首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   

2.
Jun-Hong Zhao  Mei-Fu Zhou 《Lithos》2008,104(1-4):231-248
Numerous Neoproterozoic felsic and mafic–ultramafic intrusions occur in the Hannan region at the northern margin of the Yangtze Block. Among these, the Wudumen and Erliba plutons consist of granodiorites and have SHRIMP zircon U–Pb ages of  735 Ma. The rocks have high K2O (0.8–3.6 wt.%) and Na2O (4.4–6.4 wt.%) and low MgO (0.4–1.7 wt.%). They also have high Sr/Y (32–209) and (La/Yb)n ratios (4.4–38.6). Their εNd values range from − 0.41 to − 0.92 and zircon initial 176Hf/177Hf ratios from 0.282353 to 0.282581. These geochemical features are similar to those of adakitic rocks produced by partial melting of a thickened lower crust. Our new analytical results, combined with the occurrence of voluminous arc-related mafic–ultramafic intrusions emplaced before 740 Ma, lead us to propose that the crustal evolution in the northern margin of the Yangtze Block during Neoproterozoic involved: (1) rapid crustal growth and thickening by underplating of mafic magmas from the mantle which was modified by materials coming from the subducting oceanic slab from  1.0 to  0.74 Ga, and (2) partial melting of the thickened lower crust due to a thermal anomaly induced by upwelling of asthenosphere through an oceanic slab window, producing the  735 Ma adakitic Wudumen and Erliba plutons. Our model suggests that the crustal thickness was more than 50 km at the northern margin of the Yangtze Block at  735 Ma, and rule out the possibility of a mantle plume impact causing the > 735 Ma magmatism in the region.  相似文献   

3.
It has been generally accepted that the South China Block was formed through amalgamation of the Yangtze and Cathaysia Blocks during the Proterozoic Sibaoan orogenesis, but the timing and kinematics of the Sibao orogeny are still not well constrained. We report here SHRIMP U–Pb zircon geochronological and geochemical data for the Taohong and Xiqiu tonalite–granodiorite stocks from northeastern Zhejiang, southeastern margin of the Yangtze Block. Our data demonstrate that these rocks, dated at 913 ± 15 Ma and 905 ± 14 Ma, are typical amphibole-rich calc-alkaline granitoids formed in an active continental margin. Combined with previously reported isotopic dates for the  1.0 Ga ophiolites and  0.97 Ga adakitic rocks from northeastern Jiangxi, the timing of the Sibao orogenesis is thus believed to be between  1.0 and  0.9 Ga in its eastern segment. It is noted that the Sibao orogeny in South China is in general contemporaneous with some other early Neoproterozoic (1.0–0.9 Ga) orogenic belts such as the Eastern Ghats Belt of India and the Rayner Province in East Antarctica, indicating that the assembly of Rodinia was not finally completed until  0.9 Ga.  相似文献   

4.
We have studied seismic surface waves of 255 shallow regional earthquakes recently recorded at GEOFON station ISP (Isparta, Turkey) and have selected these 52 recordings with high signal-to-noise ratio for further analysis. An attempt was made by the simultaneous use of the Rayleigh and Love surface wave data to interpret the planar crust and uppermost mantle velocity structure beneath the Anatolian plate using a differential least-square inversion technique. The shear-wave velocities near the surface show a gradational change from approximately 2.2 to 3.6 km s− 1 in the depth range 0–10 km. The mid-crustal depth range indicating a weakly developed low velocity zone has shear-wave velocities around 3.55 km s− 1. The Moho discontinuity characterizing the crust–mantle velocity transition appears somewhat gradual between the depth range  25–45 km. The surface waves approaching from the northern Anatolia are estimated to travel a crustal thickness of  33 km whilst those from the southwestern Anatolia and part of east Mediterranean Sea indicate a thicker crust at  37 km. The eastern Anatolia events traveled even thicker crust at  41 km. A low sub-Moho velocity is estimated at  4.27 km s− 1, although consistent with other similar studies in the region. The current velocities are considerably slower than indicated by the Preliminary Reference Earth Model (PREM) in almost all depth ranges.  相似文献   

5.
Numerical modelling, incorporating coupling between surface processes and induced flow in the lower continental crust, is used to address the Quaternary evolution of the Gulf of Corinth region in central Greece. The post-Early Pleistocene marine depocentre beneath this Gulf overlies the northern margin of an older (Early Pleistocene and earlier) lacustrine basin, the Proto Gulf of Corinth Basin or PGCB. In the late Early Pleistocene, relief in this region was minimal but, subsequently, dramatic relief has developed, involving the creation of  900 m of bathymetry within the Gulf and the uplift by many hundreds of metres of the part of the PGCB, south of the modern Gulf, which forms the Gulf's main sediment supply. It is assumed that, as a result of climate change around 0.9 Ma, erosion of this sediment source region and re-deposition of this material within the Gulf began, both processes occurring at spatial average rates of  0.2 mm a− 1. Modelling of the resulting isostatic response indicates that the local effective viscosity of the lower crust is  4 × 1019 Pa s, indicating a Moho temperature of  560 °C. It predicts that the  10 mm a− 1 of extension across this  70 km wide model region, at an extensional strain rate of  0.15 Ma− 1, is partitioned with  3 mm a− 1 across the sediment source,  2 mm a− 1 across the depocentre, and  5 mm a− 1 across the ‘hinge zone’ in between, the latter value being an estimate of the extension rate on normal faults forming the major topographic escarpment at the southern margin of the Gulf. This modelling confirms the view, suggested previously, that coupling between this depocentre and sediment source by lower-crustal flow can explain the dramatic development in local relief since the late Early Pleistocene. The effective viscosity of the lower crust in this region is not particularly low; the strong coupling interpreted between the sediment source and depocentre results instead from their close proximity. In detail, the effective viscosity of the lower crust is expected to decrease northward across this model region, due to the northward increase in exposure of the base of the continental lithosphere to the asthenosphere; in the south the two are separated by the subducting Hellenic slab. The isostatic consequences of such a lateral variation in viscosity provide a natural explanation for why, since  0.9 Ma, the modern Gulf has developed asymmetrically over the northern part of the PGCB, leaving the rest of the PGCB to act as its sediment source.  相似文献   

6.
The Yidun Arc is a Triassic volcanic arc located between the Songpan Garzê Fold Belt and the Qiangtang Block, southwest China. To constrain the age of a number of the major granitic plutons from the Yidun Arc, laser ablation ICP-MS U/Pb analysis of zircon was conducted. Hafnium isotope data was also acquired through laser-ablation multicollector ICPMS analysis of zircon, with the aim of gaining insight into the age and nature of the source region of the plutons. Three age groups have been identified from seven granite samples: Early–Middle Triassic ( 245 to 229 Ma), Late Triassic ( 219 to 216 Ma) and Cretaceous ( 105 to 95 Ma). Hafnium analysis shows the Triassic granites to have negative and variable εHf values and Mesoproterozoic ( 1.6 Ga) depleted-mantle model ages, which is interpreted to reflect derivation from an isotopically heterogeneous, largely crustal source. The Cretaceous granite shows higher and less variable εHf values and slightly younger model ages ( 1.3 Ga), and is interpreted to be derived from melting of a more homogeneous crustal source. A depleted-mantle model age of  1.5 Ga is calculated from the pooled Triassic and Cretaceous samples. The source region for these magmas may be tentatively correlated with Mesoproterozoic material of the Yangtze Craton, which has been suggested to underlie the Yidun Arc; however, further work is necessary to demonstrate this suggestion.  相似文献   

7.
The crystalline terrane of the Tongbai–Dabie region, central China, comprising the Earth's largest ultrahigh-pressure (UHP) exposure was formed during Triassic collision between the Sino–Korean and Yangtze cratons. New apatite fission-track (AFT) data presented here from the UHP terrane, extends over a significantly greater area than reported in previous studies, and includes the (eastern) Dabie, the Hong'an (northwestern Dabie) and Tongbai regions. The new data yield ages ranging from 44 ± 3 to 142 ± 36 Ma and mean track lengths between 10 and 14.4 μm. Thermal history models based on the AFT data taken together with published 40Ar/39Ar, K–Ar, apatite and zircon (U–Th)/He and U–Pb data, exhibit a three-stage cooling pattern that is similar across the study region, commencing with an Early Cretaceous rapid cooling event, followed by a period of relative thermal stability during which rocks remained at temperatures within the AFT partial annealing zone (60–110 °C) and ending with a possible renewed phase of accelerated cooling during Pliocene to Recent time. The first cooling phase followed large-scale transtensional deformation between 140 and 110 Ma and is related to Early Cretaceous eastward tectonic escape and Pacific back arc extension. Between this phase and the subsequent slow cooling phase, a transition period from 120 to 80 Ma (to 70 to 45 Ma along the Tan–Lu fault) was characterised by a relatively low cooling rate (3–5 °C/Ma). This transition is likely related to a tectonic response associated with the mid-Cretaceous subduction of the Izanagi–Pacific plate as well as lithospheric extension and thinning in eastern Asia. The present regional AFT age pattern is therefore basically controlled by the Early Cretaceous rapid cooling event, but finally shaped through active Cenozoic faulting. Following the transition phase the subsequent slow cooling phase pattern implies a net reduction in horizontal compressional stress corresponding to increased extension rates along the continental margin due to the decrease in plate convergence. Modelling of the AFT data suggests a possible Pliocene–Recent cooling episode, which may be supported by increased rates of sedimentation observed in adjacent basins. This cooling phase may be interpreted as a response to the far-field effects of the frontal India–Eurasia collision to the west. Approximate estimates suggest that the total amount of post 120 Ma denudation across the UHP orogen ranged from 2.4 to 13.2 km for different tectonic blocks and ranged from 0.8 to 9.7 km during the Cretaceous to between 1.7 and 3.8 km during the Cenozoic.  相似文献   

8.
Fission-track (FT) thermochronologic analysis was performed on zircon separates from rocks in and around the Nojima fault, which was activated during the 1995 Kobe earthquake. Samples were collected from the University Group 500 m (UG-500) borehole and nearby outcrops. FT lengths in zircons from localities > 25 m away from the fault plane as well as one 0.1 m away from the fault in the footwall are characterized by concordant mean values of  10–11 μm and unimodal distributions with negative skewness, which showed no signs of appreciable reduction in FT length. In contrast, those adjacent (< 3 m) to the fault at depths on the hanging wall side showed significantly reduced mean track lengths of  6–8 μm and distributions having a peak around 6–7 μm with rather positive skewness. The former pattern is interpreted to reflect cooling through the zircon partial annealing zone (ZPAZ), without later, partial thermal overprints. The latter indicates substantial track shortening due probably to secondary heating by a thermal event(s) that locally perturbed the geothermal structure. Modeled zircon FT length and age data of partially annealed samples from the UG-500 borehole revealed a cooling episode in the ZPAZ that started at  4 Ma within  3 m from the fault plane, whereas those from the Geological Survey of Japan 750 m borehole record cooling started at  31–38 Ma within  25 m from the fault. On the basis of one-dimensional heat conduction modeling as well as the consistency between the degree of FT annealing and the degree of deformation/alteration of borehole rocks, these cooling ages in both boreholes are interpreted as consequences of ancient thermal overprints by heat transfer or dispersion via fluids in the fault zone. Together with the zircon FT data of a pseudotachylyte layer recently analyzed, it is suggested that the present Nojima fault system was reactivated in the Middle Quaternary from an ancient fault initiated at  56 Ma at mid-crustal depths. Also shown is a temporal/spatial variation in terms of the thermal anomalies recorded in the fault rocks, implying heterogeneity of hot fluid flows in the fault zone.  相似文献   

9.
M. Faccenda  G. Bressan  L. Burlini   《Tectonophysics》2007,445(3-4):210-226
The compressional and shear wave velocities have been measured at room temperature and pressure up to 450 MPa on 5 sedimentary rock samples, representative of the most common lithologies of the upper crust in the central Friuli area (northeastern Italy). At 400 MPa confining pressure the Triassic dolomitic rock shows the highest velocities (Vp  7 km/s, Vs  3.6 km/s), the Jurassic and Triassic limestones samples intermediate velocities (Vp  6.3 /s, Vs  3.5 km/s) and the Cenozoic and Paleozoic sandstones the lowest velocities (Vp  6.15 km/s, Vs  3.35 km/s). The Paleozoic sandstone sample is characterized by the strongest anisotropy (10%) and significant birefringence (0.2 km/s) is found only on the Cenozoic sandstone sample. We elaborated the synthetic profiles of seismic velocities, density, elastic parameters and reflection coefficient, related to 4 one-dimensional geological models extended up to 22 km depth. The synthetic profiles evidence high rheological contrasts between Triassic dolomitic rocks and the soft sandstones and the Jurassic limestones. The Vp profiles obtained from laboratory measurements match very well the in-situ Vp profile measured by sonic log for the limestones and dolomitic rocks, supporting our one-dimensional modelling of the calcareous-carbonatic stratigraphic series. The Vp and Vs values of the synthetic profiles are compared with the corresponding ones obtained from the 3-D tomographic inversion of local earthquakes. The laboratory Vp are generally higher than the tomographic ones with major discrepancies for the dolomitic lithology. The comparison with the depth location of seismicity reveals that the seismic energy is mainly released in correspondence of high-contrast rheological boundaries.  相似文献   

10.
The geomorphic origin and evolution of the tectonically unique interior highland of southern Africa, the Kalahari Plateau, and its flanking low-lying coastal planes, remain largely unresolved because of a lack of regional quantitative analyses of its uplift and erosion history. Here we focus on the southern Cape, South Africa and link onshore denudation, based on new apatite fission track thermochronology results, to offshore sediment accumulation, using abundant well data and a seismic reflection profile. We attempt to relate source and sink in order to resolve some first order issues concerning timing of the exhumation and development of the topographic features of southern Africa. The volume of sediment accumulated off South Africa's south coast is calculated using 173 wells and a seismic reflection profile. A total, uncompacted, sediment volume of 268,500 km3 accumulated off South Africa's south coasts since  136 Ma, in the Outeniqua and Southern Outeniqua Basins. Accumulation volumes and rates were highest in the early Cretaceous (48,800 × 104 km3 at  8150 km3/Ma from  136 to 130 Ma, and 57,500 × 104 km3 at 5750 km3/Ma from  130 to 120 Ma) and mid–late Cretaceous (83,700 × 104 km3 at 3200 km3/Ma from  93 to 67 Ma). Volumes and accumulation rates were lowest for the early–mid-Cretaceous (47,400 × 104 km3 at 1750 km3/Ma from  120 to 93 Ma) and the Cenozoic (31,200 × 104 km3 at 450 km3/Ma from  67 to 0 Ma). Although our analysis shows that the accumulated volume of offshore sediments does not match the calculated volume of onshore erosion, as quantified through apatite fission track thermochronology (e.g. Tinker, J.H., de Wit, M.J., Brown, R., 2008. Mesozoic exhumation of the 439 southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, doi: 10.1016/j.tecto.2007.10.009), the timing of increased sediment accumulation closely matches the timing of increased onshore denudation. This suggests that the greatest volumes of material were transported from source to sink during two distinct Cretaceous episodes, and that the processes driving onshore denudation decreased by an order of magnitude during the Cenozoic.  相似文献   

11.
High velocity (1 m/s) friction experiments on bituminous coal gouge display several earthquake-related phenomena, including devolatilization by frictional heating, gas pressurization, and slip weakening. Stage I is characterized by sample shortening and reduction in the coefficient of friction (μ) from  1 to 0.6. Stage II is characterized by high frequency ( 5 Hz) oscillations in stress and strain records and by gas emissions. Stage III is marked by rapid weakening (μ  0.1 to 0.35) and sample shortening, together with continued gas emissions. Stage IV produces stable stress records and continued weakness (μ  0.2), but without gas emission. Stage I shortening is due to compaction of the gouge and the weakening is attributed to mechanical or thermal effects. Stage II behavior is interpreted as due to coal gasification and fluctuations in fluid pressure, resulting in high frequency stick-slip type behavior. Dramatic reduction in shear stress in stage III is attributed to gas pressurization by pore collapse and corresponds to a frictional instability, analogous to nucleation of an earthquake. Microstructural observations indicate the deformation was brittle during stages I and II but ductile during stages III and IV. Time dependent finite element frictional heat models indicate the center of the samples became hot ( 900 °C) during stage II, whereas the edge of samples remained relatively cold (< 300 °C). Vitrinite reflectance of coal samples shows an increase in reflectance from  0.5 to  0.8% over the displacement interval 20–40 m (20–40 s), indicating that the reflectance responds to frictional heating on a short time scale. The energy expended per unit area in these low stress, large displacement experiments is similar to that of higher stress ( 50 MPa), short displacement ( 1 m) earthquakes ( 107 J/m2).  相似文献   

12.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

13.
The late Quaternary paleoclimate of eastern Beringia has primarily been studied by drawing qualitative inferences from vegetation shifts. To quantitatively reconstruct summer temperatures, we analyzed lake sediments for fossil chironomids, and additionally we analyzed the sediments for fossil pollen and organic carbon content. A comparison with the δ18O record from Greenland indicates that the general climatic development of the region throughout the last glaciation–Holocene transition differed from that of the North Atlantic region. Between  17 and 15 ka, mean July air temperature was on average 5°C colder than modern, albeit a period of near-modern temperature at  16.5 ka. Total pollen accumulation rates ranged between  180 and 1200 grains cm− 2 yr− 1. At  15 ka, approximately coeval with the Bølling interstadial, temperatures again reached modern values. At  14 ka, nearly 1000 yr after warming began, Betula pollen percentages increased substantially and mark the transition to shrub-dominated pollen contributors. Chironomid-based inferences suggest no evidence of the Younger Dryas stade and only subtle evidence of an early Holocene thermal maximum, as temperatures from  15 ka to the late Holocene were relatively stable. The most recognizable climatic oscillation of the Holocene occurred from  4.5 to 2 ka.  相似文献   

14.
Integration of on-land and offshore geomorphological and structural investigations coupled to extensive radiometric dating of co-seismically uplifted Holocene beaches allows characterization of the geometry, kinematics and seismotectonics of the Scilla Fault, which borders the eastern side of the Messina Strait in Calabria, Southern Italy. This region has been struck by destructive historical earthquakes, but knowledge of geologically-based source parameters for active faults is relatively poor, particularly for those running mostly offshore, as the Scilla Fault does. The  30 km-long normal fault may be divided into three segments of  10 km individual length, with the central and southern segments split in at least two strands. The central and northern segments are submerged, and in this area marine geophysical data indicate a youthful morphology and locally evidence for active faulting. The on-land strand of the western segment displaces marine terraces of the last interglacial (124 to 83 ka), but seismic reflection profiles suggest a full Quaternary activity. Structural data collected on bedrock faults exposed along the on-land segment provide evidence for normal slip and  NW-SE extension, which is consistent with focal mechanisms of large earthquakes and GPS velocity fields in the region. Detailed mapping of raised Holocene marine deposits exposed at the coastline straddling of the northern and central segments supplies evidence for two co-seismic displacements at  1.9 and  3.5 ka, and a possible previous event at  5 ka. Co-seismic displacements show a consistent site value and pattern of along-strike variation, suggestive of characteristic-type behaviour for the fault. The  1.5–2.0 m average co-seismic slips during these events document Me  6.9–7.0 earthquakes with  1.6–1.7 ka recurrence time. Because hanging-wall subsidence cannot be included into slip magnitude computation, these slips reflect footwall uplift, and represent minimum average estimates. The palaeoseismological record based on the palaeo-shorelines suggests that the last rupture on the Scilla Fault during the February 6, 1783 Mw = 5.9–6.3 earthquake was at the expected time but it may have not entirely released the loaded stress since the last great event at  1.9 ka. Comparison of the estimated co-seismic extension rate based on the Holocene shoreline record with available GPS velocities indicates that the Scilla Fault accounts for at least  15–20% of the contemporary geodetic extension across the Messina Strait.  相似文献   

15.
Mineralizing fluids at the San Martín skarn show an evolution characterized by prograde and retrograde associations. The prograde mineral associations consist of (1) a massive garnet zone, (2) a tremolite ± garnet zone, and (3) a late association of quartz, sphalerite, calcite and fluorite lining the vugs in the garnet zone. The fluids of the prograde associations exhibit decreasing temperatures of homogenization (Th) and variable salinities. The fluids of the massive garnet zone have salinities of 36 wt.% NaCl equiv. and Th of 645 to 570 °C, corresponding to pressures of 1055 bar. At the tremolite ± garnet zone, Th range from 438 to 354 °C. In the late association at the endoskarn, the following evolution can be drawn: (a) salinities of 50 to 42 wt.% NaCl equiv., and Th of 455 to 346 °C in quartz, (b) salinities of 46 wt.% NaCl equiv., and Th of 415 to 410 °C in sphalerite, (c) salinities of 50 to 37 wt.% NaCl equiv., and Th of 479 to 310 °C in calcite, (d) salinities of 33 to 28 wt.% NaCl equiv. and of 24 to 22 wt.% KCl in fluorite, and (e) two types of fluids with salinities of 2 and 39 wt.% NaCl equiv. and Th 344 and 300 °C, respectively, in later saccharoidal quartz segregations. The retrograde mineral associations comprise pervasive propylitic alteration to carbonization, and mantos with sulfides. Fluids in epidote have salinities of 7.6 wt.% NaCl equiv. and Th of 287 to 252 °C, and in calcite have salinities of 9.2 to 1 wt.% NaCl equiv. and Th of 188 to 112 °C. Fluids in the sulfide assemblages in the mantos have salinities of 8 to 3 wt.% NaCl equiv. and Th 300 °C, with corresponding pressures of 94 bar. Fluids in late epithermal veins close to the intrusive body have salinities of 10 to 5 wt.% NaCl equiv. and Th of 275 to 200 °C, and distal veins show salinities of 2 to 1 wt.% NaCl equiv. and Th of 160 °C.  相似文献   

16.
The Tan–Lu Fault Zone (TLFZ) extends in a NNE–SSW direction for more than 2000 km in Eastern China. It has been considered either as a major sinistral strike-slip fault, as a suture zone or as a normal fault. We have conducted a structural analysis of the southern segment of this fault zone (STLFZ) in the Anhui Province. The ages (Triassic to Palaeocene) of the formations affected by the faults have been re-appraised taking into account recent stratigraphical studies to better constraint the ages of the successive stages of the kinematics of the STLFZ. Subsequently, the kinematics of the faults is presented in terms of strain/stress fields by inversion of the striated fault set data. Finally, the data are discussed in the light of the results obtained by previous workers.We propose the following history of the STLFZ kinematics during the Mesozoic. At the time of collision, a  NNE orientated Tan–Lu margin probably connected two margins located north of the Dabie and Sulu collision belts. During the Middle–Late Triassic, the SCB has been obliquely subducted below the NCB along this margin which has acted as a compressional transfer zone between the Dabie and Sulu continental subduction zones. The STLFZ has been initiated during the Early Jurassic and has acted as a sinistral transform fault during the Jurassic, following which the NCB/SCB collision stopped. A  NW-trending extension related to metamorphic domes was active during the basal Early Cretaceous ( 135–130 Ma); it has been followed by a NW–SE compression and a NE–SW tension during the middle–late Early Cretaceous ( 127 to  105 Ma, possibly  95 Ma); at that time the TLFZ was a sinistral transcurrent fault within the eastern part of the Asian continent. During the Late Cretaceous–Palaeocene, the STLFZ was a normal fault zone under a WNW–ESE tension.  相似文献   

17.
Knowledge of the Cretaceous–Tertiary history of upper crustal shortening and magmatism in Tibet is fundamental to placing constraints on when and how the Tibetan plateau formed. In the Lhasa terrane of southern Tibet, the widely exposed angular unconformity beneath uppermost Cretaceous–lower Tertiary volcanic-bearing strata of the Linzizong Formation provides an excellent geologic and time marker to distinguish between deformation that occurred before vs. during the Indo-Asian collision. In the Linzhou area, located  30 km north of the city of Lhasa, a > 3-km-thick section of the Linzizong Formation lies unconformably on Cretaceous and older rocks that were shortened by both northward- and southward-verging structures during the Late Cretaceous. The Linzizong Formation dips northward in the footwall of a north-dipping thrust system that involves Triassic–Jurassic strata and a granite intrusion in the hanging wall. U–Pb zircon geochronologic studies show that the Linzizong Formation ranges in age from 69 Ma to at least 47 Ma and that the hanging wall granite intrusion crystallized at  52 Ma, coeval with dike emplacement into footwall Cretaceous strata. 40Ar/39Ar thermochronologic studies suggest slow cooling of the granite between 49 and 42 Ma, followed by an episode of accelerated cooling to upper crustal levels beginning at  42 Ma. The onset of rapid cooling was coeval with the cessation of voluminous arc magmatism in southern Tibet and is interpreted be a consequence of either (1) Tertiary thrusting in this region or (2) regional rock uplift and erosion following removal of overthickened Gangdese arc lower crust and upper mantle or break-off of the Neo-Tethyan oceanic slab.  相似文献   

18.
There is an increasing evidence for the involvement of pre-Neoproterozoic zircons in the Arabian–Nubian Shield, a Neoproterozoic crustal tract that is generally regarded to be juvenile. The source and significance of these xenocrystic zircons are not clear. In an effort to better understand this problem, older and younger granitoids from the Egyptian basement complex were analyzed for chemical composition, SHRIMP U–Pb zircon ages, and Sm–Nd isotopic compositions. Geochemically, the older granitoids are metaluminous and exhibit characteristics of I-type granites and most likely formed in a convergent margin (arc) tectonic environment. On the other hand, the younger granites are peraluminous and exhibit the characteristics of A-type granites; these are post-collisional granites. The U–Pb SHRIMP dating of zircons revealed the ages of magmatic crystallization as well as the presence of slightly older, presumably inherited zircon grains. The age determined for the older granodiorite is 652.5 ± 2.6 Ma, whereas the younger granitoids are 595–605 Ma. Xenocrystic zircons are found in most of the younger granitoid samples; the xenocrystic grains are all Neoproterozoic, but fall into three age ranges that correspond to the ages of other Eastern Desert igneous rocks, viz. 710–690, 675–650 and 635–610 Ma. The analyzed granitoids have (+3.8 to +6.5) and crystallization ages, which confirm previous indications that the Arabian–Nubian Shield is juvenile Neoproterozoic crust. These results nevertheless indicate that older Neoproterozoic crust contributed to the formation of especially the younger granite magmas.  相似文献   

19.
Late- to post-magmatic deformation in slightly diachronous contiguous intrusions of the north-western Adamello batholith (Southern Alps, Italy) is recorded as, from oldest to youngest: (i) joints, (ii) solid-state ductile shear zones, (iii) faults associated with epidote-K-feldspar veins and (iv) zeolite veins and faults. Structures (ii) to (iv) are localized on the pervasive precursory network of joints (i), which developed during the earliest stages of pluton cooling. High temperature ( 500 °C), ductile overprinting of joints produced lineations, defined by aligned biotite and hornblende, on the joint surfaces and highly localized mylonites. The main phase of faulting, producing cataclasites and pseudotachylytes, occurred at  250 °C and was associated with extensive fluid infiltration. Cataclasites and pseudotachylytes are clustered along different E–W-striking dextral strike-slip fault zones correlated with the activity of the Tonale fault, a major tectonic structure that bounds the Adamello batholith to the north. Ductile deformation and cataclastic/veining episodes occurred at P = 0.25–0.3 GPa during rapid cooling of the batholith to the ambient temperatures ( 250 °C) that preceded the exhumation of the batholith. Timing of the sequence of deformation can be constrained by 39Ar–40Ar ages of  30 Ma on pseudotachylytes and various existing mineral ages. In the whole composite Adamello batholith, multiple magma pulses were intruded over the time span 42–30 Ma and each intrusive body shows the same ductile-to-brittle structural sequence localized on the early joint sets. This deformation sequence of the Adamello might be typical of intrusions undergoing cooling at depths close to the brittle–ductile transition.  相似文献   

20.
Major regional deformation and metamorphic events in the Godthåbsfjord region, southern West Greenland, occurred at 3650 and 2820–2720 Ma (e.g. Precambrian Res. 78 (1996) 1). New geochronological constraints (U–Pb zircon, Sensitive High Resolution Ion Microprobe [SHRIMP] and thermal ionisation mass spectrometry [TIMS]) have been obtained from a stack of mylonitic, crystalline thrust-nappes in the footwall of the western part of the Paleoarchean (3.8–3.7 Ga) Isua Greenstone Belt, Isukasia. A mylonitic tonalite sheet, interpreted to have intruded synkinematically with respect to mylonitisation, yields a magmatic crystallisation age of 3640±3 Ma. A cross-cutting pegmatite and a post-kinematic tonalite pluton yield magmatic crystallisation ages of 2948±8 and 2991±2 Ma, respectively. Accordingly, we interpret the thrust-nappe stack to have formed during the Paleoarchean (3640 Ma), making it the oldest example known on Earth. The similarity of this structural regime to that of modern mountain belts suggests that Paleoarchean and modern continental crust were comparable in terms of mechanical strength and constitution.Southern West Greenland has been interpreted in terms of Neoarchean accretion, comparable with modern plate tectonics (e.g. Earth Planet. Sci. Lett. 142 (1996) 353). Isukasia lies just east of a purported Neoarchean accretionary boundary between the Akia terrane to the Northwest and the Akulleq terrane to the Southeast. The Akia terrane was previously considered to overthrust the Akulleq terrane at 2820–2720 Ma. Our geochronological and geological data indicate (i) that the two “terranes”, as presently defined, were stitched at 2991±2 Ma and (ii) that thrusting across the boundary was directed toward the Akia terrane. Therefore, we suggest that the Akia–Akulleq interface was not a fundamental tectonic structure during the Neoarchean, and we question its identification as an accretionary boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号