首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miocene sedimentary and volcanic rocks in the north-eastern Whipple Mountains, California, and the north-western Aubrey Hills, Arizona, accumulated in the upper plate of the Whipple detachment fault during regional extension and slip on the detachment. Miocene rocks in this area can be divided into three sequences: (1) pre-18.5-Ma dominantly volcanic rocks; (2) the 18.5-Ma Peach Springs Tuff; and (3) post-18.5-Ma dominantly sedimentary rocks. Important stratigraphic markers in sequence 3 include a 100- to 14–0-m-thick basalt unit and the voluminous War Eagle landslide, both of which correlate across Lake Havasu from the north-east Whipple Mountains to the Aurbrey Hills. We divide clastic sedimentary rocks of sequence 3 into three informal members: (3a) conglomerate and sandstone stratigraphically beneath the basalt; (3b) conglomerate and sandstone above the basalt and below the War Eagle landslide; and (3c) conglomerate and sandstone that overlie the War Eagle landslide. Detailed stratigraphic analysis and field mapping reveal dramatic south-westward thickening of member 3b strata, from about 50 m in the Aubrey Hills to over 1500 m in the north-east Whipple Mountains. In the north-east Whipple Mountains, this thick dipping section is overlain by the War Eagle landslide along a major angular unconformity; in the Aubrey Hills the base of the War Eagle landslide is roughly parallel to bedding dips of underlying strata. The above stratigraphic relationships can be explained by syndepositional growth of a rollover monocline by progressive tilting of the hangingwall above a master listric normal fault (Whipple detachment fault). This phase of upper-plate deformation began shortly after deposition of the basalt and ended prior to emplacement of the War Eagle landslide. Interbedded breccias low in member 3b, about 100 m above the basalt, record the first appearance of mylonitic detritus in the section. Growth of this upper-plate rollover was thus initiated at about the same time (shortly after deposition of the basalt) that the lower plate of the Whipple detachment fault was first exposed at the earth's surface by tectonic denudation and large-scale crustal uplift. These events are interpreted to record initiation of a secondary breakaway fault on the north-east flank of the growing Whipple detachment dome shortly after deposition of the basalt at about 14.5 (±1.0) Ma.  相似文献   

2.
We present a new lithostratigraphy and chronology for the Miocene on central Crete, in the Aegean forearc. Continuous sedimentation started at ~10.8 Ma in the E–W trending fluvio‐lacustrine Viannos Basin, formed on the hangingwall of the Cretan detachment, which separates high‐pressure (HP) metamorphic rocks from very low‐grade rocks in its hangingwall. Olistostromes including olistoliths deposited shortly before the Viannos Basin submerged into the marine Skinias Basin between 10.4 and 10.3 Ma testifies to significant nearby uplift. Uplift of the Skinias Basin between 9.7 and 9.6 Ma, followed by fragmentation along N–S and E–W striking normal faults, marks the onset of E–W arc‐parallel stretching superimposed on N–S regional Aegean extension. This process continued between 9.6 and 7.36 Ma, as manifested by tilting and subsidence of fault blocks with subsidence events centred at 9.6, 8.8, and 8.2 Ma. Wholesale subsidence of Crete occurred from 7.36 Ma until ~5 Ma, followed by Pliocene uplift and emergence. Subsidence of the Viannos Basin from 10.8 to 10.4 Ma was governed by motion along the Cretan detachment. Regional uplift at ~10.4 Ma, followed by the first reworking of HP rocks (10.4–10.3 Ma) is related to the opening and subsequent isostatic uplift of extensional windows exposing HP rocks. Activity of the Cretan detachment ceased sometime between formation of extensional windows around 10.4 Ma, and high‐angle normal faulting cross‐cutting the detachment at 9.6 Ma. The bulk of exhumation of the Cretan HP‐LT metamorphic rocks occurred between 24 and 12 Ma, before basin subsidence, and was associated with extreme thinning of the hangingwall (by factor ~10), in line with earlier inferences that the Cretan detachment can only explain a minor part of total exhumation. Previously proposed models of buyoant rise of the Cretan HP rocks along the subducting African slab provide an explanation for extension without basin subsidence.  相似文献   

3.
Exceptional 3‐D exposures of fault blocks forming a 5 km × 10 km clastic sediment‐starved, marine basin (Carboneras subbasin, southeast Spain) allow a test of the response of carbonate sequence stratigraphic architectures to climatic and tectonic forcing. Temperate and tropical climatic periods recorded in biofacies serve as a chronostratigraphic framework to reconstruct the status of the basin within three time‐slices (late Tortonian–early Messinian, late Messinian, Pliocene). Structural maps and isopach maps trace out the distribution of fault blocks, faults, and over time, their relative motions, propagational patterns and life times, which demonstrate a changing layout of the basin because of a rotation of the regional transtensional stress field. Progradation of early Messinian reefal systems was perpendicular to the master faults of the blocks, which were draped by condensed fore‐slope sediments. The hangingwall basins coincided with the toe‐of‐slope of the reef systems. The main phase of block faulting during the late Tortonian and earliest Messinian influenced the palaeogeography until the late Pliocene (cumulative throw < 150–240 m), whereas displacements along block bounding faults, which moved into the hangingwall, died out over time. An associated shift of the depocentres of calciturbidites, slump masses and fault scarp degradation breccias reflects 500–700 m of fault propagation into the hangingwall. The shallow‐water systems of the footwall areas were repeatedly subject to emergence and deep peripheral erosion, which imply slow net relative uplift of the footwall. In the dip‐slope settings, erosional truncations of tilted proximal deposits prevail, which indicate rotational relative uplift. Block movements were on the order of magnitude of third order sea‐level fluctuations during the late Tortonian and earliest Messinian. We suggest that this might be the reason for the common presence of offlapping geometries in early Messinian reef systems of the Betic Cordilleras. During the late Pliocene, uplift rates fell below third order rates of sea‐level variations. However, at this stage, the basin was uplifted too far to be inundated by the sea again. The evolution of the basin may serve as a model for many other extensional basins around the world.  相似文献   

4.
ABSTRACT The Alkyonides half‐graben is separated from the Gerania Range to the south by active faults whose offshore traces are mapped in detail. The East Alkyonides and Psatha Faults have well‐defined, Holocene‐active tip zones and cannot be extrapolated from the onshore Skinos Fault into a single continuous surface trace. During the late Quaternary, catchments draining the step‐faulted range front have supplied sediment to alluvial fans along a subsiding marine ramp margin in the hangingwall of the Skinos Fault, to shelf ledge fans on the uplifting footwall to the East Alkyonides Fault and to the Alepochori submarine fan in the hangingwall of the latter. During late Pleistocene lowstand times (c. 70–12 ka), sediment was deposited in Lake Corinth as fan deltas on the subsiding Skinos shelf ramp which acted as a sediment trap for the adjacent 360 m deep submarine basin plain. At the same time, the uplifting eastern shelf ledge was exposed, eroded and bypassed in favour of deposition on the Alepochori submarine fan. During Holocene times, the Skinos bajada was first the site of stability and soil formation, and then of substantial deposition before modern marine erosion cut a prominent cliffline. The uplifting eastern shelf ledge has developed substantial Holocene fan lobe depositional sequences as sediment‐laden underflows have traversed it via outlet channels. We estimate mean Holocene displacement rates towards the tip of the Psatha Fault in the range 0.7–0.8 mm year?1. Raised Holocene coastal notches indicate that this may be further partitioned into about 0.2 mm year?1 of footwall uplift and hence 0.5–0.6 mm year?1 of hangingwall subsidence. Holocene displacement rates towards the tip of the active East Alkyonides Fault are in the range 0.2–0.3 mm year?1. Any uplift of the West Alkyonides Fault footwall is not keeping pace with subsidence of the Skinos Fault hangingwall, as revealed by lowstand shelf fan deltas which show internal clinoforms indicative of aggradational deposition in response to relative base‐level rise due to active hangingwall subsidence along the Skinos Fault. Total subsidence here during the last 58 kyr lowstand interval of Lake Corinth was some 20 m, indicating a reduced net displacement rate compared to estimates of late Holocene (< 2000 bp ) activity from onshore palaeoseismology. This discrepancy may be due to the competition between uplift on the West Alkyonides Fault and subsidence on the onshore Skinos Fault, or may reflect unsteady rates of Skinos Fault displacement over tens of thousands of years.  相似文献   

5.
Reflection seismic data show that the late Cenozoic Safford Basin in the Basin and Range of south-eastern Arizona, is a 4.5-km-deep, NW-trending, SW-dipping half graben composed of middle Miocene to upper Pliocene sediments, separated by a late Miocene sequence boundary into lower and upper basin-fill sequences. Extension during lower basin-fill deposition was accommodated along an E-dipping range-bounding fault comprising a secondary breakaway zone along the north-east flank of the Pinaleño Mountains core complex. This fault was a listric detachment fault, active throughout the mid-Tertiary and late Cenozoic, or a younger fault splay that cut or merged with the detachment fault. Most extension in the basin was accommodated by slip on the range-bounding fault, although episodic movement along antithetic faults temporarily created a symmetric graben. Upper-plate movement over bends in the range-bounding fault created rollover structures in the basin fill and affected deposition within the half graben. Rapid periods of subsidence relative to sedimentation during lower basin-fill deposition created thick, laterally extensive lacustrine or alluvial plain deposits, and restricted proximal alluvian-fan deposits to the basin margins. A period of rapid extension and subsidence relative to sediment influx, or steepening of the upper segment of the range-bounding fault at the start of upper basin-fill deposition resulted in a large downwarp over a major fault bend. Sedimentation was restricted to this downwarp until filled. Episodic subsidence during upper basin-fill deposition caused widespread interbedding of lacustrine and fluvial deposits. Northeastward tilting along the south-western flank of the basin and north-eastward migration of the depocentre during later periods of upper basin-fill deposition suggest decreased extension rates relative to late-stage core complex uplift.  相似文献   

6.
Field exposures of Lower Cretaceous strata in the Oliete sub-basin (eastern Spain) allow identification of syn-rift features such as listric and planar normal faults, rotated fault blocks, fault-related folds, sharp thickness variations and wedge-shaped sedimentary geometries, as well as intra-rift angular unconformities defined by the erosive truncation of rotated fault blocks and the onlap of upper units. The combined use of both stratigraphic and extensional tectonic features at the outcrop scale has allowed us to characterise different syn-sedimentary tectonic events and their correlation between the footwall and the hangingwall block of the major extensional Gargallo fault. Such events have been interpreted as induced by the major Gargallo fault activity, and they are the basis for proposing a polyphase evolutionary model for this master fault. Data indicate that the deformation tends not to be concentrated on the major fault; instead, it is distributed over a wide area. We interpret that both the interlayered detachment levels in the pre-rift (especially the Late Triassic Keuper Facies) and syn-rift series, together with the rheology of the sedimentary pile, play an important role in transmitting deformation from master faults to hangingwall and footwall blocks.  相似文献   

7.
In this work, we explore by means of analogue models how different basin-bounding fault geometries and thickness of a viscous layer within the otherwise brittle pre-rift sequence influence the deformation and sedimentary patterns of basins related to extension. The experimental device consists of a rigid wooden basement in the footwall to simulate a listric fault. The hangingwall consists of a sequence of pre-rift deposits, including the shallow interlayered viscous layer, and a syn-rift sequence deposited at constant intervals during extension. Two different geometries exist of listric normal faults, dip at 30 and 60° at surface. This imposes different geometries in the hangingwall anticlines and their associated sedimentary basins. A strong contrast exists between models with and without a viscous layer. With a viscous décollement, areas near the main basement fault show a wide normal drag and the hangingwall basin is gently synclinal, with dips in the fault side progressively shallowing upwards. A secondary roll-over structure appears in some of the models. Other structures are: (1) reverse faults dipping steeply towards the main fault, (2) antithetic faults in the footwall, appearing only in models with the 30° dipping fault and silicone-level thicknesses of 1 and 1.5 cm and (3) listric normal faults linked to the termination of the detachment level opposite to the main fault, with significant thickness changes in the syn-tectonic units. The experiments demonstrate the importance of detachment level in conditioning the geometry of extensional sedimentary basins and the possibility of syncline basin geometries associated with a main basement fault. Comparison with several basins with half-graben geometries containing a mid-level décollement supports the experimental results and constrains their interpretation.  相似文献   

8.
The Santa Rosa basin of northeastern Baja California is one of several transtensional basins that formed during Neogene oblique opening of the Gulf of California. The basin comprises Late Miocene to Pleistocene sedimentary and volcanic strata that define an asymmetric half‐graben above the Santa Rosa detachment, a low‐angle normal fault with ca. 4–5 km of SE‐directed displacement. Stratigraphic analysis reveals systematic basin‐scale facies variations both parallel and across the basin. The basin‐fill exhibits an overall fining‐upward cycle, from conglomerate and breccia at the base to alternating sandstone‐mudstone in the depocentre, which interfingers with the fault‐scarp facies of the detachment. Sediment dispersal was transverse‐dominated and occurred through coalescing alluvial fans from the immediate hanging wall and/or footwall of the detachment. Different stratigraphic sections reveal important lateral facies variations that correlate with major corrugations of the detachment fault. The latter represent extension‐parallel folds that formed largely in response to the ca. N‐S constrictional strain regime of the transtensional plate boundary. The upward vertical deflection associated with antiformal folding dampened subsidence in the northeastern Santa Rosa basin, and resulted in steep topographic gradients with a high influx of coarse conglomerate here. By contrast, the downward motion in the synform hinge resulted in increased subsidence, and led to a southwestward migration of the depocentre with time. Thus, the Santa Rosa basin represents a new type of transtensional rift basin in which oblique extension is partitioned between diffuse constriction and discrete normal faulting. 40Ar/39Ar geochronology of intercalated volcanic rocks suggests that transtensional deformation began during the Late Miocene, between 9.36 ± 0.14 Ma and 6.78 ± 0.12 Ma, and confirms previous results from low‐temperature thermochronology (Seiler et al., 2011). Two other volcanic units that appear to be part of a conformable syn‐rift sequence are, in fact, duplicates of pre‐rift volcanics and represent allochthonous, gravity‐driven slide blocks that originated from the hanging wall.  相似文献   

9.
This study examines a thick section of Pliocene–Pleistocene sedimentary rocks exposed in the footwall of an active normal fault (Cañon Rojo fault) near its intersection with the dextral-normal Laguna Salada fault in north-western Mexico. These rocks are situated in the upper plate of an inactive strand of the Cañada David detachment fault, which is cut on the north-east by the Laguna Salada fault. The stratigraphy is divided into three unconformity-bounded sequences: (1) marine mudstone of the Pliocene Imperial Formation; (2) nonmarine Pliocene–Pleistocene redbeds, consisting of sedimentary breccia, conglomerate, conglomeratic sandstone (all un-named) and fine-grained sandstone and mudstone of the Palm Spring Formation; and (3) uncemented Pleistocene boulder gravel. Coarse deposits of the redbeds sequence were deposited in fault-bounded, high- and low-gradient alluvial fans that passed laterally into a low-energy fluvial plain of the ancestral Colorado River (Palm Spring Formation) which occupied the present-day Laguna Salada. Detailed mapping reveals convergence and lap-out of bedding surfaces in the redbeds sequence onto the west limb of a large anticline cored by Imperial Formation. These geometries, combined with fanning dips and thickening of stratigraphy into the flanking syncline, indicate that the anticline grew during deposition of the redbeds. Fold axes of the growth anticline and smaller related folds trend N to NNE, parallel to the strike of associated normal faults and perpendicular to the extension direction. Based on its orientation, large size and relationship to neighbouring structures, the anticline is interpreted to be a fault-bend fold that grew in response to slip of the upper plate over a bend in the Cañada David detachment fault during deposition in a transtensional supradetachment basin. Localized subsidence in the flanking syncline resulted in deposition of >1000 m of alluvial sediments near its intersection with the Laguna Salada fault. Sedimentary detritus is derived exclusively from the north-east (footwall) side of the dextral-normal Laguna Salada fault, indicating that topographic relief was high in the Sierra Cucapa and was subdued or negligible in the footwall of the coeval Cañada David detachment. Following deposition of the redbeds and grey gravel units, the northern part of the detachment fault was abandoned and the modern Cañon Rojo fault was initiated, producing rapid footwall uplift and erosion of previously buried stratigraphy. Slip rate on the Cañon Rojo fault is estimated to be ≈2–4 mm yr?1 since middle Pleistocene time, similar to the late Pleistocene to Holocene rate determined in previous studies.  相似文献   

10.
Models to explain alluvial system development in rift settings commonly depict fans that are sourced directly from catchments formed in newly uplifted footwalls, which leads to the development of steep-sided talus-cone fans in the actively subsiding basin depocentre. The impact of basin evolution on antecedent drainage networks orientated close to perpendicular to a rift axis, and flowing over the developing hangingwall dip slope, remains relatively poorly understood. The aim of this study is to better understand the responses to rift margin uplift and subsequent intrabasinal fault development in determining sedimentation patterns in alluvial deposits of a major antecedent drainage system. Field-acquired data from a coarse-grained alluvial syn-rift succession in the western Gulf of Corinth, Greece (sedimentological logging and mapping) has allowed analysis of the spatial distribution of facies associations, stratigraphic architectural elements and patterns of palaeoflow. During the earliest rifting phase, newly uplifted footwalls redirected a previously established fluvial system with predominantly southward drainage. Footwall uplift on the southern basin margin at an initially relatively slow rate led to the development of an overfilled basin, within which an alluvial fan prograded to the south-west, south and south-east over a hangingwall dip slope. Deposition of the alluvial system sourced from the north coincided with the establishment of small-scale alluvial fans sourced from the newly uplifted footwall in the south. Deposits of non-cohesive debris flows close to the proposed hangingwall fan apex pass gradationally downstream into predominantly bedload conglomerate deposits indicative of sedimentation via hyperconcentrated flows laden with sand- and silt-grade sediment. Subsequent normal faulting in the hangingwall resulted in the establishment of further barriers to stream drainage, blocking flow routes to the south. This culminated in the termination of sediment supply to the basin depocentre from the north, and the onset of underfilled basin conditions as signified by an associated lacustrine transgression. The evolution of the fluvial system described in this study records transitions between three possible end-member types of interaction between active rifting and antecedent drainage systems: (a) erosion through an uplifted footwall, (b) drainage diversion away from an uplifted footwall and (c) deposition over the hangingwall dip slope. The orientation of antecedent drainage pathways at a high angle to the trend of a developing rift axis, replete with intrabasinal faulting, exerts a primary control on the timing and location of development of overfilled and underfilled basin states in evolving depocentres.  相似文献   

11.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

12.
Located on the southern margin of the Lhasa terrane in southern Tibet, the Xigaze forearc basin records Cretaceous to lower Eocene sedimentation along the southern margin of Asia, prior to and during the initial stages of continental collision with the Tethyan Himalaya in the Early Eocene. We present new measured stratigraphic sections, totalling 4.5 km stratigraphic thickness, from a 60 km E–W segment of the western portion of the Xigaze forearc basin, northeast of the Lopu Kangri Range (29.8007° N, 84.91827° E). In addition, we apply U–Pb detrital zircon geochronology to constrain the provenance and maximum depositional ages of investigated strata. Stratigraphic ages range between ca. 88 and ca. 54 Ma and sedimentary facies indicate a shoaling‐upward trend from deep‐marine turbidites to fluvial deposits. Depositional environments of coeval Cretaceous strata along strike include deep‐marine distal turbidites, slope‐apron debris‐flow deposits and marginal marine carbonates. This along‐strike variability in facies suggests an irregular paleogeography of the Asian margin prior to collision. Paleocene–Eocene strata are composed of shallow marine carbonates with abundant foraminifera such as Nummulites‐Discocyclina and Miscellanea‐Daviesina and transition into fluvial deposits dated at ca. 54 Ma. Sandstone modal analyses, conglomerate clast compositions and detrital zircon U–Pb geochronology indicate that forearc detritus in this region was derived solely from the Gangdese magmatic arc to the north. In addition, U–Pb detrital zircon age spectra within the upper Xigaze forearc stratigraphy are similar to those from Eocene foreland basin strata south of the Indus‐Yarlung suture near Sangdanlin, suggesting that the Xigaze forearc was a possible source of Sangdanlin detritus by ca. 55 Ma. We propose a model in which the Xigaze forearc prograded south over the accretionary prism and onto the advancing Tethyan Himalayan passive margin between 58 and 54 Ma, during late stage evolution of the forearc basin and the beginning of collision with the Tethyan Himalaya. The lack of documented forearc strata younger than ca. 51 Ma suggests that sedimentation in the forearc basin ceased at this time owing to uplift resulting from continued continental collision.  相似文献   

13.
Studies of normal fault systems in modern extensional regimes (e.g. Basin and Range), and in exhumed, ancient rift basins (e.g. Gulf of Suez Rift) have shown a link between the evolution of fault‐related footwall topography and associated erosional drainage systems. In this study, we use 3D seismic reflection data to image the footwall crest of a gravity‐driven fault system developed during late Middle Jurassic to Early Cretaceous rifting on the Halten Terrace, offshore Mid‐Norway. This 22‐km‐long fault system lacks significant footwall uplift, with hangingwall subsidence accommodating throw accumulation on the fault system. Significant erosion has occurred along the length of the footwall crest and is defined by 96 catchments characterized by erosional channels. These erosional channels consist of small, linear systems up to 750 m long located along the front of the fault footwall. Larger, dendritic channel systems extend further back (up to 3 km normal to fault strike) into the footwall. These channels are up to 7 km long, up to 50 m deep and up to 1 km wide. Fault throw varies along strike, with greatest throw in the centre of the fault decreasing towards the fault tips; localized throw minima are interpreted to represent segment linkage points, which were breached as the fault grew. Comparison of the catchment location to the throw distribution shows that the largest catchments are in the centre of the fault and decrease in size to the fault tips. There is no link between the location of the breached segment linkage points and the location and size of the footwall catchments, suggesting that the first‐order control on footwall erosion patterns is the overall fault‐throw distribution.  相似文献   

14.
Faulting exerts an important control upon drainage development in active extensional basins and thus helps determine the architecture of the sedimentary infill to a synrift basin. Examples of the interaction between faulting and drainage from the western United States and central Greece may be grouped into a relatively small number of classes based upon the structural position of a drainage catchment: footwall, hangingwall, fault offset and axial. Our examples illustrate the diversity of erosional effects that might arise because of variations in the spacing, orientation and segmentation of faults and their interactions. Where basement lithology is similar, footwall catchments are generally smaller, shorter and steeper than those of the hangingwall. Footwall-sourced alluvial fans and fan deltas are: generally smaller in area than those sourced from similar lithologies in the hangingwall. Wide fault offsets often give rise to large drainage catchments in the footwall. The development of axial drainage depends upon the breaching of transverse bedrock ridges by headward stream erosion or by lake overflow. Once breaching has occurred the direction of axial stream flow is controlled by the potential developed between basins of contrasting widths. Fault migration and propagation leads to the uplift, erosion and resedimentation of the sedimentary infill to formerly active basins, leading to the cutting of footwall unconformities. The outward sediment flux from structurally controlled catchments is modulated in an important way by lithology and runoff. The greatest contrasts in basement lithology arise when fault migration and propagation have occurred, such that the sedimentary fill to previously active basins is uplifted, incised and eroded by the establishment of large new drainage systems in the footwalls of younger faults. Drainage patterns in areas where faults interact can shed light on the relative timing of activity and therefore the occurrence of fault migration and propagation. Facies and palaeocurrent trends in ancient grabens may only be correctly interpreted when observations are made on a length scale of 10–20 km, comparable to that of the largest fault segments.  相似文献   

15.
A comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.  相似文献   

16.
Important aspects of the Andean foreland basin in Argentina remain poorly constrained, such as the effect of deformation on deposition, in which foreland basin depozones Cenozoic sedimentary units were deposited, how sediment sources and drainages evolved in response to tectonics, and the thickness of sediment accumulation. Zircon U‐Pb geochronological data from Eocene–Pliocene sedimentary strata in the Eastern Cordillera of northwestern Argentina (Pucará–Angastaco and La Viña areas) provide an Eocene (ca. 38 Ma) maximum depositional age for the Quebrada de los Colorados Formation. Sedimentological and provenance data reveal a basin history that is best explained within the context of an evolving foreland basin system affected by inherited palaeotopography. The Quebrada de los Colorados Formation represents deposition in the distal to proximal foredeep depozone. Development of an angular unconformity at ca. 14 Ma and the coarse‐grained, proximal character of the overlying Angastaco Formation (lower to upper Miocene) suggest deposition in a wedge‐top depozone. Axial drainage during deposition of the Palo Pintado Formation (upper Miocene) suggests a fluvial‐lacustrine intramontane setting. By ca. 4 Ma, during deposition of the San Felipe Formation, the Angastaco area had become structurally isolated by the uplift of the Sierra de los Colorados Range to the east. Overall, the Eastern Cordillera sedimentary record is consistent with a continuous foreland basin system that migrated through the region from late Eocene through middle Miocene time. By middle Miocene time, the region lay within the topographically complex wedge‐top depozone, influenced by thick‐skinned deformation and re‐activation of Cretaceous rift structures. The association of the Eocene Quebrada del los Colorados Formation with a foredeep depozone implies that more distal foreland deposits should be represented by pre‐Eocene strata (Santa Barbara Subgroup) within the region.  相似文献   

17.
The Yanshan fold‐thrust belt is an exposed portion of a major Mesozoic orogenic system that lies north of Beijing in northeast China. Structures and strata within the Yanshan record a complex history of thrust faulting characterized by multiple deformational events. Initially, Triassic thrusting led to the erosion of a thick sequence of Proterozoic and Palaeozoic sedimentary strata from northern reaches of the thrust belt; Triassic–Lower Jurassic strata that record this episode are deposited in a thin belt south of this zone of erosion. This was followed by postulated Late Jurassic emplacement of a major allochthon (the Chengde thrust plate), which is thought to have overridden structures and strata associated with the Triassic event and is cut by two younger thrusts (the Gubeikou and Chengde County thrusts). The Chengde allochthon is now expressed as a major east–west trending, thrust‐bounded synform (the Chengde synform), which has been interpreted as a folded klippe 20 km wide underlain by a single, north‐vergent thrust fault. Two sedimentary basins, defined on the basis of provenance, geochronology and palaeodispersal trends, developed within the Yanshan belt during Late Jurassic–Early Cretaceous time and are closely associated with the Chengde thrust and allied structures. Shouwangfen basin developed in the footwall of the Gubeikou thrust and records syntectonic unroofing of the hanging wall of that fault. Chengde basin developed in part atop Proterozoic strata interpreted as the upper plate of the Chengde allochthon and records unroofing of the adjacent Chengde County thrust. Both the Chengde County thrust and the Gubeikou thrust are younger than emplacement of the postulated Chengde allochthon, and structurally underlie it, yet neither Shouwangfen basin nor Chengde basin contain a detrital record of the erosion of this overlying structure. In addition, facies, palaeodispersal patterns and geochronology of Upper Jurassic strata that are cut by the Chengde thrust suggest only limited (ca. 5 km) displacement along this fault. We suggest that the units forming the Chengde synform are autochthonous, and that the synform is bounded by two limited‐displacement faults of opposing north and south vergence, rather than a single large north‐directed thrust. This conclusion implies that the Yanshan belt experienced far less Late Jurassic shortening than was previously thought, and has major implications for the Mesozoic evolution of the region. Specifically, we argue that the bulk of shortening and uplift in the Yanshan belt was accomplished during Triassic–Early Jurassic time, and that Late Jurassic structures modified and locally ponded sediments from a well‐developed southward drainage system developed atop this older orogen. Although Upper Jurassic strata are widespread throughout the Yanshan belt, it is clear that these strata developed within several discrete intermontane basins that are not correlable across the belt as a single entity. Thus, the Yanshan has no obvious associated foreland basin, and determining where the Mesozoic erosional products of this orogen ultimately lie is one of the more intriguing unresolved questions surrounding the palaeogeography of North China.  相似文献   

18.
Miocene strata in the southern Taranaki Basin (STB), up to 3 km thick, provide a distal record of erosion associated with plate boundary deformation in New Zealand. 2D and 3D seismic reflection data tied to drillhole stratigraphy have been used to constrain four main phases of basin development. These are: (a) Early Miocene (22–19 Ma) subsidence, dominantly bathyal water depths and deposition of minor submarine fans along the eastern basin margin. (b) Middle Miocene (19–14 Ma) widespread submarine fan deposition on a bathyal basin floor in the central STB. (c) Rapid Middle–Late Miocene (14–7 Ma) progradation of the shelf break northwards across the STB. (d) Widespread uplift and erosion of the STB during the latest Miocene–Pliocene (7–4.5 Ma). Bathyal water depths and fan deposition in the Early Miocene were influenced by vertical motions on major reverse faults and regional subsidence produced by subduction of the Pacific plate beneath northern New Zealand. Subsequent submarine fan deposition and northward shelf‐break progradation reflect increasing input of terrigenous material, primarily eroded from an uplifting region to the south of the STB. Sedimentation patterns in the STB are consistent with the age and locations of conglomerates deposited in onshore West Coast basins, related to this uplift and erosion. Sediment transport in the West Coast region was mainly parallel to NNE trending active reverse faults, and in the STB was perpendicular to the NE‐SW orientated shelf break, especially from ca. 14–7 Ma, when sedimentation rates exceeded fault‐displacement rates. Increases in sedimentation rates in the STB coincide with regional increases in the rates of shortening that appear to reflect plate boundary‐wide events and have been attributed to, or correlated with, increases in the plate convergence rate. Miocene sedimentation patterns in the STB thus reflect both intra‐basinal deformation and tectonic signals from the wider developing New Zealand plate boundary.  相似文献   

19.
A transition from supradetachment to rift basin signature is recorded in the ~1,500 m thick succession of continental to shallow marine conglomerates, mixed carbonate‐siliciclastic shallow marine sediments and carbonate ramp deposits preserved in the Bandar Jissah Basin, located southeast of Muscat in the Sultanate of Oman. During deposition, isostatically‐driven uplift rotated the underlying Banurama Detachment and basin fill ~45° before both were cut by the steep Wadi Kabir Fault as the basin progressed to a rift‐style bathymetry that controlled sedimentary facies belts and growth packages. The upper Paleocene to lower Eocene Jafnayn Formation was deposited in a supradetachment basin controlled by the Banurama Detachment. Alluvial fan conglomerates sourced from the Semail Ophiolite and the Saih Hatat window overlie the ophiolitic substrate and display sedimentary transport directions parallel to tectonic transport in the Banurama Detachment. The continental strata grade into braidplain, mouth bar, shoreface and carbonate ramp deposits. Subsequent detachment‐related folding of the basin during deposition of the Eocene Rusayl and lower Seeb formations marks the early transition towards a rift‐style basin setting. The folding, which caused drainage diversion and is affiliated with sedimentary growth packages, coincided with uplift‐isostasy as the Banurama Detachment was abandoned and the steeper Marina, Yiti Beach and Wadi Kabir faults were activated. The upper Seeb Formation records the late transition to rift‐style basin phase, with fault‐controlled sedimentary growth packages and facies distributions. A predominance of carbonates over siliciclastic sediments resulted from increasing near‐fault accommodation, complemented by reduced sedimentary input from upland catchments. Hence, facies distributions in the Bandar Jissah Basin reflect the progression from detachment to rift‐style tectonics, adding to the understanding of post‐orogenic extensional basin systems.  相似文献   

20.
We describe the tectono‐sedimentary evolution of a Middle Jurassic, rift‐related supra‐detachment basin of the ancient Alpine Tethys margin exposed in the Central Alps (SE Switzerland). Based on pre‐Alpine restoration, we demonstrate that the rift basin developed over a detachment system that is traced over more than 40 km from thinned continental crust to exhumed mantle. The detachment faults are overlain by extensional allochthons consisting of upper crustal rocks and pre‐rift sediments up to several kilometres long and several hundreds of metres thick, compartmentalizing the distal margin into sub‐basins. We mapped and restored one of these sub‐basins, the Samedan Basin. It consists of a V‐shape geometry in map view, which is confined by extensional allochthons and floored by a detachment fault. It can be restored over a minimum distance of 11 km along and about 4 km perpendicular to the basin axis. Its sedimentary infill can be subdivided into basal (initial), intermediate (widening) and top (post‐tectonic) facies tracts. These tracts document (1) formation of the basin initially bounded by high‐angle faults and developing into low‐angle detachment faults, (2) widening of the basin and (3) migration of deformation further outboard. The basal facies tract is made of locally derived, poorly sorted gravity flow deposits that show a progressive change from hangingwall to footwall‐derived lithologies. Upsection the sediments develop into turbidity current deposits that show retrogradation (intermediate facies tract) and starvation of the sedimentary system (post‐tectonic facies tract). On the scale of the distal margin, the syn‐tectonic record documents a thinning‐ and fining‐upward sequence related to the back stepping of the tectonically derived sediment source, progressive starvation of the sedimentary system and migration of deformation resulting in exhumation and progressive delamination of the thinned crust during final rifting. This study provides valuable insights into the tectono‐sedimentary evolution and stratigraphic architecture of a supra‐detachment basin formed over hyper‐extended crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号