首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Organic matter in the environment is involved in many biogeochemical processes,including the mobilization of geogenic trace elements,such as arsenic,into groundwater.In this paper we present the use of fluorescence spectroscopy to characterize the dissolved organic matter(DOM)pool in heavily arsenicaffected groundwaters in Kandal Province,Cambodia.The fluorescence DOM(fDOM)characteristics between contrasting field areas of differing dominant lithologies were compared and linked to other hydrogeochemical parameters,including arsenic and dissolved methane as well as selected sedimentary characteristics.Absorbance-corrected fluorescence indices were used to characterize depth profiles and compare field areas.Groundwater fDOM was generally dominated by terrestrial humic and fulvic-like components,with relatively small contributions from microbially-derived,tryptophan-like components.Groundwater fDOM from sand-dominated sequences typically contained lower tryptophan-like,lower fulvic-like and lower humic-like components,was less bioavailable,and had higher humification index than clay-dominated sequences.Methane concentrations were strongly correlated with fDOM bioavailability as well as with tryptophan-like components,suggesting that groundwater methane in these arsenic-prone aquifers is likely of biogenic origin.A comparison of fDOM tracers with sedimentary OM tracers is consistent with the hypothesis that external,surface-derived contributions to the aqueous DOM pool are an important control on groundwater hydrogeochemistry.  相似文献   

2.
The daily groundwater level (GWL) response in the Permo-Triassic Sandstone aquifers in the Eden Valley, England (UK), has been studied using the seasonal trend decomposition by LOESS (STL) technique. The hydrographs from 18 boreholes in the Permo-Triassic Sandstone were decomposed into three components: seasonality, general trend and remainder. The decomposition was analysed first visually, then using tools involving a variance ratio, time-series hierarchical clustering and correlation analysis. Differences and similarities in decomposition pattern were explained using the physical and hydrogeological information associated with each borehole. The Penrith Sandstone exhibits vertical and horizontal heterogeneity, whereas the more homogeneous St Bees Sandstone groundwater hydrographs characterize a well-identified seasonality; however, exceptions can be identified. A stronger trend component is obtained in the silicified parts of the northern Penrith Sandstone, while the southern Penrith, containing Brockram (breccias) Formation, shows a greater relative variability of the seasonal component. Other boreholes drilled as shallow/deep pairs show differences in responses, revealing the potential vertical heterogeneities within the Penrith Sandstone. The differences in bedrock characteristics between and within the Penrith and St Bees Sandstone formations appear to influence the GWL response. The de-seasonalized and de-trended GWL time series were then used to characterize the response, for example in terms of memory effect (autocorrelation analysis). By applying the STL method, it is possible to analyse GWL hydrographs leading to better conceptual understanding of the groundwater flow. Thus, variation in groundwater response can be used to gain insight into the aquifer physical properties and understand differences in groundwater behaviour.  相似文献   

3.
Fluorescence characterization of dissolved organic matter (DOM) and measurements of Cr-reducible sulfide (CRS) are presented for 72 coastal marine and estuarine water samples obtained from the USA and Canada. Each sample is identified according to source: terrigenous, autochthonous, wastewater or mixed. Fluorescence data are resolved into contributions from humic, fulvic, tyrosine and tryptophan-like fluorophores. Humic and fulvic-like fluorophores correlate well with dissolved organic C (DOC) (r2 = 0.73 and 0.71, respectively) but tyrosine and tryptophan-like fluorophores show no correlation with DOC. Quality factors are identified by normalization of fluorescence contributions to DOC. Humic and fulvic components show no statistical differences between sources but the amino acid-like fluorescence quality factors show significant variations between source, with highest values for autochthonous sources (0.07 ± 0.01 arbitrary fluorescence units per mg of C) versus low values (0.015 ± 0.005) for terrigenous source waters. CRS concentrations are highly variable from 0.07 ± 0.01 to 7703 ± 98 nM and do no correlate with DOC except when terrigenous source waters (n = 13) are separated out from the total sample set (r2 = 0.55). There is an open question in the literature; does DOC source matter in terms of protective effects towards metal toxicity? Here is shown that DOC molecular-level quality does vary and that this variation is mostly in terms of the contributions of amino acids to total fluorescence.  相似文献   

4.
Groundwaters were sampled from four research boreholes, a private supply well and a natural karst resurgence in southern County Durham, England. Time series data sets of piezometric levels, groundwater major ions, and fluorescence of dissolved organic matter (DOM) were interpreted in the light of new geological mapping to assess the movement of groundwater and its potential for the dissolution of gypsum. Three distinct groundwater facies were identified representing contact with gypsiferous strata, dolomitic limestone and Quaternary Till. Piezometric data indicated time varying transverse flow across the gypsifeorus strata, which was confirmed from gradational mixing of groundwater types and cation ratios. Fluorescence of dissolved DOM identified variations in protein and fulvic-like acid fluorescence. The former was taken to represent surface derived, short-lived material. Spatial and temporal variations in protein fluorescence offered a means to trace groundwater movement along the regional groundwater gradient and indicated rapid lateral movement of groundwater. It was concluded that gypsum dissolution is occurring beneath the town of Darlington, however, the presence of a thick deposit of Quaternary till effectively confines the small head differences of approximately 1 m, across the gypsum strata beneath the town. Further to the south, the lowering of the ground surface results in a greater upwards flow of water across the gypsum and is used to explain the presence of historic collapse sinkholes.  相似文献   

5.
Concentrations of dissolved organic matter (DOM) and ultraviolet/visible light absorbance decrease systematically as groundwater moves through the unsaturated zones overlying aquifers and along flowpaths within aquifers. These changes occur over distances of tens of meters (m) implying rapid removal kinetics of the chromophoric DOM that imparts color to groundwater. A one-compartment input-output model was used to derive a differential equation describing the removal of DOM from the dissolved phase due to the combined effects of biodegradation and sorption. The general solution to the equation was parameterized using a 2-year record of dissolved organic carbon (DOC) concentration changes in groundwater at a long-term observation well. Estimated rates of DOC loss were rapid and ranged from 0.093 to 0.21 micromoles per liter per day (μM d?1), and rate constants for DOC removal ranged from 0.0021 to 0.011 per day (d?1). Applying these removal rate constants to an advective-dispersion model illustrates substantial depletion of DOC over flow-path distances of 200 m or less and in timeframes of 2 years or less. These results explain the low to moderate DOC concentrations (20–75 μM; 0.26–1 mg L?1) and ultraviolet absorption coefficient values (a 254?<?5 m?1) observed in groundwater produced from 59 wells tapping eight different aquifer systems of the United States. The nearly uniform optical clarity of groundwater, therefore, results from similarly rapid DOM-removal kinetics exhibited by geologically and hydrologically dissimilar aquifers.  相似文献   

6.
The fluorescent properties of dissolved organic matter (DOM) have been used as natural tracers in various water systems. However, only few studies have focused on groundwater systems, specifically, on karst systems. The aim of this study was to develop the use of the DOM fluorescence signal as a natural tracer, considering the multiple compartments of a karst system. This method was applied to the Lez hydrosystem, which supplies the city of Montpellier with drinking water. The hydrodynamics and hydrochemistry of the spring were monitored beginning March 2006. The DOM fluorescence was measured by the excitation–emission matrix spectroscopy technique. The analysis of the total fluorescence signal confirms the efficiency of this tool to trace rapid infiltration flows. Moreover, the decomposition of the signal into different fluorophores complements the information provided by the total signal. Indeed, the fluorescence emitted by the humic compounds seems to be the ideal tool for identifying rapid infiltration flows. Nevertheless, the fluorescence of protein-like compounds is better correlated with the inflow of faecal bacteria at the outlet. This decomposition of the fluorescence signal is an interesting way to provide information on both the rapid infiltration flow as well as the vulnerability of the karst aquifers.  相似文献   

7.
In the present study, we explored the use of various optical parameters to detect differences in the composition of the dissolved organic matter (DOM) in a set of lakes that are all located on the Canadian Precambrian Shield, but within which Cu and Ni speciation predictions were previously shown to diverge from measured values in some lakes but not in others. Water samples were collected with in situ diffusion samplers in 2007 (N = 18 lakes) and 2008 (N = 8 lakes). Significant differences in DOM quality were identified between the sampling regions (Rouyn-Noranda, Québec and Sudbury, Ontario) and among lakes, based on dissolved organic carbon concentrations ([DOC]), specific UV absorbance (SUVA254), fluorescence indices (FI), and excitation–emission matrix (EEM) fluorescence measurements. Parallel factor analysis (PARAFAC) of the EEM spectra revealed four components, two of which (C3, oxidized quinone fluorophore of allochthonous origin, and C4, tryptophan-like protein fluorescence of autochthonous origin) showed the greatest inter-regional variation. The inter-lake differences in DOM quality were consistent with the regional watershed characteristics as determined from satellite imagery (e.g., watershed-to-lake surface area ratios and relative percentages of surface water, rock outcrops vegetative cover and urban development). Source apportionment plots, built upon PARAFAC components ratios calculated for our lakes, were used to discriminate among DOM sources and to compare them to sources identified in the literature. These results have implications for other areas of research, such as quantifying lake-to-lake variations in the influence of organic matter on the speciation of trace elements in natural aquatic environments.  相似文献   

8.
For about 10 years, environmental tracing development using dissolved organic matter (DOM) has been the subject of several studies. Particularly, the use of characterization techniques, like fluorescence emission–excitation matrices has enabled the identification of DOM sources and monitoring them within mainland or marine hydrosystems. Moreover, hydrogeologists have shown the significance of total organic carbon content used as a fast seepage tracer in karstic aquifers. The aim of this study consists in using DOM fluorescence signals to develop a transit time semi-quantitative tracer in heterogeneous hydrosystems. The Low-Noise Underground Laboratory (Vaucluse, France) cuts the network of Fontaine de Vaucluse (FV) karstic vadose zone randomly, and offers a special access to different unstructured dripwaters, with different hydrodynamic behaviour, inside its galleries, i.e. not hierarchical as in natural caves. Previous long-term hydrodynamic and hydrochemical studies allowed the understanding of their hydrogeological behaviour and the estimation of mean transit times. That is why this site is adequate to develop new transit time tracers. After identification of the different DOM sources (i.e. lithic and rendzic leptosols), fluorescence intensities monitoring from soil leachates and dripwaters, for certain excitation–emission wavelength pairs, allowed the development of punctual transit time tracing, by spotting infiltration periods of fluorescent compounds, and monitoring their transfer within a hydrosystem. A fluorescence index (humification index) and the mean transit time of each gallery groundwater, stemmed from previous hydrodynamic and hydrochemical studies, allowed the calibration of a logarithmic relationship. This one allows the development of a continuous transit time tracing method that estimates transit times without long-term studies. It has been tested on two springs of FV catchment basin, providing transit time estimations for karstic hydrosystems that do not present a mixture between recent and pluriannual waters.  相似文献   

9.
溶解性有机物(dissolved organic matter, DOM)可以通过多种方式控制含水层中砷的迁移转化。贵德盆地承压含水层地下水砷含量显著高于潜水含水层。为查明承压水中溶解性有机物对砷浓度的影响,对研究区地表水、潜水以及承压水进行吸光度和三维荧光光谱的分析,利用平行因子分析法确定了水样中有机物成分及荧光特征。结果表明,贵德盆地水体中DOM包含陆源类腐殖质(C1)、受人为影响的腐殖质(C2)、类醌化合物(C3)和微生物来源的腐殖质(C4)4种组分。陆源类腐殖质C1可在地下水中富集,占总有机质的40%~55%。相比于地下水,C2和C3则在地表水中占据较高的比例。高砷承压水中C2、C3所占比例高于低砷潜水。其中,C1可以通过络合作用促进溶解性砷浓度的提高,C3作为电子穿梭体可以促进含砷铁氧化物或氢氧化物的还原性溶解从而释放砷。微生物降解有机质生成的HCO-3可以与砷竞争吸附,促进砷的解吸附。此外,还原性溶解产生的Fe(II)与HCO-3形成FeCO3固定一部分的砷。该研究表明,地下水中的天然有机物通过络合作用和作为电子穿梭体促进铁氧化物还原导致地下水砷的富集,为分析黄河上游地区高砷地下水的成因提供理论依据。  相似文献   

10.
Dissolved organic matter (DOM) in groundwater and surface water samples from the Florida coastal Everglades were studied using excitation–emission matrix fluorescence modeled through parallel factor analysis (EEM-PARAFAC). DOM in both surface and groundwater from the eastern Everglades S332 basin reflected a terrestrial-derived fingerprint through dominantly higher abundances of humic-like PARAFAC components. In contrast, surface water DOM from northeastern Florida Bay featured a microbial-derived DOM signature based on the higher abundance of microbial humic-like and protein-like components consistent with its marine source. Surprisingly, groundwater DOM from northeastern Florida Bay reflected a terrestrial-derived source except for samples from central Florida Bay well, which mirrored a combination of terrestrial and marine end-member origin. Furthermore, surface water and groundwater displayed effects of different degradation pathways such as photodegradation and biodegradation as exemplified by two PARAFAC components seemingly indicative of such degradation processes. Finally, Principal Component Analysis of the EEM-PARAFAC data was able to distinguish and classify most of the samples according to DOM origins and degradation processes experienced, except for a small overlap of S332 surface water and groundwater, implying rather active surface-to-ground water interaction in some sites particularly during the rainy season. This study highlights that EEM-PARAFAC could be used successfully to trace and differentiate DOM from diverse sources across both horizontal and vertical flow profiles, and as such could be a convenient and useful tool for the better understanding of hydrological interactions and carbon biogeochemical cycling.  相似文献   

11.
Mineral assemblages (heavy and light fractions) and sedimentological characteristics of the Quaternary alluvial aquifers were examined in the central Bengal Basin where As concentrations in groundwater are highly variable in space but generally decrease downward. Chemical compositions of sediment samples from two vertical core profiles (2-150 m below ground level, bgl) were analyzed along with groundwater in moderately As-enriched aquifers in central Bangladesh (Manikganj district), and the As mobilization process in the alluvial aquifer is described. Heavy minerals such as biotite, magnetite, amphibole, apatite and authigenic goethite are abundant at shallow (<100 m below ground level (mbgl)) depths but less abundant at greater depths. It is interpreted that principal As-bearing minerals were derived from multiple sources, primarily from ophiolitic belts in the Indus-Tsangpo suture in the northeastern Himalayan and Indo-Burman Mountain ranges. Authigenic and amorphous Fe-(oxy)hydroxide minerals that are generally formed in river channels in the aerobic environment are the major secondary As-carriers in alluvial sediments. Reductive dissolution (mediated by Fe-reducing bacteria) of Fe-(oxy)hydroxide minerals under anoxic chemical conditions is the primary mechanism responsible for releasing As into groundwater. Authigenic siderite that precipitates under reducing environment at greater depths decreases Fe and possibly As concentrations in groundwater. Presence of Fe(III) minerals in aquifers shows that reduction of these minerals is incomplete and this can release more As if further Fe-reduction takes place with increased supplies of organic matter (reactive C). Absence of authigenic pyrite suggests that SO4 reduction (mediated by SO4-reducing bacteria) in Manikganj groundwater is limited in contrast to the southeastern Bengal Basin where precipitation of arsenian pyrite is thought to sequester As from groundwater.  相似文献   

12.
系统评述了水体中溶解有机物的特性及测量方法。介绍了水体中溶解有机物的研究概况,指出了开展水体中溶解有机物定量监测的必要性;详述了水体中溶解有机物的激光诱导荧光测量方法、对水体中有机物荧光光谱进行分析的特征光谱荧光标记技术和荧光强度归一化处理技术,以及利用激光诱导荧光方法测量水体中溶解有机物浓度的标定方法;综述了多种因素对利用激光诱导荧光方法测量的影响。  相似文献   

13.
《Applied Geochemistry》2006,21(9):1570-1592
Pollution of urban groundwater is routinely reported but the profile of contamination with depth in urban aquifers is rarely resolved. This limits understanding of the depth of penetration of urban recharge and contaminants, and use of urban groundwater. Penetration of anthropogenic solutes (major ions, trace metals) in Permo-Triassic sandstone aquifers underlying two mature conurbations in the UK was investigated through depth-specific, groundwater sampling of dedicated multilevel piezometers. Identification of solute origin and biogeochemical processes (e.g. denitrification, mineral dissolution) was aided by use of stable isotope ratios (34S/32S, 18O/16O, 15N/14N, 13C/12C) and chemical speciation modelling (PHREEQC). Depth profiles of aquifer hydrochemistry reveal penetration of anthropogenic solutes to depths of between 30 and 47 m below ground in the unconfined sandstone and confirm the contributions of faecal and industrial effluents to urban recharge. They also highlight the complexity of solute loading and difficulty resolving solute origin from the range of potential sources in urban groundwater. Faecally-derived NO3 is the most pervasive contaminant exceeding drinking-water quality guidelines and is associated with elevated concentrations of B and SO4. Elevated concentrations of Li, B, Cr and Co are observed at depth in groundwater contaminated by long-term industrial land use (metalworking). Observed penetration of anthropogenic solutes in the unconfined sandstone is consistent with post-development recharge of urban groundwater (residence times <230 a) indicated by flow modelling, and suggests tentatively that urban abstraction to depths of up to 50 m below ground in the unconfined Permo-Triassic sandstone is required to scavenge contaminated groundwater.  相似文献   

14.
Dissolved organic matter (DOM) in sediment pore water is a complex molecular mixture reflecting various sources and biogeochemical processes. In order to constrain those sources and processes, molecular variations of pore water DOM in surface sediments from the NW Iberian shelf were analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and compared to river and marine water column DOM. Weighted average molecular element ratios of oxygen to carbon ((O/C)wa) and hydrogen to carbon ((H/C)wa) provided general information about DOM sources. DOM in local rivers was more oxygenated ((O/C)wa 0.52) and contained less hydrogen ((H/C)wa 1.15) than marine pore water DOM (mean (O/C)wa 0.50, mean (H/C)wa 1.26). The relative abundance of specific compound groups, such as highly oxygenated aromatic compounds or nitrogen-bearing compounds with low H/C ratios, correspond to a high concentration of lignin phenols (160 μg/g sediment dry weight) and a high TOC/TN ratio (13.3) in the sedimentary organic matter and were therefore assigned to terrestrial sources. The lower degree of unsaturation and a higher relative abundance of nitrogen-bearing compounds in the pore water DOM reflected microbial activity within the sediment. One sampling site on the shelf with a high sediment accumulation, and a humic-rich river sample showed a wide range of sulfur compounds in the DOM, accompanied by a higher abundance of lipid biomarkers for sulfate-reducing bacteria, probably indicating early diagenetic sulfurization of organic matter.  相似文献   

15.
卤水中溶解性有机质(dissolved organic matter,DOM)会对盐田日晒工艺和产品质量产生不利影响,如盐田卤水的蒸发速率减缓、蒸发度减小以及提取的矿物产品带有刺鼻的气味、浓重的颜色等。因此,对具有资源开发利用价值的卤水体系中DOM结构和性质的研究可以为后续DOM的有效去除或在DOM共存体系中调控无机盐结晶工艺路线提供有效的指导意见。本文以自然界中广泛存在的两种不同类型的卤水体系,即盐湖卤水DOM(SLDOM)和油田卤水DOM(OFDOM)为研究对象,采用溶解性有机碳(dissolved organic carbon,DOC)分析、光谱学分析和平行因子分析等手段对DOM的含量、分子量分布特征、光谱学结构和光降解行为开展了研究。DOC和荧光分析表明SLDOM和OFDOM的DOC含量和生物指数(BIX)值相似;与OFDOM相比,SLDOM的腐质化指数(HIX)值和高分子量组分(HMW)比例偏高;特别吸收光谱(SUVA254)和糖类化合物含量检测结果表明,SLDOM和OFDOM的HMW组分中含有的芳香类和糖类化合物所占比例比低分子量组分(LMW)高;三维荧光谱图分析(EEM)结果表明,SLDOM主要以腐殖质类物质为主,而OFDOM以蛋白质类组分为主。此外,DOM的荧光组分在不同分子量中的分布也存在明显差异:对于SLDOM,富里酸主要分布在HMW DOM中,而腐殖酸主要在LMW DOM中;对于OFDOM,芳香胺类蛋白组分主要分布在HMW DOM中,色氨酸和酪氨酸类蛋白组分主要分布在LMM DOM中。在光降解实验中,SLDOM和OFDOM的DOC含量随光照时间增加而逐渐减少,分别下降了29.32%和15.11%。进一步的分析表明,光照过程中两种卤水中糖类化合物均减少,小分子量的DOM优先分解。此外,在光照过程中SLDOM芳香类化合物增加,腐质化程度基本不变;OFDOM芳香类化合物减少,腐质化程度增加。EEM平行因子分析(PARAFAC)结果表明,SLDOM荧光组分在光降解过程中荧光强度增加,而OFDOM荧光强度减少。  相似文献   

16.
近岸沉积物再悬浮期间所释放溶解有机物的荧光特征   总被引:9,自引:0,他引:9  
对采自厦门湾九龙江人海河口的4个沉积物样品进行了室内再悬浮模拟实验,利用荧光激发-发射矩阵光谱(EEMs)研究了再悬浮过程中从沉积物中释放出的有色溶解有机物(CDOM)的荧光特征,同时通过与相应站位沉积物间隙水和底层水的对比分析,探讨了河口近岸海域的沉积物再悬浮作用作为水体中溶解有机物来源之一的可能性.结果表明,对给定站位,CDOM相对荧光强度和溶解有机碳(DOC)含量分布变化非常一致,均为间隙水最高,再悬浮次之,底层水最低;站位之间,底层水和再悬浮水样中CDOM相对荧光强度随盐度的降低而增加,从海端向河端增加的趋势明显.EEMs分析表明,各样品中均存在类腐殖质荧光与类蛋白质荧光团,且模拟实验也表明再悬浮作用可释放类腐殖质与类蛋白质荧光物质到底层水中,表明底质再悬浮将是近岸水体中CDOM的一个重要来源.与相应的底层水相比,间隙水的荧光峰(如峰A/C)的位置发生红移.再悬浮样品中EEMs的荧光团同时表现出相应底层水和间隙水的特征,但是荧光峰(峰A和峰C)的最大激发和发射波长更接近底层水中相应荧光团,与间隙水相比,则发生谱峰位置的蓝移.近海端样品中荧光峰M明显,随着盐度的降低,底层水和再悬浮水样的γ(M/C)值逐渐降低,且海源的峰M由海端向河端逐渐消失,表明峰M属于海洋自生来源.本研究区域DOM的荧光指数在1.61~1.93之间,表明近海端样品DOM主要为生物来源,而近河端样品DOM主要为陆源输入,或者为陆源与生物活动共同作用的结果.  相似文献   

17.
为了解包气带土壤DOM组成特征, 探索其对砷向地下水中迁移的影响, 对江汉平原高砷区土壤DOM进行了三维荧光光谱分析.结果表明DOM主要为类腐殖质成分, 芳香性官能团的减少导致荧光强度随包气带深度增加而变小, 局部深度荧光信号不规则变化指示非均质土壤剖面上DOM组分或主导官能团的变化.平行因子分析表明, DOM组分可更细致地分解为4种组分, 与微生物源的还原、氧化醌类和陆生的腐殖质富里酸类等相似.砷很可能在DOM腐殖质成分络合作用下与之随水体一起向下迁移, 砷的迁移也可能与微生物源的醌类作用过程有关.三维荧光光谱分析准确、快速地刻画了包气带土壤DOM的组分类别及空间变化特征, 初步揭示了DOM影响砷迁移的可能作用方式, 为进一步的地下水砷污染机制的研究提供了重要的参考信息.   相似文献   

18.
结合骆驼山煤矿不同含水层水文地质条件,通过检测分析各含水层水中天然有机质三维荧光光谱、总有机碳TOC和无机阴离子,研究了荧光性溶解有机物(Dissolved Organic Matter,DOM)的分布特征,结果表明:TOC和有机物在254 mm波长紫外光下的吸光度UV254整体上随着含水层层位加深而减少,奥灰水中TOC和UV254比其他水体分别低2~3.3倍和2.4~4.7倍;有机物芳香度也逐渐降低,紫外吸光度SUVA值在地表水、第四系水、砂岩水和奥灰水中分别为3.28、2.27、2.24和1.96。地表水和第四系水的三维荧光光谱(3DEEM)图存在5个指纹区域,随着地层层位的加深,水中有机物总体上呈递减趋势,最深层的奥灰水中没有酪氨酸、疏水性有机酸和海洋性腐植酸,而色氨酸的荧光强度比其他水体都高,表明地下水中有机物会反应生成色氨酸类有机物。奥灰水中TOC随着地下水流向逐渐减少(从0.27 mg/L减少至0.22 mg/L);有机物反应生成色氨酸,导致色氨酸FI随着水流而逐渐增加;根据3DEEM光谱图,骆驼山煤矿区奥灰水中有机物比较稳定,能够明显区分出其作为突水水源的特征离子。   相似文献   

19.
Hydrochemistry and well hydrographs are coupled to assess groundwater recharge in the regional catchment of Samail, Oman. The complex geology comprises three aquifers: limestones of the Hajar Supergroup (HSG) at the highlands of North Oman Mountains (NOM); fractured/weathered ophiolites; and Quaternary alluvium. Groundwater flows south–north from the NOM to the coast. Samples from groundwater wells and springs (38) were analyzed for isotopes and major ions. Corrected 14C dating reveals modern groundwater across the entire catchment, while 87Sr/86Sr (0.70810–0.70895) shows greater homogeneity. Groundwater in the upper catchment is depleted in 2H and 18O, indicating a high-altitude recharge source (NOM), and becomes enriched downstream, with a slope indicating an evaporation effect. The hydrographs of nested piezometers located in the upper, middle and lower catchment show different recharge responses between deep and shallower depths. Head difference in response to recharge is observed upstream, suggesting a lateral recharge mechanism, contrary to vertical recharge downstream reflected in identical recharge responses. The homogeneous 87Sr/86Sr ratio, head changes, downstream enrichment of 2H and 18O, and the presence of modern groundwater throughout the catchment suggest that groundwater recharge takes place across the entire catchment and that the three aquifers are hydraulically connected. The recharge estimated using the chloride mass balance method is in the range of 0–43% of the mean annual rainfall.  相似文献   

20.
鲁宗杰  邓娅敏  杜尧  沈帅  马腾 《地球科学》2017,42(5):771-782
水体中溶解性有机质(dissolved organic matter, DOM)是含水层中砷释放的主控因素之一.江汉平原河湖众多、沟渠广布,地表水体与浅层地下水的交互作用使得DOM的组分特征及其强度有显著差异.为查明江汉平原地下水中溶解性有机质在砷迁移转化过程中的作用,对江汉平原地表水和浅层地下水进行三维荧光光谱分析,使用平行因子分析法提取水体中有机质的分子组成、功能特点和荧光特征,并分析各组分相对含量与地下水中砷与铁的关联.江汉平原水体中DOM包括3种主要组分,组分C1、C2为类腐殖质,C2是生物降解过程中产生的小分子,C3为类蛋白物质.地下水DOM以类腐殖质组分C1、C2为主,地表水以类蛋白类物质C3和小分子腐殖质C2为主.高砷地下水中DOM以陆源为主,主要通过两种途径促进As的迁移转化:(1) DOM的腐殖质组分充当微生物群落的电子运输工具,促进微生物作用下的有机质氧化和铁氧化物的还原,并伴随As的释放及大量溶解性有机碳(dissolved organic carbon, DOC)和HCO3-的产生;(2) As以铁等金属阳离子为桥接物与腐殖质结合,通过形成As-Fe-DOM络合物,导致地下水中砷的迁移.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号