首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 937 毫秒
1.
融合地磁/WiFi/PDR的自适应粒子滤波室内定位   总被引:1,自引:0,他引:1  
随着国民经济的快速发展,人们在室内活动的时间越来越长,室内空间环境也越来越复杂,对室内环境的位置与导航服务的需求也越来越高。由于地磁信号具有稳定性的特点,且WiFi技术已得到广泛部署,融合使用地磁和WiFi定位具有一定的优势。因此,本文基于Android系统智能手机作为接收设备,融合地磁、WiFi及行人航迹推算(PDR)技术,通过自适应粒子滤波模型和随机抽样一致性算法对采集的信号进行处理。试验证明,地磁、WiFi、PDR三者融合进行室内定位的方法与其他单类方法相比,实现了将室内定位精度的误差最小降低到1.02 m。  相似文献   

2.
近年来室内定位技术成为国内外研究的热点,形成了多种室内定位技术共存的局面,其中WiFi、蓝牙、超宽带等无线网络定位技术应用较广,但是这些定位技术都依赖于基础设施,定位成本较高。此处使用室内地磁信号,无需部署任何基础设施即可定位,并利用手机端MEMS传感器实现行人不同运动模式下的步频探测与航向估计。针对地磁信号具有低辨识度的缺点以及PDR的误差累积问题,利用粒子滤波算法融合地磁与PDR定位结果,有效提高了系统的稳定性,保证了定位精度。实验表明,粒子融合定位方法能够消除PDR的漂移,并且平均定位精度达到1.38 m,定位误差在1.5 m内达到80%以上,具有较强的实用性。  相似文献   

3.
利用建筑物中金属结构引起的地磁场扰动可以对室内的行人目标进行定位,而且基于地磁场的定位无需布设任何额外设施,因此可以以低成本实现定位。但仅靠单一的地磁技术无法满足室内定位的精度要求。为了解决磁场数据中单点定位的模糊性问题,本文提出了一种利用粒子滤波算法将PDR与地磁相融合的室内定位方法,并开发了地磁室内导航系统,以智能手机为硬件平台构建磁力计传感器模型,建立匹配轨迹的均方误差准则并实现PDR累积误差实时校正的迭代计算。在68 m×1.8 m的试验区域内,产生的平均定位误差为1.13 m,最大定位误差为2.17 m。本文算法的定位精度比单独PDR算法提升了42%;与单一地磁指纹匹配算法相比,定位精度提高了57%。试验证明,本文提出的融合算法对提高室内定位精度具有显著的作用。  相似文献   

4.
针对行人航位推算(PDR)定位存在误差累积和地磁指纹不唯一导致的误匹配问题,本文改进了基于粒子滤波的PDR/地磁指纹室内定位方法。在PDR定位过程中利用地图信息控制粒子权重更新,得到较为准确的位置信息后,利用动态时间规整(DTW)算法在PDR推算位置基础上进行快速序列匹配,获取最优位置估计。试验结果表明,融合定位方法有效解决了行人位置穿墙问题,最大定位误差小于1.5 m,53.33%概率定位精度1 m。  相似文献   

5.
针对室内定位存在单一定位精度低,以及组合定位成本高、不易实现的问题,提出了一种利用环境光修正行人航迹推算(PDR)的方法。该方法利用智能手机采集的加速度、陀螺仪和磁力计数据实现PDR位置估计;同时利用手机的光线传感器实时获取所在位置的环境光强度信息,基于采集的室内环境光强度信息修正PDR轨迹中产生的累计误差。经试验数据分析,该方法可以有效地解决PDR轨迹中产生的累计误差,可为大型超市、地下停车场、隧道、矿井等室内光照强度较为稳定的区域提供定位技术帮助。  相似文献   

6.
地磁室内定位基准图数据采集系统设计   总被引:4,自引:1,他引:3  
近年来,地磁作为室内定位基准已经成为热点研究领域。本文深入研究了地磁室内定位技术,并通过大量试验,分析了室内磁性材料及电子设备对磁场的干扰,进一步探究了室内磁场特性,证明了磁场信息作为定位依据的可行性;利用Arduino IDE研发了智能地磁数据采集平台,该平台搭载多种传感器,如HMC5983磁传感器和惯性导航传感器等,采集一定密度的室内地磁数据,利用克里金法对该地磁数据进行差值处理,生成2 cm间隔大小的栅格地磁图,作为室内定位基准图保存在数据库中。  相似文献   

7.
提出了一种改进的粒子滤波方法,利用室内常见的WiFi信号、地磁源并结合智能手机廉价传感器进行室内定位。WiFi室内定位错误匹配情况较少,地磁指纹室内定位具有较强的抗干扰能力,本文利用两者的优点并结合PDR提供连续的位置信息。与传统的粒子滤波相比,采用MD-DTW(多维动态时间规整算法)对粒子定权并提出分段粒子定权的方法对粒子序列长度进行约束,能有效加快粒子滤波收敛速度。仿真试验表明利用改进的粒子滤波进行定位结果可达1 m,有较强的实用性。  相似文献   

8.
针对单传感器室内定位存在累积误差大、连续性差的问题,本文顾及行人航迹推算(PDR)与低功耗蓝牙信标(BLE Beacon)良好的互补性,研究了基于移动智能终端的融合PDR/iBeacon的室内定位算法:首先,采用电子罗盘和陀螺仪互补修正航向角法降低了PDR的累积误差,其次结合离线指纹库并利用加权K近邻法实现了iBeacon指纹定位,最后基于扩展卡尔曼滤波器(EKF)实现了PDR/iBeacon融合定位。两组实测结果表明,相较于传统的PDR,电子罗盘和陀螺仪互补修正航向角方法有效地抑制了航向误差的累积。室内行人航程为39和60 m时,融合PDR/iBeacon定位的平均误差分别为0.560、1.802 m,相比改进的PDR和iBeacon指纹定位精度提高了11.81%、25.53%和26.66%、11.75%。融合PDR/iBeacon的室内定位能降低PDR的误差累积和iBeacon定位的波动性,满足用户室内定位的需求。  相似文献   

9.
提出了一种基于互补滤波融合WiFi和PDR的行人室内定位方法。首先改善WiFi位置指纹定位的KNN算法,通过阈值的设定,排除相似度高但实际上不可能的点,获取动态K值;然后通过行人航位推算(PDR)初始化算法,动态轨迹概率计算,确定PDR初始位置;最后在改进的WiFi和PDR的定位基础上,基于互补滤波原理,根据WiFi和PDR定位的不同特性,利用各自的定位优点,使用WiFi定位修正PDR的定位结果,通过相应权重参数的调整,输出最终融合定位结果。试验过程中,选取3种不同的室内环境区域,试验结果证明了该算法可大大提高室内定位的精度和稳定性。  相似文献   

10.
由于导航卫星信号在室内被遮挡,室内定位技术逐渐成为泛在导航定位领域的研究热点。行人航迹推算(PDR)和低功耗蓝牙(BLE)定位是惯性定位和射频信号定位的常用定位手段,PDR定位连续稳定但存在累积误差,BLE定位无误差累积但定位精度较差。为此,本文面向室内复杂环境行人自主定位需求,对PDR和BLE的实时融合定位展开了研究。首先针对PDR误差累积问题,提出了BLE临近校正PDR的改进算法;然后针对BLE定位粗差大的的问题,提出了基于扩展卡尔曼滤波(EKF)的自适应抗差PDR+BLE融合定位算法。试验结果表明,相比传统算法,BLE临近校正PDR算法定位精度提高了19%,基于EKF的自适应抗差融合定位精度提高了21%,定位精度和稳定性都有显著提升,在室内定位领域中具有较高的适用性和可扩展性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号