首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Réunion consists of two shield volcanoes, Piton des Neiges (3069 m) and Piton de la Fournaise (2631 m). The former is extinct and deeply eroded, so that its internal structure is clearly displayed. The deepest accessible part of the pile is a strongly zeolitised agglomerate (Cirque Agglomerate) made up mainly of olivine-basalt fragments. This is covered by a thick sequence of oceanite and olivine-basalt flows (Oceanite Series), which in turn is overlain by feldsparphyric basalts and lavas of intermediate composition (Differentiated Series). An intricate plexus of intrusions, ranging in composition from picrite to quartz-syenite, is exposed in the core of the volcano. Piton de la Fournaise is still active, and is producing oceanites and olivine-basalts generally similar in character to the Oceanite Series lavas of Piton des Neiges. New chemical data on the « primitive » basalts of both volcanoes are presented, and a brief comparison is made with the Hawaiian tholeiites. It is concluded that the Réunion « primitive » basalts are best described as transitional between tholeiitic and alkaline.  相似文献   

2.
The Piton des Neiges volcano on Reunion Island represents a unique example of an oceanic volcano where the extreme development of amphitheatre-headed valley erosion has led to the formation of three large cirques. They are so large that the island's volcano-structural and petrological history can be traced from its emergence to the latest stages of its sub-aerial evolution (> 2.1 m.y. to 22,000 years ago).The various magmatic series of the Piton des Neiges are, moreover, abundantly invaded by hydrothermal mineralization. It is this post-magmatic feature, represented by the hydrothermal alteration of the series, which is examined here.Mineralogical studies (X-ray, microprobe, scanning electron microscope) reveal a large number of hydrothermal species. Of these, zeolites are the most common and five are described here for the first time in Reunion (gonnardite, levynite, erionite, garronite, herschelite).Six hydrothermal facies characteristic of weak metamorphism are defined: chabazitephillipsite, natrolite-thomsonite, analcime-thomsonite, laumontite-thomsonite, albiteprehnite and prehnite-pumpellyite. The paleo-temperatures covered by these facies range from 0 to 380°C.On the basis of these data and supporting field observations, three main hydrothermal phases were determined and fitted into the known chronostratigraphy. These three phases have succeeded one another over the last two million years in the Piton des Neiges massif. The extent and mineralogical facies of each phase can be related to the volcanotectonic structures. This sequence has been directly linked to the geological evolution of the massif. The progressive restriction with time of the hydrothermal manifestations to the present Piton des Neiges occurred alongside the focusing of volcanism centralized on this same relief. An attempt is made to reconstruct the island's hydrothermal history.  相似文献   

3.
Réunion is a volcanic edifice whose origin is related to a hot spot in the Indian Ocean. Only 3% of its volume is emergent. Many geological and geophysical studies were carried out on Réunion Island during the 1980's but few of them allow study of the internal structure of the edifice. Several gravity surveys have been carried out on the island since 1976 and we have compiled the available data set. The lack of data on the western side of the island led us to conduct a regional survey in 1993 to obtain a more homogeneous distribution of the stations. Computation of Bouguer anomalies for different correction densities accounts for the variable density of the rocks constituting the edifice and provides a distribution of gravity anomalies interpreted as dense bodies of intrusive rocks inside the edifice. Two very large intrusive complexes can be unambiguously recognised: one beneath Piton des Neiges and one beneath the Grand Brûlé area. Both have been penetrated by geothermal exploration drill holes and the first is also known from outcrop observations. 2.5D simple models were constructed to reveal the geometry and extent of the buried intrusives. They are deeply rooted, extending several kilometres below sea level, and extensive (20–25 km long and 10–13 km wide for the Piton des Neiges complex, 12–15 km long and some kilometres wide for the Grand Brûlé complex). The development of such complexes implies that the activity of the two volcanic centres was long lasting and remained stable while the volcanoes were growing. The Grand Brûlé complex has been interpreted as relics of an old volcano named Alizés Volcano. The interpretation of the gravity maps suggests the presence of a ridge of dense rocks to the North of the axis joining the centres of Piton des Neiges and Piton de la Fournaise volcanoes. By analogy with the other structures, 2.5D models show that this structure would culminate between 0 and 1 km below sea level and be 15 km wide. This complex induces a maximum anomaly in Takamaka Valley and we thus propose to name it Takamaka Volcano. No geological evidence of the nature of these dense rocks is available but the ridge coincides with structures revealed by magnetic and seismic data. Interpretation of the Bouguer anomaly maps suggests that the inner gravity structure of Piton de la Fournaise is not characterised by the presence of a voluminous dense body but probably by more restricted concentrations of dense rocks. Some structures can be recognised: along the present NE and SE rift zones and in the previous central part of Piton de la Fournaise to the West of the present summit. The recent eastward migration of the centre of activity of Piton de la Fournaise accounts for the lack of a large positive anomaly beneath the active craters.  相似文献   

4.
In order to establish a general chronology of the volcanic evolution and to determine the temporal succession of the structural units, potassium-argon measurements were made on 15 samples selected as a function of their stratigraphical position on Piton de la Fournaise volcano.The rocks of Réunion Island are essentially oceanic and basaltic lavas of two shield volcanoes: the central, now extinct Piton des Neiges and the more recent, still active, Piton de la Fournaise. Piton de la Fournaise volcano is generally thought to have been developed unconformably on the southeastern flank of the Piton des Neiges volcano. Previous studies have shown four successive phases and three calderas in the construction of Piton de la Fournaise.The subaerial basaltic shield-building lavas of Piton de la Fournaise appear to be older than previously thought: at least 530,000 y. old instead of 360,000 years. In terms of their duration and erupted volumes, the four successive phases are not equivalent. The duration of the first two phases is 240,000 years (from 530,000 to 290,000 y. B.P.) and 155,000 years (from about 220,000 to 65,000 y. B.P.). The duration of the third phase is less than 60,000 years and the fourth phase may actually be an episode of the third. The two volcanoes, Piton des Neiges and Piton de la Fournaise, were active simultaneously for at least 500,000 years. The evolution of Réunion Island appears to be consistent with activity along a developing rift. The evolution of Piton de la Fournaise is mainly linked with the structural development of the shield and to large-scale slumpings due to instability of the slope.  相似文献   

5.
Four volcano-structural stages have accompanied the building of Piton des Neiges: 1) Emergent growth stage of the island. The major eruptive system is a rift zone trending N 120°, associated with dextral strike-slip faults trending N 30° and en-echelon extensional fissures trending N 70°. Breccias and lava tubes produced by aerial and phreatomagmatic activity are injected with outward-dipping dike-swarms along ring fractures suggesting a mechanism analogous to cauldron subsidence. 2) Shield building stages of growth are related to fissures along the main rift zone and three minor rifts trending N 160°, N 45° and N 10°. The summit of the basaltic shield volcano is stretched and collapsed in a graben-like caldera depression along normal and antithetic faults. 3) Differentiated lavas are erupted during two stages separated by the opening of a new caldera corresponding to an explosive activity, a silicic cone-sheet system and a collapse structure. 4) Younger volcanic activity restricted to the inside caldera, has presumably emptied the underlying magma reservoir, building a central volcano collapsed along ring internal dip fractures. The relationships between magnetic anomalies and transform faults in the Mascarene basin and observed fissure and faults on Piton des Neiges suggest that volcanism would be structurally controlled. Active volcanism occurring possibly as a result of tension at the intersection of an northeast-southwest fracture zone with the paleorift axis (dated by the magnetic anomaly 27). Models illustrating the gradual evolution of Piton des Neiges would explain successive caldera collapses controlled by the size, the shape and the depth of the magma reservoir.  相似文献   

6.
New detailed swath bathymetry and backscatter data corroborate the existence of four large bulges on the submarine flanks of Reunion Island. These fan-shaped promontories are 20–25 km wide at the coastline and 70–150 km across the seafloor 40–50 km offshore. Their surfaces are characterized by a speckle sonar pattern, indicating the presence of large blocks up to several hundred meters across. Each bulge results from the superposition of multiple landslide deposits whose older ones are dissected and delimited by erosive channels as much as 200 m deep and 20 km long. The submarine flanks of Reunion Island are thus mostly built by accumulation of debris avalanche fans. Morphologic and geologic evidence define large subaerial source areas for these mass-wasting events. In particular, inferred headwalls of most landslides having affected the Piton des Neiges massif generally coincide with the boundaries of its cirques (Mafate, Salazie, and Cilaos), whereas recurrent landslides have resulted in the formation of large concentric amphitheatre structures through the Piton de la Fournaise massif. Thus, about 15 slide events accompanied growth of the Reunion Island shield since 2 Ma.Editorial responsibility: J. Stix  相似文献   

7.
Pb, Hf, Nd and Sr isotopes of basaltic lavas from the two Réunion Island volcanoes are reported in order to examine the origin of the sources feeding these volcanoes and to detect possible changes through time. Samples, chosen to cover the whole lifetime of the two volcanoes (from 2 Ma to present), yield a chemically restricted (compared to OIB lavas) but complex distribution. Réunion plume isotopic characteristics have been defined on the basis of the composition of uncontaminated shield-building lavas from the Piton de la Fournaise volcano. The average ?Nd, ?Hf, 87Sr/86Sr and 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb isotope ratios calculated for this component are + 4.4, + 9.1, 0.70411, 18.97, 15.59 and 39.03, respectively. In Pb–Pb isotope space, each volcano defines a distinct linear trend but slight variations are also detected within the various volcanic sequences. The Piton des Neiges volcano yields a distinct and significantly more scattered isotopic distribution than Piton de la Fournaise for both Pb, Hf and Nd isotope tracers. A principal component analysis of the Pb isotope data from Piton de la Fournaise reveals a major contribution of the C and EM-1 components (with a clear Dupal flavor) as main components for the modern Réunion plume. The same components have been identified for Piton des Neiges but with a stronger participation of a depleted mantle component and a weaker EM-1 contribution. The compositional change of the lavas erupted by the Piton des Neiges and Piton de la Fournaise volcanoes is attributed to the impingement of two small-scale blobs of plume material at the base of the Réunion lithosphere. Compared to other hot-spots worldwide, in particular Hawaii and Kerguelen, magmas beneath Réunion are generated from a considerably more homogeneous, compositionally more primitive plume higher in 206Pb. Although shallow-level contamination processes have been locally detected they did not alter significantly the composition of the plume magmas. This is tentatively attributed to mantle dynamics producing small, high-velocity blobs that ascend rapidly through the lithosphere, and to the lack of a well-developed magma chamber at depth in the lithosphere.  相似文献   

8.
This work presents the first exhaustive study of the entire surface of the Reunion Island volcanic system. The focus is on the submarine part, for which a compilation of all multibeam data collected during the last 20 years has been made. Different types of submarine features have been identified: a coastal shelf, debris avalanches and sedimentary deposits, erosion canyons, volcanic constructions near the coast, and seamounts offshore. Criteria have been defined to differentiate the types of surfaces and to establish their relative chronology where possible. Debris avalanche deposits are by far the most extensive and voluminous formations in the submarine domain. They have built four huge Submarine Bulges to the east, north, west, and south of the island. They form fans 20–30 km wide at the coastline and 100–150 km wide at their ends, 70–80 km offshore. They were built gradually by the superimposition and/or juxtaposition of products moved during landslide episodes, involving up to several hundred cubic kilometers of material. About 50 individual events deposits can be recognized at the surface. The landslides have recurrently dismantled Piton des Neiges, Les Alizés, and Piton de La Fournaise volcanoes since 2 Ma. About one third are interpreted as secondary landslides, affecting previously emplaced debris avalanche deposits. On land, landslide deposits are observed in the extensively eroded central area of Piton des Neiges and in its coastal areas. Analysis of the present-day topography and of geology allows us to identify presumed faults and scars of previous large landslides. The Submarine Bulges are dissected and bound by canyons up to 200 m deep and 40 km long, filled with coarse-grained sediments, and generally connected to streams onshore. A large zone of sedimentary accumulation exists to the north–east of the island. It covers a zone 20 km in width, extending up to 15 km offshore. Volcanic constructions are observed near the coast on both Piton des Neiges and Piton de la Fournaise volcanoes and are continuations of subaerial structures. Individual seamounts are present on the submarine flanks and the surrounding ocean floor. A few seem to be young volcanoes, but the majority are probably old, eroded seamounts. This study suggests a larger scale and frequency of mass-wasting events on Reunion Island compared to similar islands. The virtual absence of downward flexure of the lithosphere beneath the island probably contributes to this feature. The increased number of known flank–failure events has to be taken into consideration when assessing hazards from future landslides, in particular, the probability of landslide-generated tsunamis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Chemical data are presented for the basic lavas of the two volcanic shields, Piton des Neiges and Piton de la Fournaise, which comprise Reunion Island. In addition, data for cumulate xenoliths have been used to predict mineral/melt distribution coefficient values for the Reunion magmas.The younger volcanic shield, Piton de la Fournaise, comprises two lava sequences, the >0.5−0.2-m.y. B.P. Primary Shield lavas, and the <0.2-m.y. B.P. Caldera Series lavas. Fractional crystallization models for these lavas indicate that olivine is the major fractionating phase during the evolution from the parental basalt composition to the average basaltic liquid. Only during the evolution of the older, Primary Shield lavas has the common fractionation of an ol + cpx + plag + mt assemblage resulted in the eruption of hawaiitic, ankaramitic and feldspar-phyric lavas. The restriction of the Caldera Series liquids predominantly to olivine fractionation and the extensive cotectic fractionation during the evolution of the Primary Shield sequences is interpreted in terms of the maturity of the volcanic center. The younger stages of evolution involve high magma input into a well-developed feeder and reservoir system, thus maintaining the liquids above a cotectic surface. Whereas, during the evolution of the Primary Shield lavas, lower magma input rates into a less well-developed feeder system increased the probability of the fractionating liquid attaining a cotectic surface. Fractional crystallization accounts for all the chemical variation observed for the Piton de la Fournaise basaltic magmas. The analytical data are closely comparable to the rare earth element (REE) and trace element fractionation curves predicted by least-squares calculations, this supports the use of such models in quantitative evaluation of fractional crystallization.A preliminary survey of Sr isotope values indicates that the oldest (>2 m.y. B.P.) lava sequences of Piton des Neiges may be derived from a source which was isotopically distinct from that of the <2 m.y. B.P. lavas of both volcanic shields. These latter sequences are remarkably consistent in both isotopic and trace element abundance implying a homogeneous source material and an invariable partial melting process. Partial melting calculations indicate that the basaltic lavas have been derived by 5–10% melting of a garnet-poor peridotite (cpx/gt 9). Systematic differences in the light- and heavy-REE patterns between similar basaltic provinces are interpreted to be a result of variation in the nature of the phases buffering the entry of light- and/or heavy-REE into the melt during partial fusion.  相似文献   

10.
This structural study shows that the Piton de la Fournaise volcano was built over four periods separated by 3 calderas. Each stage, dated by K/Ar and CI4 data, and characterized by its own stratigraphy, intrusive system and collapses, is analysed in detail. The stratigraphical study shows lithological and petrological units within some of these stages. The lavas of Piton de la Fournaise are alkaline basalts ranging in composition from picrite to hawaiite. The feeder dikes systems are radial and converging to the volcanic paleocenters of each period. However, the majority of intrusions and surface cones are concentrated along rifts named « Reunion type » because of there wideness. The uplift of magma in these rift zones causes displacement and sumpling of the unsupported seaward flank of the volcano. Collapse structures with variable diameter, formed at different phases of the volcano history. Some are compared to calderas in relation to an intermediate magma chamber, others seem to be due to the bulge and strecht of the massif. The 3 calderas of great size (8–15 km) separating each stage are related to a lower and larger magmatic chamber. This geological study of Fournaise leads us to purpose an evolutive pattern of the volcano based on paleogeographical and paleostructural reconstitutions. The first Fournaise was built over a rift trending N 120 of the old neighbouring volcano of Piton des Neiges. The activity of this rift progressively decreased all through time with the development of a curved intrusive system where most eruptions took place. As in the Hawaiian rifts, the influence of gravitational stresses is invoked to explain the migration of the intrusive zones.  相似文献   

11.
A great sequence of hydrothermally altered and tectonically disturbed lavas and breccias is exposed in the erosional cirques of Piton des Neiges volcano, Réunion. These rocks are cut by intense swarms of minor intrusives and are overlain by a carapace of younger lavas which date back at least 2 m.y. The older lavas and breccias are believed to have been formed by submarine eruption of basalt magma during the pre-emergent growth stages of the volcano. It is suggested that their subsequent elevation to 2000 m. above sealevel is due to the thrusting of oceanic crust from the north-east, associated with movements along NE-SW fractures in the western Indian Ocean floor.  相似文献   

12.
Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines.Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors.To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called “reactivation of platform” with large-scale faulting and magmatism.Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then several experimental power stations using thermal water have been set up in Fengshun (Fungshun),  相似文献   

13.
230Th-238U age measurements were carried out on 18 samples of lava from Piton des Neiges. These lavas range from basalts to trachytes. The ages extend from 270,000 to 12,000 a B.P. and cover most of the period in which Differentiated Series magmas were erupted. New 14C ages on charcoal sampled in young pyroclastic deposits are also presented. The late-stage evolution of the volcano is discussed in the light of these new ages and a chronology of the explosive activity is given. The oldest pyroclastic flow (Ste. Suzanne) is more than 220,000 a; other pyroclastic units were emitted between 220,000 and 110,000 a. There were at least two episodes of caldera formation: the first episode is inferred to have occurred about 190,000 a ago; the last occurred between 190,000 and 110,000 a. Although the most recent lava activity was mainly concentrated on the eastern flank of the volcano and around the summit area, it also occurred, about 70,000 a ago, in the southwestern part of the massif. The youngest explosive activity (about 50,000 to 20,000 a) on the eastern flank of the volcano has now been dated by three different methods (14C and Th-U ages on block- and ash-flow tuffs, K-Ar ages on associated domes). Youthful explosive activity (about 35,000 to 12,000 a) on the western flank of the volcano is also demonstrated by 14C dating on charcoal and by a Th-U age of 12,000 a on a trachytic nuée ardente deposit. This last age indicates that activity may have persisted later than previously supposed and implies a high rate of erosion for the Cirque de Mafate.  相似文献   

14.
The aim of this work is to propose a general model of Piton de la Fournaise volcano using information from geological and geophysical studies. Firstly, we make a graphical compilation of all available geophysical information along a W–E profile. Secondly, we construct a geological section that integrates both the geophysical information and the geological information. The lithosphere beneath Piton de la Fournaise is not significantly flexed, and the crust is underlain by an underplating body, which might represent the deep magma reservoir for La Réunion volcanism. Piton de la Fournaise is a relatively thin volcano lying on a huge volcanic construction attributed mostly to Les Alizés volcano. Indeed, if the differentiated rocks observed at the bottom of the Rivière des Remparts are the top of Les Alizés volcano, the interface with Piton de La Fournaise may be located at about sea level beneath the summit area. The endogenous constructions (intrusive complexes) related to Les Alizés and Piton de la Fournaise volcanoes represent a large volume. The huge intrusive complex of Les Alizés volcano probably rests on the top of the oceanic crust and appears to have a buttressing effect for the present eastern volcano-tectonic activity of Piton de la Fournaise. The early Piton de la Fournaise edifice was built around a focus located beneath the Plaine des Sables area. The center subsequently moved 5–6?km eastward to its current location. The dense, high-velocity body beneath the Plaines des Sables and the western part of the Enclos probably corresponds to the hypovolcanic intrusive complex that developed before the volcanic center shifted to its present-day position. Magma reservoirs may have existed, and may still exist, as illustrated by the March 1998 crisis, at the mechanical and density interface between the oceanic crust and the Les Alizés edifice. Strong evidence also exists for the presence of a shallower magma reservoir located near sea level beneath the summit. The March 1998 pre-eruptive seismic pattern (location and upward migration) seems to be evidence for a transfer of magma between the two reservoirs. The dominant structural feature of the central zone is a collapse structure beneath the summit craters, above the inferred magma reservoir near sea level. The collapsed column constitutes a major mechanical heterogeneity and concentrates most of the seismic, intrusive, and hydrothermal activity because of its higher permeability and weaker mechanical strength.  相似文献   

15.
Arrival times of seismic waves from local earthquakes are inverted for both locating the source and defining the 3-D velocity heterogeneity of Piton de la Fournaise.The lateral heterogeneity of the 2632 m high edifice is resolved as a high-velocity plug, 1.5 km in diameter, surrounded by a low-velocity ring, which may be interpreted as due to the construction of Fournaise on the flank of the older volcano Piton des Neiges. Wave mode conversion detected on three-component seismograms provides evidence for boundaries of contrasted velocities.Pre-eruptive swarm earthquakes cluster in the high-velocity zone, under the Dolomieu summit crater. Low strength and cohesion of the surrounding material account for the lack of seismicity for the final 1–3 km radial flow of magma to the vents in Enclos Fouqué.Beneath the high-velocity plug the existence of a body with low velocity for P, and even for S, waves is well constrained. However, the walls and base are poorly defined because of the lack of deep earthquakes for sampling. The few earthquakes that are located in this depth region usually occur at a depth of around 1.5 km below sea level in the region of the cone. This can be considered providing the upper constraint on the lower limit of the aseismic part of the low-velocity body. The coincidence in time of their occurrence with the swarms above sea level and the eruptions suggests magmatic activation of the low-velocity aseismic volume 1.5 km below sea level under the high-velocity plug of the cone. Further down, the concentration of seismicity in two swarms, between 2 and 4 km, under the eastern flank does not allow the structure to be sampled effectively.  相似文献   

16.
An exhaustive analysis of 3000 macroscopic fractures encountered in the geothermal Hot Dry Rock borehole, EPS-1, located inside the Rhine graben (Soultz-sous-Forêts, France), was done on a continuous core section over a depth interval from 1420 to 2230 m: 97% of the macroscopic structures were successfully reorientated with a good degree of confidence by comparison between core and acoustic borehole imagery. Detailed structural analysis of the fracture population indicates that fractures are grouped in two principal fractures sets striking N005 and N170 °, and dipping 70 °W and 70 °E, respectively. This average attitude is closely related to the past tectonic rifting activity of the graben during the Tertiary, and is consistent with data obtained from nearby boreholes and from neighbouring crystalline outcrops. Fractures are distributed in clusters of hydrothermally altered and fractured zones. They constitute a complex network of fault strands dominated by N–S trends, except within some of the most fractured depth intervals (1650 m, 2170 m), where an E–W-striking fracture set occurs. The geometry of the pre-existing fracture system strikes in a direction nearly parallel to the maximum horizontal stress. In this favorable situation, hydraulic injections will tend both to reactivate natural fractures at low pressures, and to create a geothermal reservoir.  相似文献   

17.
The Ningdu basin, located in southern Jiangxi province of southwest China, is one of the Mesozoic basin groups which has exploration prospects for geothermal energy. A study on the detailed velocity structure of the Ningdu basin can provide important information for geothermal resource exploration. In this study, we deployed a dense seismic array in the Ningdu basin to investigate the 3D velocity structure and discuss implications for geothermal exploration and geological evolution. Based on the dense seismic array including 35 short-period (5 s-100 ?Hz) seismometers with an average interstation distance of ~5 ?km, Rayleigh surface wave dispersion curves were extracted from the continuous ambient noise data for surface wave tomographic inversion. Group velocity tomography was conducted and the 3D S-wave velocity structure was inverted by the neighborhood algorithm. The results revealed obvious low-velocity anomalies in the center of the basin, consistent with the low-velocity Cretaceous sedimentary rocks. The basement and basin-controlling fault can also be depicted by the S-wave velocity anomalies. The obvious seismic interface is about 2 ?km depth in the basin center and decreases to 700 ?m depth near the basin boundary, suggesting spatial thickness variations of the Cretaceous sediment. The fault features of the S-wave velocity profile coincide with the geological cognition of the western boundary basin-controlling fault, which may provide possible upwelling channels for geothermal fluid. This study suggests that seismic tomography with a dense array is an effective method and can play an important role in the detailed investigations of sedimentary basins.  相似文献   

18.
Piton de la Fournaise, on the island of La Réunion, and Kilauea volcano, on the island of Hawaii, are active, basaltic shield volcanoes growing on the flanks of much larger shield volcanoes in intraplate tectonic environments. Past studies have shown that the average rate of magma production and the chemistry of lavas are quite similar for both volcanoes. We propose a structural similarity — specifically, that periodic displacement of parts of the shields as huge landslide blocks is a common mode of growth. In each instance, the unstable blocks are within a rift-zone-bounded, unbuttressed flank of the shield. At Kilauea, well-documented landslide blocks form relatively surficial parts of a much larger rift-zone-bounded block; scarps of the Hilina fault system mark the headwalls of the active blocks. At Fournaise, Hilina-like slump blocks are also present along the unbuttressed east coast of the volcano. In addition, however, the existence of a set of faults nested around the present caldera and northeast and southeast rift zones suggests that past chapters in the history of Fournaise included the slumping of entire rift-zone-bounded blocks themselves. These nested faults become younger to the east southeast and apparently record one of the effects of a migration of the focus of volcanism in that direction. Repeated dilation along the present set of northeast and southeast rift zones, most recently exemplified by an eruption in 1977, suggests that the past history of rift-zone-bounded slumping will eventually be repeated. The record provided by the succession of slump blocks on Fournaise is apparently at a relatively detailed part of a migration of magmatic focus that has advanced at least 30 km to the east-southeast from neighboring Piton des Neiges, an extinct Pliocene to Pleistocene volcano.  相似文献   

19.
Based upon a re-interpretation of previous data and a new field campaign, a structural evolution is proposed for the early history of Piton de la Fournaise volcano from 500,000 to 50,000 years. Conceptually, it is shown that the formation of a caldera in which lava flows are contained inside the caldera depression, gives time for erosion to excavate deep canyons on the external slopes of the volcano, for example, the Rivière des Remparts, the Rivière Langevin and the Rivière de l'Est canyons on Piton de la Fournaise volcano. These canyons are infilled when lavas, filling the caldera and overflowing its rim, are able again to flow on the external slopes of the volcano. In the past, this excavating/infilling process has occurred twice following the formation of the Rivière des Remparts and Morne Langevin calderas. The formation of the third caldera, the Plaine des Sables caldera, was followed by the excavation of the current canyons. In addition to this process, two large landslides have been documented in the field. The first, which happened about 300,000 years ago, is apparently the first episode of the break up of Piton de la Fournaise volcano, predating the formation of the four large calderas. The second landslide, which occurred 150,000 years ago and is considered to be less extensive, has carried away the entire southern flank of the Rivière des Remparts caldera.  相似文献   

20.
Piton des Neiges (PN) Volcano on Reunion Island offers a rare opportunity to study deposits related to degradation processes in a deeply eroded oceanic shield volcano. Both the inner parts and flanks reveal a large amount of resedimented volcaniclastic material, including extensive debris avalanche deposits. PN litho–structural units, first studied by Upton and Wadsworth [1965, Philos. Trans. R. Soc. Lond., A 271, pp. 105–130], are re-examined. This review highlights the importance of long volcanic repose periods and erosion processes during PN history. volcaniclastic deposits have been studied in the field in order to evaluate the spatial and temporal distribution of the three main types of PN degradation processes. The deposits of these processes have been classified into: (1) talus, (2) mudflow and debris flow, and (3) debris avalanche. Lithology, frequency and estimated volumes of each deposit type imply that the structural evolution of PN can be considered in terms of the competition between the volcanic productivity and the degradation and erosion processes. The occurrence of huge catastrophic avalanches produced by flank failure is convincingly linked to the basaltic activity of PN, which implies a very low risk at present. On the contrary, mudflows and debris flows pose an important risk due to the high population density focussed around the basin outlets. Moreover, if smaller debris avalanches can occur in the cirques of PN, another major risk must be evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号