首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A post-tectonic plutonic array of felsic I-type granites crops out in the western Hercynian Iberian Belt. Isotope (Sr, Nd, Pb) data favour the absence of an important input of juvenile magmas in late- to post- tectonic Hercynian felsic magmatism in western Iberia, but suggest a reworking of different crustal protoliths, including oceanic metabasic rocks accreted to mid-to-lower crustal levels during the early stages of the collision. I-type granites were derived from different meta-igneous protoliths ranging from metabasic to felsic compositions depending on their geographical position from the external (e.g. Galicia—N Portugal, GNP) to the innermost continental areas (Spanish Central System and Los Pedroches Batholiths). The GNP I-type plutons related to eo-Hercynian accretional terranes have lower initial 87Sr/86Sr ratios, lower negative εNd values, and higher 206Pb/204Pb ratios than other I-type granites of the Central Iberian zone. These more isotopically primitive Hercynian I-type granites are important in tracking pre-Hercynian accreted oceanic lithosphere terranes.  相似文献   

2.
Pb, Sr and Nd isotopic compositions have been analyzed in recent granites from Northern Africa, Northern Italy and Greece. Lead isotope compositions of K-feldspars are rather homogeneous, and cluster close to the modern lead of Stacey and Kramers (1975) but with slightly higher207Pb/204Pb and208Pb/204Pb ratios. The Cyclades samples, however, have higher206Pb/204Pb ratios. Addition of mantle-derived lead was probably very limited, which supports a quasi-closed system evolution of this element in the continental crust. The Sr, Nd data fall in the enriched part of the143Nd/144Nd vs.87Sr/86Sr diagram and define a smooth hyperbolic mixing curve. Over a wide area, straddling different orogens, most granites may be accounted for by a binary mixture between a recycled crustal component and a depleted mantle-like component. No correlation is observed between either Pb and Sr or Nd isotopic ratios, or any isotopic ratio and major element contents. Quantitative modelling suggests that two cases fit the Sr and Nd characteristics of these granites: they both require anatexis of the crust on a scale large enough to average the isotopic properties of heterogeneous terranes. In the first case, the mantle-derived component may be represented by differentiated Island Arc-type magmas, and the granites result from mixing these magmas with anatectic melts. In the second case, mantle-derived igneous rocks, such as obducted ophiolites, are part of the crustal source and their variable involvement in the anatectic process causes isotopic variations.CRPG Contribution n 630.  相似文献   

3.
The Sr,Nd and Pb isotopic characteristics of the Wudang basic dyke swarms and basic volcanics of the Yaolinghe Group show that they were derived from the same multi-component mixing source in the mantle.The Wudang basic dyke swarms have(^87Sr/^86Sr)i=0.6905-0.7061,εNd(t)=-1.9-5.0,△^208Pb/^204Pb=35.49-190.26,△^207Pb/^204Pb=Th/Ta and a wide range of La/Yb ratios;and the basic volcanics of the Yaolinghe Group have(^87Sr/^86Sr)i=0.6487-0.7075,εNd(t)=0.11-3.94,△^208Pb/^204Pb=-81.58-219.95,△^207Pb/^204Pb=4.44-16.68and higher Th/Ta and La/Yb ratios,indicating that their source is a mixture of DM and EMⅡ,and the basic volcanics of the Yaolinghe Group were contaminated by crust materials en rout to the surface.Based on the geochemical features of continental tholeiitic basalts and being products of differen tacies derived from the same source,it can be concluded that an important rifting event in the South Qinling basement block occurred during Neoproterozoic,followed by a setting of oceanic basic in the Early Paleozoic.  相似文献   

4.
High-K mafic alkalic lavas (5.4 to 3.2 wt% K2O) from Deep Springs Valley, California define good correlations of increasing incompatible element (e.g., Sr, Zr, Ba, LREE) and compatible element contents (e.g., Ni, Cr) with increasing MgO. Strontium and Nd isotope compositions are also correlated with MgO; 87Sr/86Sr ratios decrease and ɛNd values increase with decreasing MgO. The Sr and Nd isotope compositions of these lavas are extreme compared to most other continental and oceanic rocks; 87Sr/86Sr ratios range from 0.7121 to 0.7105 and ɛNd values range from −16.9 to −15.4. Lead isotope ratios are relatively constant, 206Pb/204Pb ∼17.2, 207Pb/204Pb ∼15.5, and 208Pb/204Pb ∼38.6. Depleted mantle model ages calculated using Sr and Nd isotopes imply that the reservoir these lavas were derived from has been distinct from the depleted mantle reservoir since the early Proterozoic. The Sr-Nd-Pb isotope variations of the Deep Springs Valley lavas are unique because they do not plot along either the EM I or EM II arrays. For example, most basalts that have low ɛNd values and unradiogenic 206Pb/204Pb ratios have relatively low 87Sr/86Sr ratios (the EM I array), whereas basalts with low ɛNd values and high 87Sr/86Sr ratios have radiogenic 206Pb/204Pb ratios (the EM II array). High-K lavas from Deep Springs Valley have EM II-like Sr and Nd isotope compositions, but EM I-like Pb isotope compositions. A simple method for producing the range of isotopic and major- and trace-element variations in the Deep Springs Valley lavas is by two-component mixing between this unusual K-rich mantle source and a more typical depleted mantle basalt. We favor passage of MORB-like magmas that partially fused and were contaminated by potassic magmas derived from melting high-K mantle veins that were stored in the lithospheric mantle. The origin of the anomalously high 87Sr/86Sr and 208Pb/204Pb ratios and low ɛNd values and 206Pb/204Pb ratios requires addition of an old component with high Rb/Sr and Th/Pb ratios but low Sm/Nd and U/Pb ratios into the mantle source region from which these basalts were derived. This old component may be sediments that were introduced into the mantle, either during Proterozoic subduction, or by foundering of Proterozoic age crust into the mantle at some time prior to eruption of the lavas. Received: 28 February 1997 / Accepted: 9 July 1998  相似文献   

5.
Pliocene to recent volcanic rocks from the Bulusan volcanic complex in the southern part of the Bicol arc (Philippines) exhibit a wide compositional range (medium- to high-K basaltic-andesites, andesites and a dacite/rhyolite suite), but are characterised by large ion lithophile element enrichments and HFS element depletions typical of subduction-related rocks. Field, petrographic and geochemical data indicate that the more silicic syn- and post-caldera magmas have been influenced by intracrustal processes such as magma mixing and fractional crystallisation. However, the available data indicate that the Bicol rocks as a group exhibit relatively lower and less variable 87Sr/86Sr ratios (0.7036–0.7039) compared with many of the other subduction-related volcanics from the Philippine archipelago. The Pb isotope ratios of the Bicol volcanics appear to be unlike those of other Philippine arc segments. They typically plot within and below the data field for the Philippine Sea Basin on 207Pb/204Pb versus 206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, implying a pre-subduction mantle wedge similar to that sampled by the Palau Kyushu Ridge, east of the Philippine Trench. 143Nd/144Nd ratios are moderately variable (0.51285–0.51300). Low silica (<55 wt%) samples that have lower 143Nd/144Nd tend to have high Th/Nd, high Th/Nb, and moderately low Ce/Ce* ratios. Unlike some other arc segments in the Philippines (e.g. the Babuyan-Taiwan segment), there is little evidence for the involvement of subducted terrigenous sediment. Instead, the moderately low 143Nd/144Nd ratios in some of the Bicol volcanics may result from subduction of pelagic sediment (low Ce/Ce*, high Th/Nd, and high Th/Nb) and its incorporation into the mantle wedge via a slab-derived partial melt.  相似文献   

6.
The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr–Nd–Pb and δ18O isotopes) and geochronological (U–Pb zircon and Ar–Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Ni?de Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126–0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84–18.87, 207Pb/204Pb = 15.64–15.67 and 208Pb/204Pb = 38.93–38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038–0.7053) and felsic (0.7040–0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between 87Sr/86Sr and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High 87Sr/86Sr gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant 87Sr/86Sr in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.  相似文献   

7.
The petrology, geochemistry, and isotope ratios of volcanics dredged during the 43rd cruise of R/V Academik Ioffe on the Bathymetrists Seamounts in the eastern equatorial Atlantic have been studied. These are alkaline volcanics of basic and ultramafic compositions. Spider diagrams of the trace elements of volcanic rocks demonstrate strong fractionation, indicating formation of their primary melts from an enriched mantle source at garnet depth facies. Considering the isotope ratio values of 143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, and 87Sr/86Sr and the character of their variations, the volcanic mantle source was chemically heterogeneous: for various volcanic rocks it was a mixture of the mantle components HIMU with EM–1 or EM–2. Limestones dredged together with the volcanics yielded microfossils suggesting a Middle Eocene age of their formation in a carbonate platform environment.  相似文献   

8.
The Pb and Sr isotope ratios of Plio-Pleistocene volcanic rocks from the Aleutian volcanic arc are used as tracers of the lithospheric subduction process at the converging Pacific and Bering plates. Aleutian arc lavas do not have the same Pb isotopic compositions as volcanic rocks of the subducted Pacific ocean crust or the nearby Pribilof Islands, but appear to contain an ‘old continental crustal component’ with high 207Pb/204Pb ratio, as has been found in some other volcanic arcs.87Sr/86Sr ratios in the Aleutian volcanic arc rocks average 0.70322, slightly higher than fresh volcanic rocks from normal ridge segments, but within the range of values from ‘Icelandic’ ridge segments, oceanic islands and the Pribolof Islands. The Pb and Sr isotopic compositions of Aleutian lavas show a positive correlation and the range of values does not change for volcanoes distributed along strike in the arc, even though the crustal type in the hanging wall of the Benioff zone changes from oceanic in the west to continental in the east. Since the basement of the continental arc segment is older than the basement of the oceanic segment, and probably has a different isotopic character, the constancy of isotopic ratios along the arc argues against contamination by wall rocks of the type exposed in the arc.A sufficient explanation for the isotopic data is the mixture of several per cent of continent-derived sediment with melt derived from the underthrust oceanic crust and overlying mantle. This small amount of contaminant is difficult to document by geophysical observations. Such a model implies extensive recycling of Ba, Pb, K and Rb through volcanism at convergent plate margins like the Aleutians.  相似文献   

9.
The Early Palaeozoic East Krkonoše Complex (EKC) situated in the central West Sudetes, NE Bohemian Massif, is a volcano‐sedimentary suite containing abundant mafic and felsic volcanics metamorphosed to greenschist facies. The trace element distribution patterns and Nd isotope signatures (ENd500 = + 3.1 to + 6.6) of the metabasites (metabasalts) indicate that they may be related to a rising mantle diapir associated with intracontinental rifting. At the early stage, limited melting of an upwelling asthenosphere produced alkali basalts and enriched tholeiites which compositionally resemble oceanic island basalts. A later stage of rifting with larger degrees of melting at shallower depths generated tholeiitic basalts with E‐MORB to N‐MORB characteristics. The values of (87Sr/86Sr)i = 0.706 and ENd500 = − 5 ±1 of the porphyroids (metarhyolites) as well as the lack of rocks with intermediate compositions suggest that the felsic rocks were formed by a partial melting event of continental crust triggered by mantle melts. The geochemistry of the EKC bimodal metavolcanics and their association with abundant terrigenous metasediments suggest that the felsic–mafic volcanic suite was generated during intracontinental rifting. This process, widespread in Western and Central Europe during the Early Palaeozoic, is evidence of large‐scale fragmentation of the northern margin of the Gondwana supercontinent. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
Seven hundred and twenty-five Sr, two hundred and forty-three Nd and one hundred and fifty-one Pb isotopic ratios from seven different Mexican magmatic provinces were compiled in an extensive geochemical database. Data were arranged according to the Mexican geological provinces, indicating for each province total number of analyses, range and mean of values and two times standard deviation (2σ). Data from seven provinces were included in the database: Mexican Volcanic Belt (MVB), Sierra Madre Occidental (SMO), Baja California (BC), Pacific Ocean (PacOc), Altiplano (AP), Sierra Madre del Sur (SMS), and Sierra Madre Oriental (SMOr). Isotopic values from upper mantle and lower crustal xenoliths, basement outcrops and sediments from the Cocos Plate were also compiled. In the MVB the isotopic ratios range as follows:87Sr/86Sr 0.703003-0.70841;143Nd/144Nd 0.512496-0.513098;206Pb/204Pb 18.567-19.580;207Pb/204Pb 15.466-15.647;208Pb/204Pb 38.065-38.632. The SMO shows a large variation in87Sr/86Sr ranging from ∼0.7033 to 0.71387.143Nd/144Nd ratios are relatively less variable with values from 0.51191 to 0.51286. Pb isotope ratios in the SMO are as follows:206Pb/204Pb 18.060-18.860;207Pb/204Pb 15.558-15.636;208Pb/204Pb 37.945-38.625. PacOc rocks show the most depleted Sr and Nd isotopic ratios (0.70232-0.70567 for Sr and 0.512631-0.513261 for Nd). Pb isotopes for PacOc show the following range:206Pb/204Pb 18.049-19.910;207Pb/2047Pb 15.425-15.734;208Pb/204Pb 37.449-39.404. The isotopic ratios of the AP rocks seem to be within the range of those from the PacOc. Most samples with reported Sr and Nd isotopic data are spread within and around the “mantle array”. The SMO seems to have been formed by a mixing process between mantle derived magmas and continental crust. The MVB appears to have a larger mantle component, with AFC as the dominant petrogenetic process for the evolved rocks. There is still a need for Pb isotopic data in all Mexican magmatic provinces and of Nd isotopes in BC, AP, SMS, and SMOr.  相似文献   

11.
The Jurassic to Early Cretaceous magmatic arc of the Andes in northern Chile was a site of major additions of juvenile magmas from the subarc mantle to the continental crust. The combined effect of extension and a near stationary position of the Jurassic to lower Cretaceous arc favoured the emplacement and preservation of juvenile magmatic rocks on a large vertical and horizontal scale. Chemical and Sr, Nd, and Pb isotopic compositions of mainly mafic to intermediate volcanic and intrusive rock units coherently indicate the generation of the magmas in a subduction regime and the dominance of a depleted subarc mantle source over contributions of the ambient Palaeozoic crust. The isotopic composition of the Jurassic (206Pb/204Pb: ∼ 18.2; 207Pb/204Pb: ∼ 15.55; 143Nd/144Nd: ∼ 0.51277; 87Sr/86Sr: ∼ 0.703–0.704) and Present (206Pb/204Pb: ∼ 18.5; 207Pb/204Pb: ∼ 15.57; 143Nd/144Nd: ∼ 0.51288; 87Sr/86Sr: ∼ 0.703–0.704) depleted subarc mantle beneath the Central and Southern Andes (18°–40°S) was likely uniform over the entire region. Small differences of isotope ratios between Jurassic and Cenozoic to Recent of subarc mantle-derived could be explained by radiogenic growth in a still uniform mantle source.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

12.
The island of Salina comprises one of the most distinct calc-alkaline series of the Aeolian arc (Italy), in which calc-alkaline, high-K calc-alkaline, shoshonitic and leucite-shoshonitic magma series are developed. Detailed petrological, geochemical and isotopic (Sr, Nd, Pb, O) data are reported for a stratigraphically well-established sequence of lavas and pyroclastic rocks from the Middle Pleistocene volcanic cycle (430–127 ka) of Salina, which is characterized by an early period of basaltic volcanism (Corvo; Capo; Rivi; Fossa delle Felci, group 1) and a sequence of basaltic andesites, and andesites and dacites in the final stages of activity (Fossa delle Felci, groups 2–8). Major and trace element compositional trends, rare earth element (REE) abundances and mineralogy reveal the importance of crystal fractionation of plagioclase + clinopyroxene + olivine/ orthopyroxene ± titanomagnetite ± amphibole ± apatite in generating the more evolved magma types from parental basaltic magmas, and plagioclase accumulation in producing the high Al2O3 contents of some of the more evolved basalts. Sr isotope ratios range from 0.70410 to 0.70463 throughout the suite and show a well-defined negative correlation with 143Nd/144Nd (0.51275–0.51279). Pb isotope compositions are distinctly radiogenic with relatively large variations in 206Pb/204Pb (19.30–19.66), fairly constant 207Pb/204Pb (15.68–15.76) and minor variations in 208Pb/204Pb ratios (39.15–39.51). Whole-rock δ18O values range from +6.4 to +8.5‰ and correlate positively with Sr isotope ratios. Overall, the isotopic variations are correlated with the degree of differentiation of the rocks, indicating that only small degrees of crustal assimilation are overprinting the dominant evolution by crystal–liquid fractionation (AFC-type processes). The radiogenic and oxygen isotope composition of the Salina basalts suggests derivation from primary magmas from a depleted mantle source contaminated by slab-derived fluids and subducted sediments with an isotopic signature of typical upper continental crust. These magmas then evolved further to andesitic and dacitic compositions through the prevailing process of low-pressure fractional crystallization in a shallow magma reservoir, accompanied by minor assimilation of crustal lithologies similar to those of the Calabrian lower crust. Received: 29 November 1999 / Accepted: 16 April 2000  相似文献   

13.
Rare-earth-element, radiogenic and oxygen isotope, and mineral chemical data are presented for tholeiitic and alkaline Quaternary volcanism from Karasu Valley (Hatay, southeastern Turkey). Karasu Valley is the northern segment of the Dead Sea transform fault and is filled with flood-basalt type volcanics of Quaternary age. This valley is an active fault zone that is known as “Karasu fault,” extending in a NE-SW direction. The Karasu Valley basaltic volcanics (KVBV) are subaphyric to porphyritic, with variable amounts of olivine, clinopyroxene, and plagioclase phenocrysts. Alkali basalts are generally characterized by high contents of olivine, clinopyroxene, and plagioclase phenocrysts. Their groundmass contains olivine, clinopyroxene, plagioclase, and Fe-Ti oxides. Tholeiitic basalts are subaphyric to porphyritic (high contents of olivine, clinopyroxene, and plagioclase). Their groundmass is similar to that of alkali basalts. The range of olivine phenocryst and microlite compositions for all analyzed samples is Fo81 to Fo43. Plagioclase compositions in both tholeiitic and alkali basalts range from andesine, An38 to bytownite, An72. Clinopyroxene compositions range from diopside to calcic augite. Most of the olivine, plagioclase, and clinopyroxene phenocrysts are normally zoned and/or unzoned. Fe-Ti oxides in both series are titanomagnetite and ilmenite.

Based on normative and geochemical data, the Karasu Valley basaltic volcanics are mostly olivine and quartz-tholeiites, and relatively lesser amount of alkali olivine-basalts. KVBV have low K2O/Na2O ratios, typically between 0.25 and 0.45. Olivine- and quartz-tholeiites are older than alkali olivine-basalts. Olivine tholeiites have Zr/Nb and Y/Nb ratios similar to alkaline rocks, but their Ba/Nb, Ba/La, and La/Nb ratios are slightly higher than alkali olivine-basalts. In contrast, quartz-tholeiites have the highest Ba/Nb, Ba/La, Zr/Nb, and Y/Nb and the lowest Nb/La ratios among the KVBV. Alkali basalts have 87Sr/86Sr and 143Nd/144Nd ratios ranging from 0.703353 to 0.704410 and 0.512860 to 0.512910, respectively. In contrast, quartz-tholeiites have higher 87Sr/86Sr and lower 143Nd/144Nd ratios, which vary from 0.704410 to 0.705490 and 0.512628 to 0.512640, respectively. Olivine tholeiites have intermediate isotopic compositions ranging from 0.703490 to 0.704780 and 0.512699 to 0.512780, respectively. 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb isotopic ratios of KVBV range from 18.817 to 19.325, 15.640 to 15.718, and 39.054 to 39.223, respectively. The range of O isotope values is between +5.84 and +7.97‰. The higher O and Sr isotopes in olivine- and quartz-tholeiites relative to alkali olivine-basalts can be explained by contamination of magmas by crustal materials.

The KVBV have intraplate chemistry similar to that of other tholeiitic and alkaline basalts in other within-plate environments, and isotopes range from isotopically depleted mantle to enriched isotope compositions similar to some enriched ocean islands. Trace-element and isotope data indicate that the KVBV are derived from a common OIB-like asthenospheric mantle source, but they have experienced different degrees of crustal contamination during their ascent to the surface, contemporaneous with little fractional crystallization. Although quartz-tholeiites display significant effects of crustal contamination, alkali olivine-basalts appear to have negligible or no crustal contamination in their geesis.  相似文献   

14.
Lavas from Karisimbi, the largest volcano in the Virunga province in the Western Branch of the African rift on the Zaire-Rwandan border, constitute a suite of mafic potassic basanites and more evolved potassic derivatives. All of the lavas are potassic with K2O/Na2O1, and enriched in incompatible elements, with chondrite normalised (La/Yb)n>18 and Nb/Zr>0.25. The 87Sr/86Sr and 143Nd/144Nd ratios reflect these enriched compositions, varying from 0.7052 and 0.51258 respectively in the K-basanites to 0.7132 and 0.51226 in the most evolved K-trachyte, although at MgO abundances >4% there is no systematic variation of isotope ratios with fractionation. At >4% MgO, lava compositions were controlled by assimilation and fractional crystallization in a sub-volcanic magma chamber. Trace-element and isotope variations in the more mafic lavas appear to reflect mixing between a primitive K-basanite (PKB) magma and a Sr-rich end-member, similar to melilite nephelinites from the neighbouring volcano, Nyiragongo. Both endmembers are mantle-derived and isotopically distinct, with the PKB being characterised by 87Sr/86Sr up to 0.707 and 143Nd/144Nd as low as 0.51236. Alternatively, isotope variations may be the time-integrated response to trace-element fractionations in a variably enriched mantle source. The Pb isotope variations within Karisimbi are complex. In the more evolved lavas all three ratios increase coherently with fractionation, whereas in the mafic varieties 206Pb/204Pb remains roughly constant at 19.2 while 207Pb/204Pb and 208Pb/204Pb vary from 15.67 to 15.78 and 39.49 to 40.80 respectively, defining sub-vertical trends, consistent with PKB-nephelinite magma mixing. The Nd and Sr isotopes indicate trace-element fractionation in the PKB source at 1 Ga, similar to ages derived from the overlying crust and suggesting a lithospheric origin. Elevated 208Pb/204Pb and 208Pb*/206Pb* values of the PKB are also consistent with Th/U fractionation at a similar time. However, this 1Ga age contrasts with that derived from the elevated 207Pb/204Pb ratios which indicate U/Pb fractionation during the Archaean. Crustal contamination can be excluded as the major control of Pb isotope variation in the PKB because their high Ce/Pb ratios (27) are similar to those typical of oceanic basalts. Parent/daughter trace-element fractionation and the high Ti, Nb and Ta abundances of the PKB lavas are all consistent with enrichment of a lithospheric source region by small-degree silicate melts at 1Ga. Comparison between measured and time-integrated trace-element ratios suggests that the degree of melting associated with recent magmatism was 5%. These data show that significant Th/U and Rb/Sr fractionation can be produced by intra-mantle melting processes and that high 208Pb/204Pb and 208Pb*/206Pb* values can evolve within the upper mantle and do not necessarily require the recycling of crustal material. Comparable isotope features in continental flood basalts and DUPAL ocean island basalts may be explained in a similar way.  相似文献   

15.
The Kuandian Complex is scarcely preserved Early Proterozoic volcanic suite, formed2.3-2.4 Ga ago. It is located in an Early Proterozoic mobile belt bounded by the ArchaeanRangrim and Ryonggang Blocks of the northeastern Sino-Korean Craton. The Complex ismainly made up of amphibolites, gneisses, leucoleptite, leptite and layered granite. Petrologicaland geochemical studies show that the protoliths of the Complex are mainly assoctations ofbimodal volcanics and anorogenic granites. The Kuandian amphibolites are depleted in Nb, Ta,P and Ti, and enriched in LILE, e.g. K, Rb and Cs, with pronounced depletion of Sr relative toNd and Pb; La/Nb ratios are higher than 1(1.75 to 5.18). The trace element patterns of theamphibolites are similar to continental flood basalts formed by the Gondwana break-up, suchas those in South Karoo and Tasmania, which shows continental contamination. ε_(Nd) valuesranging from 0.70 to 1.94 of the Kuandian amphibolites and the relationships between Nb/Yband La/Yb suggest that contamination of basaltic magma happened in the mantle, rather thanalong the conduit. Isotope ratios of ~(208)Pb/~(204)Pb, ~(207)Pb/ ~(204)Pb, ~(206)Pb/~(204)Pb, ~(143)Nd/~(144)Ndand ~(87)Sr/~(86)Sr indicate that the magma was derived from a contaminated mantle source likeDMM or a mixture of DMM and EM2. The Kuandian Complex has Dupal anomaly, as is thecase with some continental basalts in the south hemisphere, e.g. in South Karoo and Tasmania.Petrochemical modelling proposes that the Kuandian gneiss, granite, and amphibolite camefrom the same parental magma, being products of strong fractional crystallization. Protoliths ofthe Kuandian Complex were formed in extensional tectonic setting during the transition fromcontinental crust to oceanic crust. The formation of the Kuandian Complex indicates that 2.3or 2.4 Ga ago tectonic evolution of the Sino-Korean craton was different from that of otherwell-studied Precambrian cratons, e.g. the North American shield, European platform andAustralian continent in that strong volcanic eruption resulted in its accretion. Besides, the con-taminated magma source with a Dupal anomaly for the Complex indicates that crust-mantleconvection whose scale was similar to that of the present plate tectonics had occurred at leastbefore the formation of the Kuandian Complex (2.3-2.4 Ga B.P).  相似文献   

16.
东天山党罗塔格构造带晚古生代火山岩地球化学特征及意义   总被引:14,自引:5,他引:14  
本文报道了觉罗塔格构造带中企鹅山群和雅满苏组火山岩的元素和Sr-Nd同位素地球化学研究结果。企鹅山群和雅满苏组火山岩分别以低钾拉斑系列和钙碱性系列为主,玄武岩和安山岩均相对于N-MORB富集轻稀土元素和Sr、Ba、Th等大离子亲石元素,而亏损Nb、Zr和Ti等高场强元素,具有较高的Th/Ta和Ta/Yb比值,表明这些火山岩形成于具有陆壳基底的岛弧环境。但是,雅满苏组比企鹅山群具有偏高的K2O、Rb、Th、U、Nb、Zr和REE等不相容元素含量和较高的K2O/Na2O比值。Sr-Nd同位素组成表明企鹅山群和雅满苏组都来自亏损的地幔源区,但后者遭受了明显的陆壳物质混染。这种地球化学组成的差异反映了陆壳基底性质和厚度的不同。结合已有的地质调查结果,我们认为康古尔断裂作为俯冲带是比较合理的,早石炭世存在康古尔洋,而且它很可能发生了南北双向俯冲作用。企鹅山群火山岩是向北侧俯冲在大南湖泥盆纪岛弧南侧增生的产物,而雅满苏组火山岩是通过向南俯冲在中天山地块北缘形成的陆缘弧火山岩。  相似文献   

17.
The Hashitu molybdenum deposit is located in the southern part of the Great Hinggan Range,NE China.Molybdenum mineralization is hosted by and genetically associated with monzogranite and porphyritic syenogranite.Sr-Nd-Pb isotopes of the intrusions show that the porphyritic syenogranite has initial~(87)Sr/~(86)Sr ratios of 0.70418-0.70952,ε_(Nd)(t)values of 1.3 to 2.1(t=143Ma),~(206)Pb/~(204)Pb ratios of 19.191-19.573,~(207)Pb/~(204)Pb ratios of 15.551-15.572,and~(208)Pb/~(204)Pb ratios of38.826-39.143.The monzogranite has initial~(87)Sr/~(86)Sr ratios of 0.70293-0.71305,ε_(Nd)(t)values of 1.1 to2.0(t=147 Ma),~(206)Pb/~(204)Pb ratios of 19.507-20.075,~(207)Pb/~(204)Pb ratios of 15.564-15.596,and~(208)Pb/~(204)Pb ratios of 39.012-39.599.The calculated Nd model ages(T_(DM))for monzogranite and porphyritic syenogranite range from 866 to 1121 Ma and 795 to 1020 Ma,respectively.The granitic rocks in the Hashitu area have the same isotope range as granites in the southern parts of the Great Hinggan Range.The isotope composition indicates that these granites are derived from the partial melting of a juvenile lower crust originating from a depleted mantle with minor contamination by ancient continental crust.The integrating our results with published data and the Late Mesozoic regional tectonic setting of the region suggest that the granites in the Hashitu area formed in an intra-continent extensional setting,and they are related to the thinning of the thickened lithosphere and upwelling of the asthenosphere.  相似文献   

18.
We present here Sr, Nd, and Pb-isotopic data from harzburgite (group I) and dunite-pyroxenite (group II) suite mantle xenoliths from the island of Hierro, one of the youngest and westernmost of the Canary Islands. A progressive leaching technique has been developed and applied to the whole-rock powder samples in order to identify and remove as far as possible any recent additions (host basalt and/or sea-water). Isotopic analyses of the leached residues show significant systematic differences between these two suites. Dunite-pyroxenite suite xenoliths (olivine pyroxenites, dunites and wehrlites) exhibit a relatively small range of isotopic compositions (87Sr/86Sr from 0.70292 to 0.70315; 143Nd/144Nd from 0.51295 to 0.51302; 206Pb/204Pb from 19.18 to 19.40) compared to the harzburgite suite (87Sr/86Sr from 0.70295 to 0.70320; 143Nd/144Nd from 0.51285 to 0.51296; 206Pb/204Pb from 18.85 to 19.41). In all isotope correlation diagrams the leached dunite-pyroxenite suite xenoliths plot between the Hierro basalt field and a hypothetical depleted mantle suggesting that these xenoliths may have been strongly infiltrated by Hierro-type basalt. Progressive leaching of this suite of samples showed removal of a component with more enriched Sr (higher 87Sr/86Sr relative to depleted mantle) and Nd (lower 143Nd/144Nd) isotopic compositions that is probably host basalt glass. The leached harzburgite suite xenoliths extend to more enriched Sr and Nd isotopic compositions than Hierro-type basalt but always have more depleted Pb. This relationship can best be explained if this suite has been subject to infiltration by earlier magmas of the Canary Island suite (in particular, those from Gran Canaria show appropriate compositional ranges), although additional infiltration by Hierro basalt cannot be ruled out. The leaching experiments for this suite mostly show removal of a radiogenic Sr component only (? seawater) which supports the interpretation of early infiltration and subsequent recrystallisation and equilibration prior to the Hierro event. Isotopic data presented in this study show that complex interaction with percolating basaltic melts of varying composition was occurring in the upper mantle beneath Hierro prior to and during the volcanic event and was probably related to the generation of earlier Canary Island magmas.  相似文献   

19.
207Pb/204Pb versus 206Pb/204Pb model ages using Shonkin Sag data and published analyses for magmas of the Cenozoic Wyoming-Montana alkaline province (WYMAP) provide evidence of an Archean age for the subcontinental lithospheric mantle (SLM) associated with the Wyoming craton. The SLM imprint on magmas is expressed as Ba, Ta, Nb and Ti "anomalies" which correlate with radiogenic isotopic data, and it resembles a subduction imprint on Cenozoic south-western USA basalts (SWUSAB). However the latter give Proterozoic Pb isotope model ages. Although the Archean and Proterozic model ages may represent mixing lines, the fact that they resemble the ages for continental crust cut by WYMAP and SWUSAB respectively indicates that the age of the underlying SLM helped control the "isochron" slopes and inferred "ages". Lower 143Nd/144Nd and 206Pb/204Pb but comparable 87Sr/86Sr for WYMAP suggest that SLM associated with Archean cratons has lower Sm/Nd, U/Pb and Rb/Sr ratios than SLM associated with SWUSAB Proterozic terranes, regardless of when the subduction imprint or imprints developed. WYMAP magmas have high Pb/Zr ratios indicating that Archean SLM, like Archean continental crust, is enriched in Pb compared to Proterozoic SLM. If the enrichment was Archean, it implies that higher Archean heat flow enhanced Pb transfer from the subducting slab to overlying lithospheric mantle and crust. A subducted sediment imprint on the SLM is also consistent with high i18O values for the Shonkin Sag. Low TiO2 in WYMAP may reflect a residual mantle TiO2 phase. If so, the Nb "missing" from crustal and oceanic mantle reservoirs may reside in rutile of Archean SLM. Isotopic similarities between WYMAP and EM1 oceanic island basalts may reflect the presence of delaminated, Archean SLM in the oceanic mantle, although low Pb/Zr ratios and a lack of Ti, Nb and Ta anomalies in oceanic island basalts deserve further investigation.  相似文献   

20.
High-precision Pb isotope data and Sr–Nd–Hf isotope data are presented together with major and trace element data for samples spanning the 4.6 Ma history of volcanism at Santiago, in the southern Cape Verde islands. Pb isotope data confirm the positive Δ8/4 signature of the southern islands indicating that the north–south compositional heterogeneity in the Cape Verde archipelago has persisted for at least 4.6 Ma. The Santiago volcanics show distinct compositional differences between the old, intermediate and young volcanics, and suggest greater involvement of an enriched mantle (EM1)-like source over time. Isotopic variations in the Santiago volcanics indicate convergence towards a homogeneous EM1-like end-member and distinct temporal variations in the FOZO-like end-member. Santiago and Santo Antão (a northern island, Holm et al. 2006), show a simultaneous decrease in 208Pb/204Pb of the high 206Pb/204Pb FOZO-like source with time. Such systematic archipelago-wide variations in the FOZO-like component suggest that this component is more likely to be present as a coherent package of recycled ocean crust rather than as multiple small heterogeneities dispersed in the upwelling mantle. The temporal variations in 208Pb/204Pb reflect minor lateral variations in Th/U of this recycled ocean crust package entering the melting zone beneath the islands. The location of the EM1-like component is more equivocal. A shallow lithospheric location is possible, but this would require a coincidence between spatial compositional variations in the lithosphere (EM1 is spatially restricted to the southern islands) and flow lines in the upwelling mantle revealed by seismic anisotropy. Therefore, we favour a deeper asthenospheric mantle source for the EM1-like source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号