首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Estimation of coal power plant emissions is a vital step to visualise emission trends with respect to specific policy implementations and technological interventions so that their effectiveness in terms of emission reductions and ambient air quality improvement can be quantitatively assessed. However, research work concerning stack emission estimations specifically for coal power plants in India is limited. To bridge the present gap, we present a plant-specific multi-year and multi-parameter Coal Power Stack Emission Model. This model has been developed to explore current and historical annual stack emissions from a coal-based thermal power plant taking into account essential variables such as coal characteristics, process attributes and control equipment aspects, which can significantly influence the stack emissions. This study concentrates on development of Coal Power Stack Emission model and its application for the estimation of plant and year-specific emission factors and stack emissions for a coal-based power plant at Badarpur, New Delhi, for the period of 2000–2008. The validation of Coal Power Stack Emission model has also been successfully carried out by comparing the trends of percentage change in annual emission estimates and observed ambient air concentrations of total suspended particles, PM10 and sulphur dioxide at two nearby air quality monitoring stations, namely Siri Fort and Nizamuddin.  相似文献   

2.
The Singrauli region is known for fluoride contamination and its effect on human population. In this work the possible sources of fluoride contamination in Rihand reservoir water is constrained. They include slurry water, fly ash and coal samples of various thermal power plants, coal seams and granites of the region. Petrographic study depicted the presence of fluoride bearing minerals - flour apatite in pink granite. Preliminary scanning electron microscope studies revealed presence of fluorine peak in coal samples. The chemical analysis confirmed the presence of fluoride in fly ash (12.6 mg/kg), drain water (5.34 mg/l), soil (6.1 mg/kg), coal (3.1 mg/kg). They confirmed the source of fluoride from coal of thermal power plant which utilized coal from Singrauli coal seam (1.6 mg/kg). Further the Rihand reservoir water is also enriched by fluoride contaminant (upto 4.7 mg/l). This contaminates groundwater of the area as well. The contaminated water used for drinking and agriculture affects health of inhabitants in the area. It is concluded that the main source of fluoride contamination in the study area is due to coal burnt in thermal power plant and pink granite formation of the area, both anthropogenic and geogenic sources are implied.  相似文献   

3.
Uranium occurs naturally in groundwater and surface water. The objective of this study is to understand the causes for the occurrence of uranium and its spatio-temporal variation in groundwater in a part of Nalgonda district, Andhra Pradesh, south India. Uranium deposits occur in the southeastern part of this area. Groundwater samples were collected from 44 wells every two months from March 2008 to January 2009. The samples were analyzed for pH, ORP and uranium concentration. The uranium concentration in groundwater varies from 0.2 ppb to a maximum of 68 ppb with a mean of 18.5 ppb. About 21.6% of the samples were above the drinking water limit of 30 ppb set by USEPA. The uranium concentration varied with fluctuation in groundwater level, pH and ORP. Uranium concentration in groundwater changes depending on lithology, degree of weathering and rainfall recharge.  相似文献   

4.
The presence of arsenic (As) in groundwater and its effect on human health has become an issue of serious concern in recent years. The present study assessed the groundwater quality of the Bishnupur District, Manipur, with respect to drinking water standards. Higher concentrations of pH, iron and phosphate were observed at several locations. Phosphate and iron levels were highest in the pre-monsoon, followed by monsoon and post-monsoon seasons. The arsenic concentrations were highest during post-monsoon (1–200 μg L−1) as compared to pre-monsoon (1–108 μg L−1) and monsoon (2–99 μg L−1). Kwakta and Ngakhalawai show higher levels of arsenic concentration as compared to the prescribed World Health Organization (WHO) and Bureau of Indian Standards (BIS) norms. Arsenic showed a strong positive correlation with phosphate and negative correlation with sulphate, suggesting a partial influence of anthropogenic sources. The study suggests that the Bishnupur area has an arsenic contamination problem, which is expected to increase in the near future.  相似文献   

5.
Leaching and oxidation of high arsenic (As) host rocks tend to be induced by circulation of deep geothermal waters, which increase As concentration in shallow groundwater. The purpose of this study is to identify the mechanism of groundwater As contamination in relation to leaching and oxidation along the border between the South Minahasa and Bolaang Mongondow districts, North Sulawesi, Indonesia. This region contains Miocene sedimentary rock-hosted disseminated gold deposits associated with hydrothermal alteration in a fault zone. Abnormally high As concentrations were observed in hot and cold springs and in surrounding shallow groundwater for a total mineralization area of 8 × 10 km2. Two methods were adopted in this study: (1) microscopic and spectroscopic analyses of rock samples for mineral identification and (2) geostatistics for spatial modeling of As concentrations in groundwater. Jarosite was identified as the chief fill mineral in rock defects (cracks and pores). The presence of this mineral may indicate release of As into the environment, as can occur as an alteration product derived from oxidation and leaching of pyrite, As-rich pyrite or sulfide minerals by geothermal waters. Moreover, As concentrations in groundwater were estimated using geostatistics for spatial modeling. The co-kriging map identified local anomalies in groundwater As concentrations over the permissible limit (10 ppb). Such anomalies did not appear through ordinary kriging. Integration of the results indicates that As contamination in shallow groundwater probably is controlled by heterogeneous distributions of jarosite and variations in intensity and extent of hydrothermal activities.  相似文献   

6.
Groundwater arsenic survey in Cachar and Karimganj districts of Barak Valley, Assam shows that people in these two districts are drinking arsenic-contaminated (max. 350 μg/l) groundwater. 66% of tubewells in these two districts have arsenic concentration above the WHO guideline value of 10 μg/l and 26% tubewells have arsenic above 50 μg/l, the Indian standards for arsenic in drinking water. 90% of installed tubewells in these two districts are shallow depth (14–40 m). Shallow tubewells were installed in Holocene Newer Alluvium aquifers are characterised by grey to black coloured fine grained organic rich argillaceous sediments and are mostly arsenic contamination in groundwater. Plio-Pleistocene Older Alluvium aquifers composed of shale, ferruginous sandstone, mottle clay, pebble and boulder beds, which at higher location or with thin cover of Newer Alluvium sediments are safe in arsenic contamination in groundwater. 91% of tubewell water samples show significantly higher concentrations of iron beyond its permissible limit of 1 mg/l. The iron content in these two districts varies from 0.5 to as much as 48 mg/l. Most of the arsenic contaminated villages of Cachar and Karimganj districts are located in entrenched channels and flood plains of Newer Alluvium sediments in Barak-Surma-Langai Rivers system. However, deeper tubewells (>60 m) in Plio-Pleistocene Older Alluvium aquifers would be a better option for arsenic-safe groundwater. The arsenic in groundwater is getting released from associated Holocene sediments which were likely deposited from the surrounding Tertiary Barail hill range.  相似文献   

7.
More than 2.5 billion people on the globe rely on groundwater for drinking and providing high-quality drinking water has become one of the major challenges of human society.Although groundwater is considered as safe,high concentrations of heavy metals like arsenic(As) can pose potential human health concerns and hazards.In this paper, we present an overview of the current scenario of arsenic contamination of groundwater in various countries across the globe with an emphasis on the Indian Peninsula.With several newly affected regions reported during the last decade, a significant increase has been observed in the global scenario of arsenic contamination.It is estimated that nearly 108 countries are affected by arsenic contamination in groundwater(with concentration beyond maximum permissible limit of 10 ppb recommended by the World Health Organization.The highest among these are from Asia(32) and Europe(31), followed by regions like Africa(20), North America(11), South America(9) and Australia(4).More than 230 million people worldwide, which include 180 million from Asia, are at risk of arsenic poisoning.Southeast Asian countries, Bangladesh, India, Pakistan,China, Nepal, Vietnam, Burma, Thailand and Cambodia, are the most affected.In India, 20 states and 4 Union Territories have so far been affected by arsenic contamination in groundwater.An attempt to evaluate the correlation between arsenic poisoning and aquifer type shows that the groundwater extracted from unconsolidated sedimentary aquifers, particularly those which are located within the younger orogenic belts of the world, are the worst affected.More than 90% of arsenic pollution is inferred to be geogenic.We infer that alluvial sediments are the major source for arsenic contamination in groundwater and we postulate a strong relation with plate tectonic processes, mountain building, erosion and sedimentation.Prolonged consumption of arsenic-contaminated groundwater results in severe health issues like skin, lung, kidney and bladder cancer; coronary heart disease;bronchiectasis; hyperkeratosis and arsenicosis.Since the major source of arsenic in groundwater is of geogenic origin, the extend of pollution is complexly linked with aquifer geometry and aquifer properties of a region.Therefore, remedial measures are to be designed based on the source mineral, climatological and hydrogeological scenario of the affected region.The corrective measures available include removing arsenic from groundwater using filters, exploring deeper or alternative aquifers, treatment of the aquifer itself, dilution method by artificial recharge to groundwater, conjunctive use, and installation of nano-filter, among other procedures.The vast majority of people affected by arsenic contamination in the Asian countries are the poor who live in rural areas and are not aware of the arsenic poisoning and treatment protocols.Therefore, creating awareness and providing proper medical care to these people remain as a great challenge.Very few policy actions have been taken at international level over the past decade to reduce arsenic contamination in drinking water, with the goal of preventing toxic impacts on human health.We recommend that that United Nations Environment Programme(UNEP) and WHO should take stock of the global arsenic poisoning situation and launch a global drive to create awareness among people/medical professionals/health workers/administrators on this global concern.  相似文献   

8.
The aim of this study was to investigate the geochemical characteristics of arsenic in the solid material samples of the Mae Moh Mine and also the Mae Moh power plants fly ash samples were systematically studied. Arsenic concentration in overburden, coal lignite and fly ash are variable (depending on source of solid samples). The results show that the strata of overburden, J seam of coal and fly ash are rich in arsenic and also relatively soluble from fly ash; it occurs as a surface precipitate on the ash particle. The experimental study on speciation in the strata also indicates that the arsenic speciation of Mae Moh solid samples are mainly arsenate, As (V), which are approaching exceed 80%. Arsenic content in the main of overburden is in the range of 14.3–888.8 mg/kg, which is larger than the arsenic background soil values. Solid materials polluted wastewater; the arsenic speciation was present predominantly as arsenate in the surface water of a series of Mae Moh solid materials basins.  相似文献   

9.
Manipur State, with a population of 2.29 million, is one of the seven North-Eastern Hill states in India, and is severely affected by groundwater arsenic contamination. Manipur has nine districts out of which four are in Manipur Valley where 59% of the people live on 10% of the land. These four districts are all arsenic contaminated. We analysed water samples from 628 tubewells for arsenic out of an expected total 2,014 tubewells in the Manipur Valley. Analyzed samples, 63.3%, contained >10 μg/l of arsenic, 23.2% between 10 and 50 μg/l, and 40% >50 μg/l. The percentages of contaminated wells above 10 and 50 μg/l are higher than in other arsenic affected states and countries of the Ganga–Meghna–Brahmaputra (GMB) Plain. Unlike on the GMB plains, in Manipur there is no systematic relation between arsenic concentration and the depth of tubewells. The source of arsenic in GMB Plain is sediments derived from the Himalaya and surrounding mountains. North-Eastern Hill states were formed at late phase of Himalaya orogeny, and so it will be found in the future that groundwater arsenic contamination in the valleys of other North-Eastern Hill states. Arsenic contaminated aquifers in Manipur Valley are mainly located within the Newer Alluvium. In Manipur, the high rainfall and abundant surface water resources can be exploited to avoid repeating the mass arsenic poisoning that has occurred on the GMB plains.  相似文献   

10.

The paper comprises new analytical data on the nature and occurrence of gold in solid pyrobitumen, closely associated with the main gold-bearing sulfide arsenic ores of the Bakyrchik gold deposit (Kazakhstan), related to post-collisional magmatic-hydrothermal origin. Gold mineralization of the deposit occurs mainly in the form of an “invisible” type of gold in the structures of arsenian pyrite and arsenopyrite, and the form of gold-organic compounds of pyrobitumen in carbonaceous-terrigenous sequences of Carboniferous formation. Microscopic and electron microscopic analysis, Raman and FT-Infrared analysis, mineralogical and three-step sequential extraction analysis (NH2OH·HCl, H2O2, HNO3 + HCl) has been carried out using 9 ore samples (from 3 different types of ores) for a comprehensive study of pyrobitumen and sulfide arsenic ores focusing mainly on organic matter. The sequentially extracted precious metal content of pyrobitumen reaches up to 7 ppm gold and other metals like Ag 4 ppm, Pt 31 ppb, and Pd 26 ppb, forming metal–organic compounds, while arsenic sulfide minerals incorporate 11 ppm gold, 39 ppm Ag, 0.49 ppm Pt. The enrichment of gold associating with organic matter and sulfide ore minerals was confirmed in this study. Organic matter was active in the migration of gold and the capture of gold by pyrobitumen. Moreover, the reductive organic matter agent released gold, most likely for the sulfide arsenic ore minerals. Pyrobitumen was a decisive factor in the concentration, transportation, and preservation of gold in the deposit.

  相似文献   

11.
The Yangbajain geothermal field located in central Tibet is characterized by the highest measured reservoir temperature among all hydrothermal systems in China. The high-temperature geothermal fluid extracted from Yangbajain has been used for electricity generation for over 30 years. The geothermal wastewater generated by the Yangbajain power plants, with arsenic (As) concentrations up to 3.18 mg/L, drains directly into the Zangbo River, the major surface water at Yangbajain, which has elevated arsenic concentrations in the segments downstream of wastewater discharges. However, along the flow direction of the river, the arsenic concentration decreases sharply. Further inspection reveals that the concentrations of weakly bound arsenic, strongly adsorbed arsenic and total arsenic in riverbed sediment were affected by the drainage of geothermal wastewater, indicating that the sediment serves as a sink for geothermal arsenic. A logarithmic relationship between the integrated attenuation coefficients (IAC) for three river segments and the corresponding adsorption distribution coefficients of riverbed sediment samples also suggests that besides the dilution of geothermal arsenic in the Zangbo River, natural attenuation of arsenic may be caused by sorption to riverbed sediment, thereby reducing its health threat to local residents using the Zangbo River as a drinking water source.  相似文献   

12.
The study region covers 1,650 km2 of the Mid-Ganga Basin in Bihar, experiencing intensive groundwater draft. The area forms a part of the Gangetic alluvial plain where high incidence of arsenic groundwater contamination (>50 μg/l) has recently been detected. Seventy-seven groundwater samples have been collected and analysed for major ions, iron and arsenic. Arsenic contamination (max 620 μg/l) is confined in hand pump zones (15–35 m) within the newer alluvium deposited during Middle Holocene to Recent age. The older alluvial aquifers are arsenic-safe and recorded maximum concentration as 9 μg/l. Out of 12 hydrochemical facies identified, four have been found arsenic-affected: Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3 and Mg–Ca–HCO3. The geochemical evolution of groundwater, as investigated by graphical interpretation and statistical techniques (correlation, principal component analysis) revealed that dissolution of detrital calcite, dolomite and infiltration of rainwater are the major processes shaping the groundwater chemistry in the newer alluvium. Arsenic and iron showed strong positive correlation. Rainfall infiltration, carrying organic matter from recently accumulated biomass from this flood-prone belt, plays a critical role in releasing arsenic and iron present in the sediments. Geochemical evolution of groundwater in older alluvium follows a different path, where cation-exchange has been identified as a significant process.  相似文献   

13.
High Arsenic (As) concentrations have been reported in superficial water in the Yamuna flood plains (YFP), Delhi, which is being extensively used for agriculture. The concentration of As in some common vegetables such as Solanum lycopersicum (tomato), Abelmoschus esculentus (lady’s finger), Solanum melongena (brinjal), Lagenaria siceraria (bottle gourd), Raphanus sativus (radish), Zea mays (corn), and Luffa acutangula (ridge gourd) has been studied in this work. The range of As concentrations (dry weight) varies from 0.6 to 2.52 mg/kg with the highest accumulation of 2.52 mg/kg in radish followed by tomato (2.36 mg/kg). The order of As concentration in the decreasing order is R. sativus > S. lycopersicum > Z. mays > L. acutangula > L. siceraria > S. melongena > A. esculentus. Thus, As accumulation is the highest in roots and the lowest in least juicy fruits. The daily dietary intake of As through the consumption of various vegetables was also calculated. Though the mean As concentration was the highest in radish (2.52 mg/kg) but the highest amount of As is being consumed through tomato (0.383 mg/day), which is nearly three times the World Health Organization’s provisional maximum tolerable daily intake limit of 0.126 mg/day for a 60 kg person. High concentration of As in vegetables grown in YFP, Delhi is being reported here. This high contamination is primarily due to the presence of As in irrigation water having its source from coal-based thermal power plants in the vicinity of the area. If not checked properly, it will pose a serious health risk to people living in these densely populated areas surrounding YFP.  相似文献   

14.
One hundred twenty-two samples of Jurassic and Paleogene brown coals and 1254 peat samples from the south-eastern region of the Western-Siberian platform were analyzed for gold by the neutron-activation method. Mean content of Au in Jurassic coals is 30 ± 8 ppb, in Paleogene coals is 10.6 ± 4.8 ppb, and in peat is 6 ± 1.4 ppb. Concentrations of gold as high as 4.4 ppm were found in coal ash and 0.48 ppm in the peat ash. Coal beds with anomalous gold contents were found at Western-Siberian platform for the first time.Negative correlation between gold and ash yield in coals and peat and highest gold concentrations were found in low-ash and ultra-low-ash coals and peat. Primarily this is due to gold's association with organic matter.For the investigation of mode of occurrence of Au in peat the bitumen, water-soluble and high-hydrolyzed substances, humic acids, cellulose and lignin were extracted from it. It was determined that in peat about 95% of gold is combined with organic matter. Forty to sixty percent of Au is contained in humic acids and the same content is in lignin. Bitumens, water-soluble and high-hydrolyzed substances contain no more than 1% of general gold quantity in peat.The conditions of accumulation of high gold concentrations were considered. The authors suggest that Au accumulation in peat and brown coals and the connection between anomalous gold concentrations and organic matter in low-ash coals and peat can explain a biogenic–sorption mechanism of Au accumulation. The sources of formation of Au high concentration were various Au–Sb, Au–Ag Au–As–Sb deposits that are abundant in the Southern and South-Eastern peripheries of the coal basin.  相似文献   

15.
Nickel-, copper-, and platinum group element (PGE)-enriched sulphide mineralization in large igneous provinces has attracted numerous PGE studies. However, the distribution and behavior of PGEs as well as the history of sulphide saturation are less clear in oxide-dominated mineralization. Platinum group elements of oxide-bearing layered mafic intrusions from the Emeishan large igneous province are examined in this study. Samples collected from the Baima and Taihe oxide-bearing layered gabbroic intrusions reveal contrasting results. The samples from Baima gabbroic rocks have low total PGE abundances (ΣPGE < 4 ppb) whereas the Taihe gabbroic rocks, on average, have more than double the concentration but are variable ranging from ΣPGE < 2 ppb to ΣPGE ∼300 ppb. The Baima gabbro is platinum-subgroup PGE (PPGE = Rh, Pt and Pd) enriched and iridium-subgroup PGE (IPGE = Os, Ir and Ru) depleted, with a distinct positive Ru anomaly on a primitive mantle normalized multi-element plot. The Taihe gabbros are also PPGE enriched but with negative Ru and Pd anomalies on a primitive mantle normalized multi-element plot. The PGE concentrations of Baima rocks are indicative of fractionation of a relatively evolved, mafic, S-undersaturated parental magma that was affected by earlier sulphide segregation. In contrast, the Taihe rocks record evidence of both S-saturated and S-undersaturated conditions and that the parental magma was likely emplaced very close to S-saturation. Comparisons of the platinum group element contents in the Emeishan flood basalts and the Emeishan oxide-bearing intrusions suggest that the PGE budget in a magma is not controlled by magma series (high-Ti vs. low-Ti), but very much by crustal contamination. The unlikelihood of substantial crustal contamination in the Taihe magma allowed the magma to remain S-undersaturated for a longer duration. PGE and sulphide mineralization was not identified in the Taihe intrusion but the presence of one PGE-enriched sample (Pt + Pd = ∼300 ppb) suggests that the parental magma likely did not experience sulphide segregation and is a potential target for further prospecting.  相似文献   

16.
High As contents in groundwater were found in Rayen area and chosen for a detailed hydrogeochemical study. A total of 121 groundwater samples were collected from existing tube wells in the study areas in January 2012 and analyzed. Hydrogeochemical data of samples suggested that the groundwater is mostly Na–Cl type; also nearly 25.62 % of samples have arsenic concentrations above WHO permissible value (10 μg/l) for drinking waters with maximum concentration of aqueous arsenic up to 25,000 μg/l. The reducing conditions prevailing in the area and high arsenic concentration correlated with high bicarbonate and pH. Results show that arsenic is released into groundwater by two major phenomena: (1) through reduction of arsenic-bearing iron oxides/oxyhydroxides and Fe may be precipitated as iron sulfide when anoxic conditions prevail in the aquifer sediments and (2) transferring of As into the water system during water–acidic volcanic rock interactions.  相似文献   

17.
The study area covers an about 100 km2 of the middle Ganga plain in Uttar Pradesh, experiencing intensive groundwater extraction. In order to recognize the arsenic contamination zones of the Varanasi environs, sixty eight groundwater samples have been collected and analyzed for major ions, iron and arsenic. Twenty one sediment samples in the four boreholes were also collected to deduce the source of arsenic in the groundwater. The preliminary survey reports for the first time indicates that part of rural and urban population of Varanasi environs are drinking and using for irrigation arsenic contaminated water mostly from hand tube wells (<70 m). The study area is a part of middle Ganga plain which comprises of Quaternary alluvium consists of an alternating succession of clay, clayey silt and sand deposits. The high arsenic content in groundwater samples of the study area indicates that 14% of the samples are exceeding the 10 μg/l and 5% of the samples are exceeding 50 μg/l. The high arsenic concentration is found in the villages such as Bahadurpur, Madhiya, Bhojpur, Ratanpur, Semra, Jalilpur, Kateswar, Bhakhara and Kodupur (eastern side of Ganga River in Varanasi), situated within the newer alluvium deposited during middle Holocene to Recent. The older alluvial aquifers situated in the western side of the Ganga River are arsenic safe (maximum As concentration of 9 μg/l) though the borehole sediments shows high arsenic (mean 5.2 mg/kg) and iron content (529 mg/kg) in shallow and medium depths. This may be due to lack of reducing conditions (i.e organic content) for releasing arsenic into the groundwater. Rainfall infiltration, organic matter from recently accumulated biomass from flood prone belt in the newer alluvium plays a critical role in releasing arsenic and iron present in sediments. The main mechanism for the release of As into groundwater in the Holocene sandy aquifer sediments of Varanasi environs may be due to the reductive dissolution of Fe oxyhydroxide present as coatings on sand grains as well as altered mica content. The high societal problems of this study will help to mitigate the severity of arsenic contamination by providing alternate drinking water resources to the people in middle Ganga plain and to arrange permanent arsenic safe drinking water source by the authorities.  相似文献   

18.
Spatial distribution and temporal trends studies were carried out at Katedan Industrial Development Area (KIDA) near Hyderabad, capital of Andhra Pradesh state, India under Indo-Norwegian Institutional Cooperation Program, to find out the extent of contamination in streams and lake sediments from the discharge of industrial effluents. Stream and lake sediment samples were collected from the five lakes in the study area and connecting water streams. The samples were analyzed by XRF spectrometer for toxic elements. The studies reveal that the stream sediments with in the KIDA and the impounded Noor Mohammed Lake down stream have high concentration of some of the toxic elements like chromium, nickel, lead, arsenic, zinc etc. The geology of the area indicates that the study area consists of residual soil of acidic rocks, which are predominantly of Archaean gneisses and granites having low to medium concentrations of chromium and nickel. The source of these high concentration of elements like lead 2,300 mg/kg, copper 1,500 mg/kg, arsenic 500 mg/kg, chromium 500 mg/kg etc. cannot be derived from the surrounding acidic rocks and may be attributed to the industrial effluents released in the ditches and random dumping of hazardous solid waste. It was observed that the metal concentrations increased in the streams during the dry season (pre-monsoon period). After the monsoon rains, the metal concentrations in the streams were reduced by half which may be due to dilution. The eroded sediments are deposited in the lake where very high concentrations were encountered. Overflowing of the lake will spread the contamination further downstream. The lake sediments will remain as a major source of contamination by desorption to the water phase regardless of what happens to the effluent discharge in the KIDA. However, some samples showed enrichment of lead, arsenic and nickel during post-monsoon, which were collected near the dumpsite due to the leaching of toxic elements from the dump site to the lakes. Some of the toxic elements like nickel and copper have not shown any dilution but have increased after the rains, which could be due to the leaching of arsenic from the dumpsite to the lake along with rainwater. Geochemical maps showing the distribution of heavy/trace elements in streams and lakes are prepared and presented in this paper. Effect of toxic elements on the health of the residents in the surrounding residential areas is also discussed.  相似文献   

19.
 The release of metals during weathering has been studied in order to assess its geochemical controls and possible effects on environmental health in Bangladesh. A total of 27 soil samples and 7 surface water samples were collected from four locations covering three major regions in the country. Results show that weathering effects are a strong function of climatic conditions. Surface waters are typically enriched in Al, Mg, Ca, Na, K, As, Ba, Cr, Cu, Ni, Pb and Zn. The solubility of metal ions, organometallic complexes, co-precipitation or co-existence with the colloidal clay fraction are the main processes that lead to metal enrichment in lake and reservoir water. Aluminium concentrations exceed World Health Organization (WHO) drinking-water standards in all samples, and in two regions, arsenic concentrations also significantly exceed WHO standards. The elevated levels of As indicate that arsenic contamination of water supplies in Bangladesh is not confined to groundwater. Received: 4 June 1999 · Accepted: 17 August 1999  相似文献   

20.
Despite widespread evidence for atmospheric dust deposition prior to the Quaternary, quantitative rate data remains sparse. As dust influences both climate and biological productivity, the absence of quantitative dust data limits the comprehensiveness of models of pre-Quaternary climate and biogeochemical cycles. Here, we propose that inorganic matter contained in coal primarily records atmospheric dust deposition. To test this, we use the average concentration of inorganic matter in Permian coal to map global patterns and deposition rates of atmospheric dust over Pangea. The dust accumulation rate is calculated assuming Permian peat carbon accumulation rates in temperate climates were similar to Holocene rates and accounting for the loss of carbon during coalification. Coal-derived rates vary from 0.02 to 25 g m 2 year 1, values that fall within the present-day global range. A well-constrained East–West pattern of dust deposition corresponding to expected palaeoclimate gradients extends across Gondwana with maximum dust deposition rates occurring close to arid regions. A similar pattern is partially defined over the northern hemisphere. Patterns are consistent with the presence of two large global dust plumes centred on the tropics. The spatial patterns of dust deposition were also compared to dust cycle simulations for the Permian made with the Community Climate System Model version 3 (CCSM3). Key differences between the simulations and the coal data are the lack of evidence for an Antarctic dust source, higher than expected dust deposition over N and S China and greater dust deposition rates over Western Gondwana. This new coal-based dust accumulation rate data expands the pre-Neogene quantitative record of atmospheric dust and can help to inform and validate models of global circulation and biogeochemical cycles over the past 350 Myr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号