首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Uranium-bearing hydrothermal solutions during the stage of ore deposition are weakly alkaline and of the Ca^2 -Na^ /HCO3^- -F^- type.UO2(CO3)2^2- and UO2F4^-, are dominant in the hydrothermal solutions with respect to their activity.Wall-rock hydrothermal alterations ,temperature and pressure drop and the reducing capability of rock assemblage (Δeh) led to a decrease in Eh of the hydrothermal solutions and an increase in Eh at which uranium began precipitating.Therefore,the mechanism of uranium precipitation is essentially the reduction of uranium complexes.The granite-type uranium deposits are the most important type of uranium resources in China.Discussions will be made in this paper concerning the hydrothermal speciation and precipitation mech-anisms of uranium complexes in the light of fluid inclusion and geological data from some major de-posits of this type in South China.  相似文献   

2.
华南铀矿床研究若干进展   总被引:6,自引:2,他引:4  
华南是我国主要铀矿产区之一。根据赋矿围岩的不同,通常将华南广泛分布的铀矿床划分为花岗岩型、火山岩型和碳硅泥岩型等三种主要类型。本文在以往研究的基础上,总结了近年华南铀矿研究取得的若干进展。例如,沥青铀矿微区原位定年研究不断深入,获得一批较精确的成矿年龄;通过精细矿物学研究,发现了零价铀和高铀酸钙[(Ca U~(6+)) O_4]等以往在自然界少见的铀矿物;揭示华南不同类型的铀矿床是受白垩-古近纪岩石圈伸展事件统一控制并具有密切内在联系的有机整体;攻深找盲取得新突破,发现了新的成矿元素组合并预示了深部找矿的重要潜力。本专辑报道了近年华南铀矿研究的部分新进展,包括15篇文章,主要涉及这些铀矿床的地质地球化学特征、成矿时代、成矿过程、成矿动力学背景和找矿潜力等。  相似文献   

3.
This paper deais with the geological conditions.mineralization characteristics,genetic types and space-time distribution of the Devonian-Carboniferous strata-bound carbonate-type uranium deposits in South China.These ore deposits are genetically classified as the leaching type and the leaching-hydrothermal superimposed type,These ore deposits are confined mainly to the strata (D2-3,C1)of platform-lagoon carbonate facies.Unique tectonic settings are a vital factor leading to the formation of these uranium deposits.A metallogenetic model for these uranium deposits has been proposed.  相似文献   

4.
ABSTRACT

The South China Uranium Province (SCUP) contains the largest number of discovered uranium deposits in China. This province includes seven uranium mineralization belts, at Wuyishan, Taoshan–Zhuguang, Chenzhou–Qinzhou, Gan–Hang, Xixia–Luzong, Mufushan–Hengshan, and Xuefengshan–Jiuwandashan. The uranium deposits can be classified according to their ore-hosting rocks into four general types: granite-, volcanic-, black-shale-, and sandstone-related. These uranium deposits crop out at the peripheries of Cretaceous–Neogene (K–N) redbed basins or are connected to the basins by NE–SW- to NNE–SSW-trending regional faults. Most of the volcanic-related uranium deposits were formed during the mid-Cretaceous (118 to 88 Ma); granite-related deposits have a wider range of ages from 124 to 11 Ma; the black-shale-related deposits have ages of 120 to 7 Ma; sandstone-related deposits yield ages of 111 to 22.5 Ma. As such, these four types of uranium deposits in South China have similar ages, irrespective of location, and are similar in age to K–N redbed basins in this region. δDVSMOW(fluid) and δ18OVSMOW(fluid) values of the volcanic-related uranium deposits generally range from – 105.9‰ to – 38.0‰ and – 11.1‰ to +5.3‰, respectively. The black-shale-related uranium deposits yield δDVSMOW(fluid) and δ18OVSMOW(fluid) values of – 74.5‰ to – 33.0‰ and – 4.4‰ to 9.3‰, respectively. However, the granite-related uranium deposits have a much wider range of δDVSMOW(fluid) and δ18OVSMOW(fluid) values from – 104.4‰ to – 23.1‰ and – 9.4‰ to +7.3‰, respectively. H–O isotopic compositions of the SCUP ore-forming fluids are similar to those of basinal fluids, again demonstrating the link between the uranium deposits and the basins. The spatial–temporal relationships and fluid isotopic similarities between the K–N basins and uranium mineralization indicate that the uranium deposits of the SCUP are genetically related to the K–N redbed basins, and are unconformity-related uranium deposits.  相似文献   

5.
6.
Research on sulfur isotopes in hydrothermal uranium deposits with acid alterations shed much light on the genetic aspects of hydrothermal uranium deposits. Based on the studies of uranium deposits of different genesis, it is concluded that σ34S of Sulfides in hydrothermal uranium deposits derived from residual magma is within the range of +2‰ ?2.6‰, approximately the same as meteorite sulfur. δ34S of Sulfides in polygenetic hydrothermal uranium deposits is slightly lighter than meteorite sulfur and varies over a restricted range (6.7‰), averaging ?10.15‰. Two intervals can be recognized with respect to sulfur isotopic compositions in palingenetic hydrothermal uranium deposits. δ34S of sulfides formed in diagenesis, autometamorphism and hypothermal stages is similar to meteorite sulfur. On the other hand, at the stage starting from the alteration of uranium mineralization to the formation o uranium deposits and postmineralization the average δ34S is -7.89‰, with a wider range of δ34S variation (13.7‰), which can be attributed to the enrichment of δ34S in palingenetic hydrothermal solutions.  相似文献   

7.
铀的地球化学性质与成矿——以华南铀成矿省为例   总被引:1,自引:1,他引:1  
铀是强不相容元素,随着岩浆演化而不断富集,在岩浆演化末期受结构氧增加影响进入独居石、磷钇矿等副矿物中。岩浆演化通常无法直接形成达到工业品位的铀矿床。铀是对氧逸度敏感的变价元素。在表生风化过程中岩体(层)中的铀被氧化为UO_2~(2+)而极易溶解进入水体中,并可在还原环境沉淀而富集成矿,氧化还原界面是找矿的理想选区。大气水可通过断裂构造系统进入一定深度,并受热源作用形成高氧逸度的热液而萃取出岩体(层)中的铀在还原位置沉淀富集形成矿床。新元古代氧化事件以及Marinoan冰期结束使得表生风化过程中更多的U进入水体;而寒武纪生命大爆发,易在沉积盆地底部形成还原环境,有利于U的沉淀富集。受上述三方面因素控制,在华南形成了广泛分布的富铀黑色页岩层,并被之后的沉积物覆盖,成为华南各型铀矿床的铀源层。印支期构造运动使部分富铀黑色页岩层发生部分熔融形成了富铀的S型花岗岩,该类岩石亦是之后铀成矿作用的铀源岩。燕山运动后期华南发生伸展构造背景下的岩浆热事件为以大气水为主的高氧逸度热液的形成并作用于铀源岩(层)提供了有利条件,促使华南各类型铀矿床开始在白垩纪集中形成。  相似文献   

8.
Black shale type uranium deposits, though of low grade (<0.001 to 0.05% U3O8), contain large uranium resources because of their immense volume. The Neoproterozoic-Cambrian Krol-Tal Himalayan sequence covering a cumulative area of about 1000 sq km in five different synclinal basins from Sirmour district, Himachal Pradesh in the west to Nainital district, Uttar Pradesh in east contain such black shale horizons. The uranium mineralisation found in black shale in the Nigalidhar syncline of Himachal Pradesh and its implication of being an indicator for search of such uranium deposits in Himalayas is discussed.  相似文献   

9.
林子瑜  聂逢君  张士红  徐翅翔  余倩 《地质通报》2019,38(11):1867-1876
兰杰一号铀矿及其所属的鳄鱼河铀矿田产于北澳太古宙克拉通内古元古代裂谷背景下发展起来的松溪造山带,矿体产于新太古代—古元古代结晶-变质基底/晚古元古代—中元古代康博尔吉红层建造不整合界面之下,铀矿化分3个时代,U_1为1720~1680Ma,U_2为1420~1040Ma,U_3为474±6Ma,U1是主矿化时代。该矿床于1969年后期通过航空放射性测量被发现,1970’s经勘探圈定了No.1和No.3两个铀矿体,总计资源储量124681t@0.23%U_3O_8。1980年10月正式露采,至2018年12月,总计生产了128739t U_3O_8。1985财年开始,ERA(澳大利亚能源资源有限责任公司)向世界核能市场共计销售了产于兰杰铀矿的119882t U_3O_8。2009年,发现了No.3深部矿,探明资源储量为43857t@0.22%U_3O_8,这部分资源将以地下开采方式利用。预计到2026年,采区地貌景观和生态环境将得到恢复。进一步讨论了澳北元古宙不整合面型铀矿找矿的方向,持续稳定的铀矿开采与生产的意义,以及投资澳大利亚铀矿业需要注意的政治与法律问题。这些内容可以为国内矿业企业及地勘单位合理部署澳洲铀矿勘查与开发提供参考。  相似文献   

10.
The oxygen isotopic composition of uranium minerals: A review   总被引:2,自引:0,他引:2  
Uranium ore is an essential material in the preparation of nuclear fuel for civilian as well as military uses. Uranium is first extracted from uranium-bearing minerals using a variety of reagents, and is precipitated from solutions as yellow cake prior to isotope enrichment processes. The disintegration of the former Eastern Bloc in the 1990s and frequent unrest in the Middle East have underscored the need for better characterizing source uranium ores for forensic and attribution purposes.The world's major deposits of U occur in several distinctly different geological environments. Fourteen principal types of U deposits and rocks with elevated uranium contents are recognized with more than 40 subtypes. Combining our own analysis and literature data, we have amassed over 250 oxygen isotope data from 13 major U-producing countries, which vary widely from − 32 to + 11‰. However, interpreting the oxygen isotopic composition of uraninite in terms of the composition of the fluid from which it precipitated, or interacted with, requires knowledge of the fractionation factor and temperature of interactions, which are not always available. Since each deposit type occurs within a unique geologic setting and is generally formed from chemically distinct fluids, the chemical compositions of the uranium ores are also distinct: uranium deposits that form in igneous rocks have higher trace element compositions relative to sandstone-hosted deposits. Our data shows that one of the most useful techniques for distinguishing between uranium ore is to use a combination of δ18O values and rare-earth elements (e.g., La/Yb ratios). These methods may allow investigators to trace uranium ore back to the source.  相似文献   

11.
贵州云峰铝土矿中铀矿物的发现   总被引:1,自引:1,他引:0  
有关铝土矿中铀富集的报道很多,但至今未见独立铀矿物存在的相关文献。本次研究采用岩相学观察、X衍射(XRD)、ICP-MS、电子探针(EPMA)、拉曼光谱分析等手段,对黔中典型的铝土矿——云峰铝土矿中的晶质铀矿进行了研究。研究发现该铝土矿床中,铀富集明显(w(U)(18×10~(-6)~62×10~(-6)),平均值35×10~(-6)),铀矿物大小呈微米至亚微米级,围绕锐钛矿边缘生长、或充填于高岭石微裂隙中、或散布于与黄铁矿密切相关的高岭石或硬水铝石中。铀矿物的主要组分为UO_2(w(UO_2)为52.2%~80.88%)和TiO_2(w(TiO_2)为1.85%~14.98%);电子探针面扫描显示铀矿物中钛分布不均匀;铀矿物的拉曼特征波长为442 cm~(-1)和454 cm~(-1),因此,初步推测铀矿物为晶质铀矿和含钛晶质铀矿。其形成过程大致如下,来源于下寒武统牛蹄塘组黑色岩系中的铀(U~(4+))在风化过程中氧化为U~(6+)、析出、被Al~-, Fe~-氧化物/氢氧化物吸附;在沉积和成岩过程中,随着三水铝石转变为勃姆石和硬水铝石、铁氧化/氢氧化物转变为黄铁矿,吸附的铀解吸、还原(U~(6+)至U~(4+))、最后形成铀矿物。  相似文献   

12.
Sedimentary units deposited during the post-rift stage of the Erlian Basin located in northeast China present an alternation of sandstone and mudstone layers. This sedimentological architecture is at the origin of confined permeable reservoirs hosting sandstone-type uranium deposits. The study of the Nuheting deposit offered the opportunity to identify synsedimentary/early diagenetic uranium concentrations and diagenetic mineralization hosted in mudstone-dominated layers of the Erlian Formation, indicating that a stock of uranium was present in the basin prior to the genesis of sandstone-hosted uranium deposits. Therefore, this pre-existing stock may constitute a significant source of uranium for the formation of roll front deposits present in other parts of the Erlian Basin.Detailed petrographic and geochemical study of drill-core samples from the Nuheting deposit led to the characterization of different stages related to the formation of the uranium ore bodies and allowed to propose a new metallogenic model. Uranium mineralization of the Nuheting deposit is mainly hosted in dark gray silty mudstone of wetland depositional environment of the Late Cretaceous Erlian Formation. Petrographic observations and EMP analyses evidenced that a significant amount of uranium was associated with clay minerals (interstratified clays, smectite, chlorite, palygorskyte, illite and kaolinite), either adsorbed on mineral surfaces as U (VI) ions or reduced mainly as UO2 nano to microcrystals disseminated in the clayey matrix, which corresponds to synsedimentary/early diagenetic concentrations. Trace elements on pyrite analyzed by LA-ICPMS, petrographic observations and whole-rock geochemical data led to the characterization of a diagenetic uranium mineralization. High As (1–50 ppm), Mo (10–500 ppm) and Se concentrations in the whole rock and the incorporation of these elements in pyrite highlight reducing conditions within the host-rocks during the diagenesis of the Erlian Formation. During the early diagenetic stage, uranium was either desorbed from clay minerals and organic materials to be reduced or directly reduced and precipitated as P-rich coffinite and pitchblende on pyrite crystals. During the late diagenetic stage, uranium was redistributed in situ and locally deposited mainly as coffinite on pyrites. Finally, an epigenetic stage of cementation was identified with sulfate and carbonate minerals, which may enclose some uranium minerals. This epigenetic stage of fluid circulation may be responsible for a minor uranium remobilization. Therefore, the Nuheting deposit experienced three main stages: (i) a synsedimentary/early diagenetic uranium concentration and mineralization, (ii) a late diagenetic in situ uranium remobilization and deposition on pyrite and (iii) an epigenetic cementation. Rock-Eval pyrolysis indicates that the organic matter contained in host-rocks of the Nuheting deposit is of type IV, inherited from land plant, and do not contain free hydrocarbons (very low S1). Therefore, our results do not support that migrated hydrocarbons were involved as a reducing agent for uranium mineralization.  相似文献   

13.
Comprehensive microthermometric investigations revealed similar temperature ranges (280–120°C) for the formation of late carbonates in the Khokhlovskoe, Semizbai, and Malinovskoe deposits of the West Siberian uranium ore region. A close chemical similarity was definitely established between the solutions of fluid inclusions and thermal nitrogen-methane waters with elevated CO2 concentrations typical of this region in general. It was noted that such CO2-rich mineral waters (Yessentuki no. 4 type) are common in the Mesozoic sequences of the Shadrinsk region, where Transuralian uranium deposits occur, and are similar in composition and temperature to the modern CO2-rich formation waters of the host sequences of the Khokhlovskoe deposit. The mineralogical and geochemical features of newly formed late minerals and uranium ores were considered as the most probable reflection of the exfiltration of such thermal solutions into the host levels. Two late mineral assemblages were distinguished: (1) hematite-calcite and (2) goethite-berthierine and goethite-smectite-chlorite with siderite or goethite-kaolinite-illite with siderite; they occur both in the host sequences and in the underlying basement rocks. The development of the latter assemblage causes a significant change in rock color (bleaching); it is widespread and was observed in all the deposits. It was shown that these altered rocks and uranium ores (especially high-grade) are very similar in mineral and chemical composition to the products of acid leaching and accompanying mineralization, which could be related to low-temperature argillization. It was suggested that exogenic epigenetic processes of ancient soil-bedrock oxidation contributed certainly to the development of uranium mineralization, and the modern character of the uranium ores and their host rocks is related to a large extent to the influence of hydrothermal CO2-rich solutions related to the neotectonic activation of the region. This resulted in the development of their specific mineral and chemical compositions and corresponding technological characteristics. It seems expedient to estimate the possible contributions of exogenic and endogenic factors to the formation of the uranium mineralization rather than oppose the roles of these processes of different stages.  相似文献   

14.
《Precambrian Research》2003,120(1-2):81-100
Knowledge of the formation conditions of Francevillian uranium and manganese ore deposits as well as natural fission reactors sheds light on the early evolution of the atmosphere between 1950 and 2150 Ma ago. The model explaining the formation of the Oklo uranium deposits suggests that at the time of sediment deposition in the Franceville basin 2150 million years ago, the oxygen deficient atmosphere would have inhibited uranium dissolution. Dissolution of uranium was only possible during later diagenesis, approximately 1950 Ma. Reduction reactions in the presence of hydrocarbons allowed precipitation of dissolved uranium to U4+, forming deposits with high enough uranium contents to trigger subsequent nuclear fission reactions. Such a model is in agreement with earlier suggestions that oxygen contents in atmosphere increased during a ‘transition phase’ some 2450–2100 Ma ago. The manganese deposits were formed before the uranium deposits, during the deposition of the black shales and very early diagenesis, and thus at a time when oxygen content in atmosphere was very low. Carbon isotopes data of organic matter show decrease of δ13C upward in the Francevillian series (−20 to −46% PDB) reflecting the high CH4 and low O2 contents in the atmosphere during sediment deposition. This favoured anoxic conditions during deposition of the basinal FB black shales and likewise the migration of Mn over long distances. The manganese precipitated first as Mn-oxides at the shallow edges of the Franceville basin, in photic zones, where photosynthetic organisms flourished. Mn-oxides were then reduced in the black shales forming Mn-carbonates when conditions became more reducing during transgression episodes and/or the first stages of burial. In the black shales, reducing conditions prevailed until recent weathering, allowing the good preservation of organic matter and the Mn deposits. The present-day alteration is responsible for the dissolution of Mn-carbonates and precipitation of Mn-oxides at the water table to form the high grade Mn ore (45–50% Mn). Development of photosynthesizing organisms, a volcanic source of the Mn, and favourable palaeogeography of the Francevillian basins are all important parameters for the formation of the Mn deposits. For the occurrence of the natural nuclear reactors, the age of 2.0 Ga is the main parameter that controls the abundance of fissile 235U and the critical mass. Before 2.0 Ga the 235U/238U ratio was sufficiently high for fission reactions to occur but conditions favourable for forming high grade uranium ores were not achieved. Then, after 2.0 Ga the increase of oxygen in the atmosphere commonly led to the formation of high grade uranium ores in which the 235U/238U ratio was too low to support criticality.  相似文献   

15.
The Alligator Rivers Uranium Field (ARUF) includes the mined and unmined Jabiluka, Ranger, Koongarra and Nabarlek unconformity-related uranium deposits and several small prospects including the newly discovered King River prospect. Uranium mineralisation is hosted by a variety of metamorphosed Nimbuwah Domain lithologies that are unconformably overlain by the Kombolgie Subgroup, a basin package of unmetamorphosed arenites and mafic volcanics. All of the uranium deposits and prospects preserve an identical alteration assemblage that is subdivided into a distal and proximal alteration zone. The distal alteration zone comprises an assemblage of sericite and chlorite that replace albite and amphibole. In some cases, this alteration can be traced >1000 m from the proximal alteration zone that is dominated by uraninite, hematite, chlorite and sericite. Uranium precipitated in the basement as uraninite at 1680 Ma at around 200°C from a fluid having δ18Ofluid values of 3.0±2.8‰ and δDfluid values of ?28±13‰ VSMOW reflecting an evolved marine source. These geochemical properties are indistinguishable from those recorded by diagenetic illite and chlorite that were collected from the Kombolgie Subgroup sandstones across the ARUF. The illite and chlorite formed in diagenetic aquifers, and where these aquifers intersected favourable basement rocks, such as those containing graphite or other reductants, U was precipitated as uraninite. Therefore, it is proposed that the Kombolgie Subgroup is the source for fluids that formed the deposits. A post-ore alteration assemblage dominated by chlorite, but also comprising quartz±dolomite±sulfide veins cut the uranium mineralisation at all deposits and has historically been recorded as part of the syn-ore mineralisation event. However, these minerals formed anywhere between 1500 to 630 Ma from fluids that have distinctly lower δ18Ofluid values around 1.5‰ and lower δDfluid values around ?45‰ reflecting a meteoric water origin. Despite unconformity-related uranium deposits having a large alteration halo, they remain difficult to find. The subtle alteration of albite to sericite several hundred metres from mineralisation occurs in isolation of any increase in trace elements such as U and radiogenic Pb and can be difficult or impossible to identify in hand specimen. Whole rock geochemical data indicate that Pearce Element Ratio (PER) analysis and General Element Ratio (GER) analysis may vector into this subtle alteration because it does not rely on an increase in trace elements to identify proximity to ore. PER and GER plots, Al/Ti vs (2Ca + Na + K)/Ti, Na/Al vs (Na + K)/Al, K/Al vs (Na + K)/Al and (Fe + Mg)/Al vs (Na + K)/Al provide a visual guide that readily distinguish unaltered from altered samples. A plot of (Na + K)/Al and (Fe + Mg)/Al on the x-axis against the concentration of trace elements on the y-axis reveals that U, Pb, Mo, Cu, B, Br, Ce, Y, Li, Ni, V and Nd are associated with the most intensely altered samples. The lithogeochemical vectors should aid explorers searching for uranium mineralisation in a prospective basin environment, but exploration must first focus on the characteristics of the basin to assess its mineralisation potential. A holistic model that describes the evolution of the Kombolgie Subgroup from deposition through diagenesis to formation of the uranium deposits in the underlying basement rocks is presented and has application to other basins that are considered prospective for unconformity-related uranium deposits. The model outlines that explorers will need to consider the thickness of the sedimentary pile, its lithological composition relative to depositional setting, the depth to which the sediments were buried during diagenesis and the degree of diagenesis achieved, which may be time dependant, before deciding on the prospectivity of the basin.  相似文献   

16.
碳硅泥岩型铀矿床是我国铀矿地质工作者建立的铀矿床类型,是我国四大铀矿工业类型之一。桂西地区是我国华南地区一个重要的碳硅泥岩型铀矿床产出区域,包括大新(373)铀矿床等多个典型铀矿床(点)。研究辉绿岩与矿床成因的联系,对重新认识矿床成因有重要意义。本文在对桂西大新-钦甲地区碳硅泥岩型铀矿床和辉绿岩脉野外地质研究的基础上,系统研究了辉绿岩的地质特征、岩石学、地球化学特征以及其中锆石的U-Pb同位素年代学特征,在此基础上,探讨了辉绿岩的成岩与碳硅泥岩型铀矿床成矿间的关系。元素地球化学特征显示Rb、U、Th、Ba等大离子亲石元素的含量都高于MORB值,高场强元素Ta、Nb、Zr、Hf等均相对于MORB有所富集,而HREE元素中等亏损,表明本区辉绿岩属于富集地幔特征的板内碱性玄武岩系列(WPB),属于华南陆内伸展构造背景下软流圈上涌导致富集岩石圈地幔部分熔融形成的铁镁质岩浆发生侵位的产物。辉绿岩脉3个样品的锆石LA-ICP-MS U-Pb年龄为86. 7±0. 9Ma、89. 05±0. 96Ma、91. 6±8. 3Ma,表明形成于晚白垩纪早期,与华南地区与中基性岩脉有关的铀矿床成矿时代具有较好的对应关系,也与华南地区广泛分布的中生代基性岩脉时代一致,对应于华南白垩纪构造应力场中四次重要的拉张活动时代中的一期。辉绿岩脉锆石特征指示了辉绿岩成岩过程对矿源层中铀的活化所产生的重要作用以及成岩与成矿之间的热动力联系;结合元素地球化学、矿床成矿年龄和辉绿岩锆石UPb同位素年龄研究结果表明,区内铀矿床具有多期成矿特点,即"沉积期铀预富集、辉绿岩作用下二次预富集、后期热液再次富集成矿",可能是该类型矿床成矿作用的重要形式。  相似文献   

17.
Groundwater processes and sedimentary uranium deposits   总被引:8,自引:0,他引:8  
 Hydrologic processes are fundamental in the emplacement of all three major categories of sedimentary uranium deposits: syngenetic, syndiagenetic, and epigenetic. In each case, the basic sedimentary uranium-enrichment cycle involves: (1) leaching or erosion of uranium from a low-grade provenance; (2) transport of uranium by surface or groundwater flow; and (3) concentration of uranium by mechanical, geochemical, or physiochemical processes. Although surface flow was responsible for lower Precambrian uranium deposits, groundwater was the primary agent in upper Precambrian and Phanerozoic sedimentary uranium emplacement. Meteoric or more deeply derived groundwater flow transported uranium in solution through transmissive facies, generally sands and gravels, until it was precipitated under reducing conditions. Syndiagenetic uranium deposits are typically concentrated in reducing lacustrine and swamp environments, whereas epigenetic deposits accumulated along mineralization fronts or tabular boundaries. The role of groundwater is particularly well illustrated in the bedload fluvial systems of the South Texas uranium province. Upward migration of deep, reducing brines conditioned the host rock before oxidizing meteoric flow concentrated uranium and other secondary minerals. Interactions between uranium-transporting groundwater and the transmissive aquifer facies are also reflected in the uranium mineralization fronts in the lower Tertiary basins of Wyoming. Similar relationships are observed in the tabular uranium deposits of the Colorado Plateau. Received, May 1998 · Revised, July 1998 · Accepted, September 1998  相似文献   

18.
661铀矿床矿石U-Pb等时线年龄及其成矿构造背景   总被引:4,自引:1,他引:3  
661铀矿床位于赣杭构造火山岩铀成矿带东段大洲铀矿田内,矿体赋存于磨石山群九里坪组流纹岩之中,矿床定位于岩石圈伸展断陷盆地附近,明显受断裂带的控制.利用矿石U-Pb等时线法确定了该矿床两个矿体的成矿时代,分别为(107.0±2.3)Ma和(110.0±3.5)Ma.这些年龄值与断陷红盆底部发育的玄武岩的成岩年龄一致,也与东南沿海地区明显存在的110 Ma基性脉岩拉张活动的时间一致,表明岩石圈伸展与铀成矿之间具有良好的对应关系,为岩石圈伸展期与铀成矿关系研究提供了年代学证据.岩石圈伸展控制着富CO2热液形成的时间,因而也大致控制了铀成矿的时代.  相似文献   

19.
The Baxingtu deposit is a typical redox front tabular-shaped uranium deposit hosted in sandstones of the Late Cretaceous Yaojia Formation deposited within a braided river environment during the post-rift stage of the Songliao Basin, in northeast China. This study proposes the first metallogenic model for the Baxingtu deposit and provides new data on genetic processes involved in the uranium mineralisation of sandstone-type deposits that were characterised through petrographic observations, whole-rock geochemistry, and geochemical and/or mineralogical study of iron disulphide, uranium minerals, Fe-Ti oxides (EPMA, LA-ICP-MS), and organic matter (REP). The δ34S value has been measured in situ by SIMS on the different generations of iron disulphide.Within regional primary reduced sandstones, pre-ore uranium enrichment (Umean = 7.6 ppm in whole rock) was identified on altered Fe-Ti oxides along with minor concentrations on organic matter (respectively 26.3% and 1.3% of the whole-rock U content), which together represent a significant source of uranium for the mineralisation. Additional pre-ore uranium concentrations may also be associated with clay minerals. Petrographic observations and REP data indicate that organic matter occurring in the host-sandstone is mainly inherited from land plants and corresponds to type III or type IV kerogens. Ore-stage iron disulphides largely occur as framboids and in replacement of organic matter or also as sub-idiomorphic to idiomorphic cement and crystal. Trace element signatures detected within framboids are likely indicative of formation mainly from a single event. Framboids and iron disulphide in replacement of organic matter have a light sulphur isotope signature characterised by δ34S values from −72.0 to −6.2‰, suggesting that sulphur originated from bacterial sulphate reduction, which was mainly responsible for (1) the liberation of U from Fe-Ti oxides and organic matter, (2) the generation of ore-stage iron disulphides, (3) the bioreduction of uranium and (4) the production of a secondary H2S-rich reducing barrier also involved in uranium reduction. Uranyl and sulphate ions were transported through the host sandstone by low-temperature oxygenated groundwater and U(IV) was precipitated at the redox interface as nano to microcrystals of pitchblende and coffinite, dominantly associated with bacterial substrate and as intergrowth with biogenic iron disulphide or directly associated with organic matter and residual Ti-Fe oxides. The uranium mineralisation does not replace ore-stage iron disulphides. Therefore, the combined mineralogical, geochemical, and isotopic characteristics of the Baxingtu tabular uranium deposit characterise dominantly biogenic processes for the genesis of the uranium mineralisation.  相似文献   

20.
灰池子岩体外围发育大量的伟晶岩脉,是伟晶岩型铀矿的重要富集区,已在陕西境内发现2个大型伟晶岩型铀矿床。经过近几年的铀矿勘查,在河南省卢氏县灰池子岩体外围也发现了伟晶岩型铀矿体,证明该区存在巨大的铀矿找矿潜力。然而,由于该区研究程度较低,不利于进一步的铀矿勘查。文章以灰池子岩体外围含铀伟晶岩为研究对象,在全面分析其宏观、微观及地球化学特征的基础上,指出研究区伟晶岩型铀矿以晶质铀矿和铀钍石的形式赋存于黑云母花岗伟晶岩中,并提出了伟晶岩型铀矿的宏观、微观及地球化学找矿标志。通过对研究区伟晶岩铀矿石与光石沟铀矿石的对比研究,发现两区铀矿石虽具有相似的矿物组成及结构构造等特征,但在常量及微量元素含量、副矿物种类、岩石分异度、稀土元素及微量元素配分等方面存在一定差异,推测导致这种差异的主要原因与两个地区所处的构造位置及岩浆活动强烈程度有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号