. Marine sediment cores display 14C ages between 5700–7700 cal. a BP derived from benthic foraminifera, from a clast‐rich mud unit. This unit represents pre‐surge unconsolidated Holocene sediments pushed in front of the glacier terminus and mixed up during the 1901 surge. An absence of retreat moraines in the deeper part of the inner basin and the observation of tabular icebergs calving off the glacier front during retreat suggest that the front of Hayesbreen was close to flotation, at least in the deeper parts of the basin. As the MOH15‐01 core does not penetrate into a subglacial till and the foraminifera in the samples were well preserved, the R.1 ridge is suggested to have formed prior to the deposition of the foraminifera. Based on these data we propose that a surge‐type advance occurred in Mohnbukta in the early Holocene, prior to 7700 cal. a BP, which in turn indicates that glaciers can switch to and from surge mode.  相似文献   

19.
Terminal-moraine ridges up to 6 m high have been forming at the snout of Styggedalsbreen for two decades. Based on intermittent observations during this period, combined with a detailed study of ridge morphology, sedimentary structures and composition during the 1993 field season, a model of terminal-moraine formation that involves the interaction of glacial and glacio-fluvial processes at a seasonally oscillating ice margin is presented. In winter, subglacial debris is frozen-on to the glacier sole; in summer, ice-marginal and supraglacial streams deposit sediments on the wasting ice tongue. The ice tongue overrides an embryonic moraine ridge during a late-winter advance and a double layer of sediment (diamicton overlain by sorted sands and gravels) is added to the moraine ridge during the subsequent ablation season. Particular ridges grow incrementally over many years and exert positive feedback by enhancing snout up-arching during the winter advance and constraining the course of summer meltwater streams close to the ice margin. The double-layer annual-meltout model is related to moraine formation by the stacking of subglacial frozen-on sediment slabs (Krüger 1993). Moraine ridges of this type have a complex origin. are not push moraines, and may be characteristic of dynamic high-latitude and high-altitude temperate glaciers.  相似文献   

20.
Two kinds of buried structures are described from Dzirżenin, north-east of Warsaw, where they occur within a glaciofluvial landform: (1) narrow till ridges, showing vertically oriented structures, excavated from stratified gravel and sands; and (2) a narrow vertical zone of massive gravelly/sandy material, involving vertically oriented lens-like layers composed of massive sand with pebbles, or of diamicton. The gravelly/sandy zone is also closely surrounded by stratified glaciofluvial sediments. In spite of their vertical position and internal deformation, the till ridges and gravelly/sandy zone show non-tectonic contacts with the surrounding, stratified, undisturbed sediments. The glaciofluvial sediments that occur immediately next to the structures under discussion are characterized by the occurrence of comparatively coarse material and interbeddings of diamicton, which wedge out away from these structures. The gravelly/sandy zone separates different kinds of water-laid deposits. The buried structures are interpreted as former debris-laden bands, thrust upwards within the frontal part of the ice sheet and then transformed into still-frozen debris ridges projecting over the already dead ice. Further melting of the decaying ice resulted in abundant glaciofluvial sedimentation, and the debris ridges also supplied material for the deposition of the neighbouring stratified deposits. One of the ridges separated different glaciofluvial environments. The glaciofluvial sediments completely buried the ice-cemented ridges, which were finally transformed by a melting-out process into the till ridges and the gravelly/sandy zone. The former are interpreted as having been transformed from upturned debris-laden bands with a high concentration of debris or from the bands composed of frozen-up sediment slabs. The gravelly/sandy zone is interpreted as having (most probably) been deposited from upturned bands characterized by a lesser concentration of debris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号