首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
煤层含气性是决定煤层气勘探开发的重要参数,煤层气甲烷碳同位素能有效反映煤层气的赋存条件。根据煤层气井实测含气量数据,剖析了山西沁水盆地煤层含气量分布特征,建立了煤层含气量与煤层埋深、地质构造之间的相关关系和模型,探讨了煤层甲烷碳同位素分布特征及其对含气性分布的指示作用。研究表明:西山区块2号煤层平均含气量6.87 m3/t,8号煤层平均含气量8.4 m3/t,9号煤层平均含气量7.6 m3/t,煤层含气量主要受煤层埋深和构造形态的影响。研究区8号煤层甲烷碳同位素为–65.33‰~–40.94‰,平均–45.88‰,煤层含气量与甲烷碳同位素之间成正相关关系,随着含气量的增加,甲烷碳同位素也逐渐变重。煤层甲烷碳同位素主要受控于煤层气解吸–扩散–运移效应和地下水动力作用等。   相似文献   

2.
沁水盆地南部柿庄南区块煤层气地质特征   总被引:1,自引:0,他引:1  
以国家科技重大专项《山西沁水盆地南部煤层气直井开发示范工程》成果为依据,以以往的地质勘查及研究成果为参考,对沁水盆地南部柿庄南区块煤层气地质特征进行分析。分析认为南部柿庄南区块构造简单,煤变质程度高、煤层厚度大、埋深适中而且分布稳定,有利于煤层气生成,煤层吸附能力较强,储层渗透率较好,煤层气保存条件好,是沁南煤层气勘探开发最有利区块之一。开发利用该区块煤层气资源,可有效改善地区能源结构、加快区域经济发展,降低后期煤炭开发风险,具有非常可观的社会及经济效益。  相似文献   

3.
采用含气梯度法、煤级-灰分-含气性类比法及地质条件综合分析法,对山西南部推断区和预测区上古生界主煤层的含气性进行了预测:沁水盆地深部预测区西翼的武乡-安泽一带含气性较好,具有进一步勘探的前景;盆地西南部的沁水-翼城一带含气性较差,基本上失去了煤层气勘探的价值;临汾盆地含气性可能较好,但煤层埋藏较深,勘探开发困难。   相似文献   

4.
沁水盆地长治区块现处于开发初期,煤层气资源条件较好,产能潜力大。依据现有地质资料和测试数据,对该区块煤层气赋存特征及控气因素进行了分析,认为区内煤储层吸附、解吸能力强,吸附时间短,但储层渗透率低。区块内含气量自东北到西南逐渐降低,主要受控于埋深、顶板厚度和地质构造条件,表现为:随埋深和顶板泥岩厚度的增加含气量降低;正断层附近煤层含气量随远离断层面而升高,同一断层上盘较下盘更利于煤层气封存,向斜轴部含气量高于翼部,背斜构造则反之。  相似文献   

5.
煤的吸附能力是决定煤层含气量大小和煤层气开发潜力的重要储层参数。通过对沁南-夏店区块二叠系山西组3号煤层72个煤样进行等温吸附实验,剖析了3号煤层煤的吸附性能,建立了基于Langmuir方程的煤层含气量预测方法,揭示了研究区3号煤层煤的吸附性能及含气量分布。研究结果表明,沁南-夏店区块3号煤层主要为贫煤和无烟煤,煤的空气干燥基Langmuir体积为18.15~34.75 m3/t,平均29.36 m3/t;Langmuir压力为1.47~2.71 MPa,平均2.03 MPa;煤储层压力梯度0.11~1.06 MPa/hm,平均0.49 MPa/hm,煤储层压力随着煤层埋藏深度的增加而增高;煤层含气饱和度整体呈欠饱和状态。通过预测模型预测研究区3号煤层含气量2.87~24.63 m3/t,平均13.78 m3/t,且随着埋藏深度的增加而增高,其含气量相对沁水盆地南部偏低。煤储层含气量分布主要受控于本区煤层生气、储气和保存等因素。   相似文献   

6.
沁水盆地安泽区块煤层形成后经历多期构造运动,致使煤体结构遭受不同程度的破坏,煤体结构的分布规律制约本区煤层气的开发。基于此,利用该区的测井资料,提出测井判识煤体结构的方法,将研究区单井3号煤层结构分为Ⅰ、Ⅱ、Ⅲ三种煤体结构类型组合,对比分析3号煤层不同煤体结构煤空间展布与煤层含气量、煤层埋深的相关性。结果表明:安泽地区碎裂-碎粒煤较原生结构煤、糜棱煤发育,南部碎裂-碎粒煤发育较厚,北部以糜棱煤发育相对较薄;煤层含气量随埋深有明显增加的趋势,但在同等埋深条件下,煤层含气量受不同煤体结构展布的影响较大,南部碎裂-碎粒煤发育较厚煤层吸附量大,出现煤层含气量的高值区。   相似文献   

7.
根据沁水煤层气甲烷碳同位素的组成与分布特征 ,从煤层甲烷碳同位素在煤层气解吸—扩散—运移中的分馏效应 ,结合水文地质条件和构造条件 ,讨论了煤层甲烷碳同位素在煤层气勘探中的地质意义 ,认为沁水煤层气δ13C1值不仅总体上较高 ,而且随埋深增大而增高 ,说明沁水煤层气存在因煤层抬升而卸压所导致的煤层气解吸—扩散—运移效应 ,从而形成了该区甲烷碳同位素在平面上的分带现象。  相似文献   

8.
张建博  陶明信 《沉积学报》2000,18(4):611-614
根据沁水煤层气甲烷碳同位素的组成与分布特征,从煤层甲烷碳同位素在煤层气解吸-扩散-运移中的分馏效应,结合水文地质条件和构造条件,讨论了煤层甲烷碳同位素在煤层气勘探中的地质意义,认为沁水煤层气δ13C1值不仅总体上较高,而且随埋深增大而增高,说明沁水煤层气存在因煤层抬升而卸压所导致的煤层气解吸-扩散-运移效应,从而形成了该区甲烷碳同位素在平面上的分带现象。  相似文献   

9.
采用含气梯度法,煤级-灰分-含气性类比法及地质条件综合分析法,对山西西部推断区和预测区上古生界主煤层的含气性进行了预测;沁水盆地深部预测区西翼的武乡-安泽-带含气性较好,具有进一步勘探的前景;盆地西南部的沁水-翼城-带含气性较差,基本上失去了煤层气勘探的价值;临汾盆地含气性可能较好,但煤层埋藏较深,勘探开发困难。  相似文献   

10.
勘探实践发现沁水盆地潘庄、潘河区块及鄂尔多斯盆地保德区块煤层气井累计产量远远大于原始计算的地质探明储量。该现象对体积法计算的煤层气资源储量提出了挑战,同时为全面“上储增效”提出了新的方向。在采用体积法计算煤层气储量时,含气面积、含气量的准确性以及煤岩密度与煤层厚度的非均质特征都会对储量参数的准确性产生影响。其中,由于取心测试过程的局限性,煤层含气量的数值常存在一定的误差。本次研究基于鄂尔多斯盆地和沁水盆地的煤层气井生产数据并结合等温吸附实验结果提出了计算储层临界最低含气量的方法(临界最低法)。将校正后的临界最低含气量与实测含气量(基于美国矿业局直接法(USBM)和史密斯-威廉姆斯法)进行对比,并剖析含气量测试损失量的地质控制机理。结果表明:在中低至中高煤阶(Ro=0.7%~2.1%)范围,临界最低法计算的含气量总体高于其它两种方法计算的含气量,临界最低法在中低煤阶至中高煤阶具有较强的适应性。在高煤阶(Ro=2.1%~2.8%)范围,临界最低法计算结果可以与取心测试结果相互验证。总体上,煤层含气量测试(USBM法)损失量受不同煤阶煤岩孔裂隙发育特征、煤体结构、含气饱和度及逸散时间的影响。含气量测试损失量与孔渗发育特征、构造煤发育程度、含气饱和度及逸散时间呈正相关。此外,针对未取心的煤层气井,可以采用钻井岩屑测试等温吸附参数进而利用临界最低法求取储层含气量,为煤层气进一步的勘探开发提供数据基础。  相似文献   

11.
区域构造热事件对高煤阶煤层气富集的控制   总被引:3,自引:0,他引:3  
中国高煤阶含煤盆地经历了多期构造活动影响,使高煤阶煤层气藏具有其独特的复杂性。通过对沁水盆地高煤阶煤层气藏的实例进行剖析,从煤层的热演化程度,煤系地层的方解石脉、石英脉体中的包裹体温度和压力,磷灰石、锆石的裂变径迹古地温分析,中生代火成岩的同位素年龄,岩浆活动产生的大地热流值方面证明了构造热事件的存在。结合煤岩的热解实验分析发现,构造热事件过程中产生的高温、高压的环境促使煤层的生烃,提高了煤层的吸附能力,使沁水盆地煤层的含气量比美国同期形成的黑勇士盆地煤层含气量高5~13m3/t,岩浆侵入产生的温度变化是沁水盆地煤层气含气量欠饱和的原因之一,高温高压的地层环境改善了煤层的物性。  相似文献   

12.
沁水盆地煤层气成藏主控因素与成藏模式分析   总被引:2,自引:0,他引:2  
沁水盆地石炭-二叠系煤层厚度大、分布稳定、演化程度高,具有良好的煤层气勘探潜力,是目前国内首个成功商业化开发的煤层气盆地。基于研究区已有地质成果,对影响沁水盆地煤层气富集成藏的主控地质因素与成藏模式进行分析,认为构造运动、水动力条件、煤层埋深、煤岩组成及热演化程度是控制沁水盆地煤层气成藏的主要地质因素,高镜质组含量、高热演化程度、弱水动力条件和较大的埋深是煤层气成藏的有利条件,向斜是煤层气富集成藏的有利部位。  相似文献   

13.
郑庄区块煤层气赋存特征及控气地质因素   总被引:2,自引:0,他引:2  
沁水盆地南部郑庄区块煤层气资源条件良好,勘探开发潜力大。通过对郑庄区块煤层气地质条件和储层条件的深入分析,认为本区煤层气赋存条件良好,含气量较高,储层吸附/解吸能力较好,但储层渗透率相对较低;郑庄区块煤层气藏主要受3类地质因素控制:构造对煤层气含量和赋存规律具有明显的控制作用;水文地质条件对煤层气具明显的水力封闭作用,该区地下水径流较弱,为典型的等势面扇状缓流型,有利于区块内煤层气的富集;燕山晚期岩浆活动和高异常地热场对煤层热演化和煤层气生成有显著的控制作用。   相似文献   

14.
沁水煤层气田高阶煤解吸气碳同位素分馏特征及其意义   总被引:3,自引:0,他引:3  
沁水盆地是我国煤层气勘探开发的重要有利区,沁水煤层气田位于盆地东南部。对采自沁水煤层气田两口井的煤开展了罐解吸实验。结果表明,该地区煤层气解吸速率很快,96 h后解吸气量都达到了总解吸气量的60%~85%,720 h后解吸过程基本结束;解吸气量大,平均在18 m3/t以上。煤层气解吸过程中甲烷发生碳同位素分馏,δ13C1值变化与解吸率呈良好的线性关系,参考这种正相关关系曲线,定期监视煤层气降压排采过程中甲烷δ13C1值的变化情况,可以大致推测出该地区煤层气解吸率,从而预测煤层气的采出程度。跟踪测试沁水煤层气田A1和A1-3井在试采过程的甲烷δ13C1变化情况,推测现在采出的煤层气可能主要是煤层裂隙中以游离形式存在的煤层气,表明该区煤层气稳产性较好,资源前景广阔。  相似文献   

15.
沁水盆地煤层气同位素特征及成因类型初探   总被引:4,自引:0,他引:4  
沁水盆地是我国煤炭的重要基地之一, 也是煤层气勘探开发的重要有利区块。在整合前人研究成果的基础上, 对沁水盆地煤层气成藏史和烃类气体 (主要以甲烷气体)C、H同位素的“指纹”信息进行对比, 初步探讨了煤层气形成的烃源岩性质和热成熟度; 对沁水盆地煤层气是否具有多源复合特征进行了分析, 并在此基础上对该盆地煤层气成因类型提出了新的认识。   相似文献   

16.
通过煤层气成藏模拟实验,研究了水动力条件对煤层气成藏的控制作用。实验结果表明:在强烈的水动力交替作用下,煤层气藏中的甲烷碳同位素由-29.50‰变为-36.60‰,且变轻过程中具有阶段性特征;甲烷体积分数由96.35%减小为12.42%;二氧化碳由0.75%变为0.68%,随后增大到1.13%;氮气体积分数由2.9%变为86.45%。这些变化一方面说明煤层气成藏过程的复杂性,另一方面表明强烈的水动力作用对煤层气成藏会造成不利影响。通过对以高煤阶为典型特点的沁水盆地南部水动力条件的分析,认为径流强度与煤层含气量之间呈负相关性,弱径流区有可能成为高煤阶煤层气富集的高产区。   相似文献   

17.
沁水盆地煤与煤层气地质条件   总被引:1,自引:0,他引:1  
冀涛  杨德义 《中国煤田地质》2007,19(5):28-30,61
沁水盆地位于山西省东南部,含煤面积29 500km^2,煤炭储量5 100亿t,为特大型含煤盆地。通过分析沁水盆地煤层埋深、厚度、构造特征、顶底板岩性及煤储层特征,认为该区主要煤层含气量高,煤层割理、裂隙发育,煤变质程度高,煤层厚度大、埋深适度,构造简单,煤层气资源量大,产出条件优良,是我国煤层气勘探开发最有利的地区之一。  相似文献   

18.
煤层含气量对煤层气开发有直接影响。柿庄南区块煤层含气量相对较高,但开发过程中存在较多低效井,开展含气量三维地质建模有助于厘定含气性对煤层气井产量的影响。以沁水盆地柿庄南区块3号煤层为研究对象,运用多元回归分析方法依次建立基于埋深、灰分、挥发分及固定碳含量等参数的含气量预测公式及基于测井数据的煤岩工业分析各组分含量预测公式,最终得出柿庄南区块基于测井数据的含气量预测模型并应用于全区,与实测值对比表明预测结果较好。运用Petrel软件基于预测结果构建含气量模型,探讨3号煤层含气量三维分布特征。研究表明,区内3号煤层含气量介于11~20 m3/t,其主控因素为煤层埋深和构造部位。该模型对研究区煤层气井低产因素厘定和煤层气开发生产具有指导意义。移动阅读   相似文献   

19.
沁水盆地胡底井田地质特征及煤层气赋存规律   总被引:3,自引:0,他引:3  
沁水盆地由于其良好的储气条件,多年来一直是国内外煤层气学者的研究对象。胡底井田位于樊庄区块的中西部,通过对其地质特征和煤储层的各项特征研究,探讨了区内煤层气的赋存规律及影响因素,得到以下认识:本区构造简单,煤层较厚且变质程度高,吸附能力强,含气量大,封存条件好,煤层气资源蕴藏丰富;受褶曲构造影响,在井田中部含气量较低,由中部向西含气量逐渐增高,向东含气量先增大后减小,南北方向也呈现起伏性变化;煤层气含量与煤层埋深基本呈正相关变化;煤层埋藏史、水文地质及煤层封盖等条件使本区形成了良好的煤层气富集区。  相似文献   

20.
通过对沁水盆地安泽区块煤层气地质条件和储层条件的深入分析,探讨了该区煤层气的富集规律及主要影响因素。研究发现,煤的岩石学特征、构造、顶底板岩性是影响煤层气富集的主要因素。总体上,安泽区块煤储层含气量受煤阶影响,表现为:煤的变质程度越高,吸附能力整体增强,含气量增大。局部区域,煤层气含量受煤层埋深、断层、褶皱及煤层顶底板岩性等综合因素的影响。在构造平缓带,煤层气含量随埋深增大而增大;在构造活动带,正断层上升盘含气量明显低于下降盘含气量,断层对煤层气的逸散作用明显。此外,泥岩顶底板封盖较砂岩顶底板封盖能力强。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号