首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A periodically stratified elastic medium can be replaced by an equivalent homogeneous transverse isotropic medium in the long wavelength limit. The case of a homogeneous medium with equally spaced parallel interfaces along which there is imperfect bonding is a special instance of such a medium. Slowness surfaces are derived for all plane wave modes through the equivalent medium and reflection coefficients for a half-space of such a medium are found. The slowness surface for the SH mode is an ellipsoid. The exact solution for the reflection of SH-waves from a half-space with parallel slip interfaces is found following the matrix method of K. Gilbert applied to elastic waves. Explicit results are derived and in the long wavelength limit, shown to approach the results for waves in the equivalent homogeneous medium. Under certain conditions, a half-space of a medium with parallel slip interfaces has a reflection coefficient independent of the angle of incidence and thus acts like an acoustic reducing mirror. The method for the reflection of P- and SV-waves is fully outlined, and reflection coefficients are shown for a particular example. The solution requires finding the eigenvalues of a 4 × 4 transfer matrix, each eigenvalue being associated with a particular wave. At higher frequencies, unexpected eigenvalues are found corresponding to refracted waves for which shear and compressional parameters are completely coupled. The two eigenvalues corresponding to the transmitted wavefield give amplitude decay perpendicular to the stratification along with up- and downgoing phase propagation in some other direction. Much of this work was performed while the author was at the Department of Geophysics and Planetary Sciences, Tel-Aviv University, Ramat-Aviv, Israel. The author is grateful for illuminating discussions with K. Helbig and K. Gilbert.  相似文献   

2.
Multiple vertical fracture sets, possibly combined with horizontal fine layering, produce an equivalent medium of monoclinic symmetry with a horizontal symmetry plane. Although monoclinic models may be rather common for fractured formations, they have hardly been used in seismic methods of fracture detection due to the large number of independent elements in the stiffness tensor. Here, we show that multicomponent wide-azimuth reflection data (combined with known vertical velocity or reflector depth) or multi-azimuth walkaway VSP surveys provide enough information to invert for all but one anisotropic parameters of monoclinic media. In order to facilitate the inversion procedure, we introduce a Thomsen-style parametrization for monoclinic media that includes the vertical velocities of the P-wave and one of the split S-waves and a set of dimensionless anisotropic coefficients. Our notation, defined for the coordinate frame associated with the polarization directions of the vertically propagating shear waves, captures the combinations of the stiffnesses responsible for the normal-moveout (NMO) ellipses of all three pure modes. The first group of the anisotropic parameters contains seven coefficients (ε(1,2), δ(1,2,3) and γ(1,2)) analogous to those defined by Tsvankin for the higher-symmetry orthorhombic model. The parameters ε(1,2), δ(1,2) and γ(1,2) are primarily responsible for the pure-mode NMO velocities along the coordinate axes x1 and x2 (i.e. in the shear-wave polarization directions). The remaining coefficient δ(3) is not constrained by conventional-spread reflection traveltimes in a horizontal monoclinic layer. The second parameter group consists of the newly introduced coefficients ζ(1,2,3) which control the rotation of the P-, S1- and S2-wave NMO ellipses with respect to the horizontal coordinate axes. Misalignment of the P-wave NMO ellipse and shear-wave polarization directions was recently observed on field data by Pérez et al. Our parameter-estimation algorithm, based on NMO equations valid for any strength of the anisotropy, is designed to obtain anisotropic parameters of monoclinic media by inverting the vertical velocities and NMO ellipses of the P-, S1- and S2-waves. A Dix-type representation of the NMO velocity of mode-converted waves makes it possible to replace the pure shear modes in reflection surveys with the PS1- and PS2-waves. Numerical tests show that our method yields stable estimates of all relevant parameters for both a single layer and a horizontally stratified monoclinic medium.  相似文献   

3.
Considering horizontally layered transversely isotropic media with vertical symmetry axis and all types of pure‐mode and converted waves we present a new wide‐angle series approximation for the kinematical characteristics of reflected waves: horizontal offset, intercept time, and total reflection traveltime as functions of horizontal slowness. The method is based on combining (gluing) both zero‐offset and (large) finite‐offset series coefficients. The horizontal slowness is bounded by the critical value, characterised by nearly horizontal propagation within the layer with the highest horizontal velocity. The suggested approximation uses five parameters to approximate the offset, six parameters to approximate the intercept time or the traveltime, and seven parameters to approximate any two or all three kinematical characteristics. Overall, the method is very accurate for pure‐mode compressional waves and shear waves polarised in the horizontal plane and for converted waves. The application of the method to pure‐mode shear waves polarised in the vertical plane is limited due to cusps and triplications. To demonstrate the high accuracy of the method, we consider a synthetic, multi‐layer model, and we plot the normalised errors with respect to numerical ray tracing.  相似文献   

4.
Although it is believed that natural fracture sets predominantly have near‐vertical orientation, oblique stresses and some other mechanisms may tilt fractures away from the vertical. Here, we examine an effective medium produced by a single system of obliquely dipping rotationally invariant fractures embedded in a transversely isotropic with a vertical symmetry axis (VTI) background rock. This model is monoclinic with a vertical symmetry plane that coincides with the dip plane of the fractures. Multicomponent seismic data acquired over such a medium possess several distinct features that make it possible to estimate the fracture orientation. For example, the vertically propagating fast shear wave (and the fast converted PS‐wave) is typically polarized in the direction of the fracture strike. The normal‐moveout (NMO) ellipses of horizontal reflection events are co‐orientated with the dip and strike directions of the fractures, which provides an independent estimate of the fracture azimuth. However, the polarization vector of the slow shear wave at vertical incidence does not lie in the horizontal plane – an unusual phenomenon that can be used to evaluate fracture dip. Also, for oblique fractures the shear‐wave splitting coefficient at vertical incidence becomes dependent on fracture infill (saturation). A complete medium‐characterization procedure includes estimating the fracture compliances and orientation (dip and azimuth), as well as the Thomsen parameters of the VTI background. We demonstrate that both the fracture and background parameters can be obtained from multicomponent wide‐azimuth data using the vertical velocities and NMO ellipses of PP‐waves and two split SS‐waves (or the traveltimes of PS‐waves) reflected from horizontal interfaces. Numerical tests corroborate the accuracy and stability of the inversion algorithm based on the exact expressions for the vertical and NMO velocities.  相似文献   

5.
We consider a layered heterogeneous viscoelastic transversely isotropic medium with a vertical symmetry axis (a viscoelastic TIV medium) and parameters that depend on depth only. This takes into account intrinsic attenuation, anisotropy and thin layering. The seismic wavefield is decomposed into up- and downgoing waves scaled by the vertical energy flux. This scaling gives important symmetry relationships for both reflection and transmission (R/T) responses. For a stack of homogeneous layers, the exact reflection response can be computed in a numerically stable way by a simple layer-recursive algorithm. We derive exact plane-wave R/T coefficients and several linear and quadratic approximations between two viscoelastic TIV media, as functions of the real-valued horizontal slowness. The approximations are valid for pre- and post-critical values of horizontal slowness provided that the proper complex square roots are used when computing the vertical slowness. Numerical examples demonstrate that the quadratic approximations can be used for large differences in medium parameters, while the linear approximations can be used for small differences. For weak anisotropy it is sufficient to use an isotropic background medium, while for strong anisotropy it is necessary to use a weak TIV or TIV background medium. We also extend the O'Doherty–Anstey formula to the P- and SV-wave transmission responses of a stack of viscoelastic TIV layers, taking into account intrinsic attenuation, anisotropy and thin layering.  相似文献   

6.
The relationship between the maximum shear stress in a substrate solid and the elastic wave reflection coefficient from the interface between the substrate solid and an overlying solid half-space is investigated. Both substrate and overlying solid media are assumed to be initially isotropic and stress-free. Then as the substrate is subjected to horizontal confined stresses it becomes anisotropic. It is shown that longitudinal and shear wave reflection coefficients are related to the degree of stress induced anisotropy in the substrate medium. From this relation the confined stress level and the maximum shear stress generated on the vertical planes of the substrate are estimated. Authors in their previous investigation computed plane wave reflection coefficient in a biaxially compressed solid substrate immersed in a fluid. This paper reports for the first time how the maximum shear stress in a biaxially compressed substrate medium can be measured from the plane wave reflection coefficients when the overlying medium is also a solid half-space.  相似文献   

7.
We present a method for inversion of fracture compliance matrix components from wide‐azimuth noisy synthetic PS reflection data and quantitatively show that reflection amplitude variations with offset and azimuth for converted PS‐waves are more informative than P‐waves for fracture characterization. We consider monoclinic symmetry for fractured reservoir (parameters chosen from Woodford Shale), which can be formed by two or more sets of vertical fractures embedded in a vertically transverse isotropic background. Components of effective fracture compliance matrices for a medium with monoclinic symmetry are related to the characteristics of the fractured medium. Monte Carlo simulation results show that inversion of PS reflection data is more robust than that of PP reflection data to uncertainties in our a priori knowledge (vertically transverse isotropic parameters of unfractured rock) than PP reflection data. We also show that, while inversion of PP reflections is sensitive to contrasts in elastic properties of upper and lower media, inversion of PS reflections is robust with respect to such contrasts.  相似文献   

8.
Rayleigh’s method of approximation is employed to find out the reflection and transmission coefficients due to an incident plane SH wave at a corrugated interface between a laterally and vertically inhomogeneous anisotropic elastic solid half-space and a laterally and vertically inhomogeneous isotropic visco-elastic solid half-space. The lateral and vertical inhomogeneities are described by the exponential variations of elastic parameters. The formulae of reflection and transmission coefficients are derived in closed form for the first-order approximation of the corrugation. The effects of the corrugation of the interface, the inhomogeneity, the anisotropy, the visco-elasticity and the frequency of the incident wave on these coefficients are studied analytically and numerically for a specific model containing a periodic interface. The results of earlier workers have been reduced as particular cases from the present formulation.  相似文献   

9.
The plane-wave reflection and transmission coefficients at a plane interface between two anisotropic media constitute the elements of the elastic scattering matrix. For a 1-D anisotropic medium the eigenvector decomposition of the system matrix of the transformed elasto-dynamic equations is used to derive a general expression for the scattering matrix. Depending on the normalization of the eigenvectors, the expressions give scattering coefficients for amplitudes or for vertical energy flux.Computing the vertical slownesses and the corresponding polarizations, the eigenvector matrix and its inverse can be found. We give a simple formula for the inverse, regardless of the normalization of the eigenvectors. When the eigenvectors are normalized with respect to amplitudes of displacement (or velocity), the calculation of the scattering matrix for amplitudes is simplified.When the relative changes in all parameters are small, a weak-contrast approximation of the scattering matrix, based on the exactly determined polarization vectors in an average medium, is obtained. The same approximation is also derived directly from the transformed elasto-dynamic equations for a smooth vertically inhomogeneous medium, proving the consistency of the approximation.For monoclinic media, with the mirror symmetry plane parallel to the interface, the approximative scattering matrix is given in terms of analytic expressions for the non-normalized eigenvectors and vertical slownesses. For transversely isotropic media with a vertical axis of symmetry (VTI) and isotropic media, explicit solutions for the weak-contrast approximations of the scattering matrices have been obtained. The scattering matrix for amplitudes for isotropic media is well known. The scattering matrix for vertical energy flux may have applications in AVO analysis and inversion due to the reciprocity of the reflection coefficients for converted waves.Numerical examples for monoclinic and VTI media provide good agreement between the approximative and the exact reflection matrices. It is, however, expected that the approximations cannot be used when the symmetry properties of the two media are very different. This is because the approximation relies on a small relative contrast between the eigenvectors in the two media.Presented at the Workshop Meeting on Seismic Waves in Laterally Inhomogeneous Media, Castle of Trest, Czech Republic, May 22–27, 1995.  相似文献   

10.
The reflection/transmission laws (R/T laws) of plane waves at a plane interface between two homogeneous anisotropic viscoelastic (dissipative) halfspaces are discussed. Algorithms for determining the slowness vectors of reflected/transmitted plane waves from the known slowness vector of the incident wave are proposed. In viscoelastic media, the slowness vectors of plane waves are complex-valued, p = P + iA, where P is the propagation vector, and A the attenuation vector. The proposed algorithms may be applied to bulk plane waves (A = 0), homogeneous plane waves (A0, P and A parallel), and inhomogeneous plane waves (A0, P and A non-parallel). The manner, in which the slowness vector is specified, plays an important role in the algorithms. For unrestricted anisotropy and viscoelasticity, the algorithms require an algebraic equation of the sixth degree to be solved in each halfspace. The degree of the algebraic equation decreases to four or two for simpler cases (isotropic media, plane waves in symmetry planes of anisotropic media). The physical consequences of the proposed algorithms are discussed in detail. vcerveny@seis.karlov.mff.cuni.cz  相似文献   

11.
12.
Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which make the medium anisotropic on the scale of seismic wavelength. Applying the linear‐slip theory, we investigate seismic signatures of the effective medium produced by a single set of ‘general’ vertical fractures embedded in a purely isotropic host rock. The generality of our fracture model means the allowance for coupling between the normal (to the fracture plane) stress and the tangential jump in displacement (and vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine independent effective parameters and possesses several distinct features which help to identify the physical model and estimate the fracture compliances and background velocities. For example, the polarization vector of the vertically propagating fast shear wave S1 and the semi‐major axis of the S1‐wave normal‐moveout (NMO) ellipse from a horizontal reflector always point in the direction of the fracture strike. Moreover, for the S1‐wave both the vertical velocity and the NMO velocity along the fractures are equal to the shear‐wave velocity in the host rock. Analysis of seismic signatures in the limit of small fracture weaknesses allows us to select the input data needed for unambiguous fracture characterization. The fracture and background parameters can be estimated using the NMO ellipses from horizontal reflectors and vertical velocities of P‐waves and two split S‐waves, combined with a portion of the P‐wave slowness surface reconstructed from multi‐azimuth walkaway vertical seismic profiling (VSP) data. The stability of the parameter‐estimation procedure is verified by performing non‐linear inversion based on the exact equations.  相似文献   

13.
The calculation of reflection and transmission coefficients of plane waves at a plane interface between two homogeneous anelastic media may become ambiguous because it is not always obvious how to determine the sign of the vertical component of the slowness vector of the scattered waves. For elastic media, the sign is determined by applying so-called radiation condition when the slowness vector is complex-valued, but it has long been known that this approach does not work satisfactorily for anelastic media. Other approaches have been suggested, e.g., by requiring that the reflection and transmission coefficients should vary continuously with increasing incident angles, or by relating the sign to the direction of the energy flux. In the present paper, it is shown that these approaches may give different results, and that the results can be inconsistent with the elastic case even for weak attenuation. Instead, it is demonstrated that the ambiguity in the reflection coefficient can be resolved by expressing the seismic response of a point source over an interface as a superposition of plane waves and their reflection coefficients, and solving the resulting integral by the saddle point approximation. Although the saddle point itself (point of stationary phase) does not provide new insight, the ambiguity is removed by considering the steepest descent path through the point. Ray synthetic seismograms computed by this method compare well with synthetics computed by the reflectivity method, which does not suffer from the above-mentioned ambiguity since the integration path is taken along the real axis. This paper concentrates on the isotropic case, but it is discussed how the result may be extended to layered transversely isotropic media. The suggested approach, derived for a point source and plane layers, does not directly apply to 2-D or 3-D laterally inhomogeneous media, or to media of general anisotropy. A generalization of the result found is that the sign of the vertical slowness components should be chosen according to the energy flux direction for subcritical incidence and according to the radiation condition for supercritical incidence, even if this creates a discontinuity in the coefficients at the critical incidence angle. Such a discontinuity is sometimes necessary to get results which are consistent with the elastic case. It is discussed how the generalized result can be obtained by applying certain continuity criteria for the sub-and supercritical angle intervals, but the validity of this approach for general models remains to be proved.  相似文献   

14.
In a multi‐parameter waveform inversion, the choice of the parameterisation influences the results and their interpretations because leakages and the tradeoff between parameters can cause artefacts. We review the parameterisation selection when the inversion focuses on the recovery of the intermediate‐to‐long wavenumbers of the compressional velocities from the compressional body (P) waves. Assuming a transverse isotropic medium with a vertical axis of symmetry and weak anisotropy, analytical formulas for the radiation patterns are developed to quantify the tradeoff between the shear velocity and the anisotropic parameters and the effects of setting to zero the shear velocity in the acoustic approach. Because, in an anisotropic medium, the radiation patterns depend on the angle of the incident wave with respect to the vertical axis, two particular patterns are discussed: a transmission pattern when the ingoing and outgoing slowness vectors are parallel and a reflection pattern when the ingoing and outgoing slowness vectors satisfy Snell's law. When the inversion aims at recovering the long‐to‐intermediate wavenumbers of the compressional velocities from the P‐waves, we propose to base the parameterisation choice on the transmission patterns. Since the P‐wave events in surface seismic data do not constrain the background (smooth) vertical velocity due to the velocity/depth ambiguity, the preferred parameterisation contains a parameter that has a transmission pattern concentrated along the vertical axis. This parameter can be fixed during the inversion which reduces the size of the model space. The review of several parameterisations shows that the vertical velocity, the Thomsen parameter δ, or the Thomsen parameter ε have a transmission pattern along the vertical axis depending on the parameterisation choice. The review of the reflection patterns of those selected parameterisations should be done in the elastic context. Indeed, when reflection data are also inverted, there are potential leakages of the shear parameter at intermediate angles when we carry out acoustic inversion.  相似文献   

15.
In this paper, we have considered the reflection and refraction of a plane wave at an interface between two half-spaces. The lower half-spaces is composed of highly anisotropic triclinic crystalline material and the upper half-space is homogeneous and isotropic. It has been assumed that due to incidence of a plane quasi-P (qP) wave, three types of waves, namely, quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH), will be generated in the lower half space whereas P and S waves will be generated in the upper half space. The phase velocities of all the quasi waves have been calculated. It has been assumed that the direction of particle motion is neither parallel nor perpendicular to the direction of propagation. Some specific relations have been established between directions of motion and propagation, respectively. The expressions for reflection coefficients of qP, qSV, qSH and refracted coefficients of P and SV waves are obtained. Results of reflection and refraction coefficients are presented.  相似文献   

16.
A problem of reflection and transmission of elastic waves at a plane interface between a uniform elastic solid half-space and a porous elastic half-space containing two immiscible fluids is investigated. The theory developed by Lo, Sposito and Majer for porous media containing two immiscible fluids is employed to find out the reflection and transmission coefficients. The incident wave is assumed to propagate through the uniform elastic half-space and two cases are considered. In the first case, a beam of plane longitudinal wave is assumed to be incident and in the second case, a beam of transverse wave is assumed to be incident at the interface. By taking granite as impervious elastic medium and columbia fine sandy loam containing air-water mixture as porous medium, reflection and transmission coefficients are obtained. By neglecting the inertial coupling coefficients, these coefficients are reduced to those obtained by Tomar and Arora using the theory of Tuncay and Corapcioglu. It is found that the inertial coupling parameters significantly affect the phase speeds and the amplitude ratios of the transmitted waves.  相似文献   

17.
Despite the complexity of wave propagation in anisotropic media, reflection moveout on conventional common-midpoint (CMP) spreads is usually well described by the normal-moveout (NMO) velocity defined in the zero-offset limit. In their recent work, Grechka and Tsvankin showed that the azimuthal variation of NMO velocity around a fixed CMP location generally has an elliptical form (i.e. plotting the NMO velocity in each azimuthal direction produces an ellipse) and is determined by the spatial derivatives of the slowness vector evaluated at the CMP location. This formalism is used here to develop exact solutions for the NMO velocity in anisotropic media of arbitrary symmetry. For the model of a single homogeneous layer above a dipping reflector, we obtain an explicit NMO expression valid for all pure modes and any orientation of the CMP line with respect to the reflector strike. The contribution of anisotropy to NMO velocity is contained in the slowness components of the zero-offset ray (along with the derivatives of the vertical slowness with respect to the horizontal slownesses) — quantities that can be found in a straightforward way from the Christoffel equation. If the medium above a dipping reflector is horizontally stratified, the effective NMO velocity is determined through a Dix-type average of the matrices responsible for the ‘interval’ NMO ellipses in the individual layers. This generalized Dix equation provides an analytic basis for moveout inversion in vertically inhomogeneous, arbitrarily anisotropic media. For models with a throughgoing vertical symmetry plane (i.e. if the dip plane of the reflector coincides with a symmetry plane of the overburden), the semi-axes of the NMO ellipse are found by the more conventional rms averaging of the interval NMO velocities in the dip and strike directions. Modelling of normal moveout in general heterogeneous anisotropic media requires dynamic ray tracing of only one (zero-offset) ray. Remarkably, the expressions for geometrical spreading along the zero-offset ray contain all the components necessary to build the NMO ellipse. This method is orders of magnitude faster than multi-azimuth, multi-offset ray tracing and, therefore, can be used efficiently in traveltime inversion and in devising fast dip-moveout (DMO) processing algorithms for anisotropic media. This technique becomes especially efficient if the model consists of homogeneous layers or blocks separated by smooth interfaces. The high accuracy of our NMO expressions is illustrated by comparison with ray-traced reflection traveltimes in piecewise-homogeneous, azimuthally anisotropic models. We also apply the generalized Dix equation to field data collected over a fractured reservoir and show that P-wave moveout can be used to find the depth-dependent fracture orientation and to evaluate the magnitude of azimuthal anisotropy.  相似文献   

18.
In an acoustic transversely isotropic medium, there are two waves that propagate. One is the P-wave and another one is the S-wave (also known as S-wave artefact). This paper is devoted to analyse the S-wave in two-dimensional acoustic transversely isotropic media with a tilted symmetry axis. We derive the S-wave slowness surface and traveltime function in a homogeneous acoustic transversely isotropic medium with a tilted symmetry axis. The S-wave traveltime approximations in acoustic transversely isotropic media with a tilted symmetry axis can be mapped from the counterparts for acoustic transversely isotropic media with a vertical symmetry axis. We consider a layered two-dimensional acoustic transversely isotropic medium with a tilted symmetry axis to analyse the S-wave moveout. We also illustrate the behaviour of the moveout for reflected S-wave and converted waves.  相似文献   

19.
The model studied in this paper presents an extension of previous work for a shear wall on a semi-circular rigid foundation in an isotropic homogeneous and elastic half-space. The objective is to develop a soil-structure interaction model that can later be applied to the case of a flexible foundation. As shown in the Introduction below, Luco considered the case of a rigid foundation subjected to vertical incident plane SH waves, and Trifunac extended the solution for the same rigid foundation subjected to SH waves but for arbitrary angles of the incidence. In this paper, a new approach and model are presented for the same semi-circular rigid foundation with a tapered-shape (instead of rectangular) superstructure. The analytical expression for the deformation of the semi-circular rigid foundation below this tapered shear wall with soil-structure interaction in an isotropic homogeneous and elastic half-space is thus derived. Results are then compared with those of Trifunac discussed in the section below. This problem formulation can and will later be extended in the case of a flexible foundation that is semi-circular or arbitrarily shaped.  相似文献   

20.
Converted PS-wave Reflection Coefficients in Weakly Anisotropic Media   总被引:1,自引:0,他引:1  
—?I derive converted P S-wave reflection coefficients at a planar weak-contrast interface separating two weakly anisotropic half-spaces using first-order perturbation theory. The general expressions are further specified for the interface separating any of the two following media: isotropic, transversely isotropic with a vertical symmetry axis (VTI), transversely isotropic with a horizontal symmetry axis (HTI) and orthorhombic. Relatively simple forms of small-angle reflection coefficients are also obtained. The coefficients are expressed as functions of Thomsen-type medium parameters and incidence and azimuthal phase angles. Derived expressions, as well as their application, are more complicated than the corresponding expressions for P P-wave reflection coefficients. General characteristics and pitfalls are discussed. Numerical tests reveal a good agreement between exact and approximate coefficients for most models presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号