首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 765 毫秒
1.
冬季河流封冻后,水体表面出现固体冰盖,使得过水断面的湿周增大,水力半径减小,从而导致了水流结构和紊动水体对河底附加切应力的改变。进行冰盖下水流纵向紊动特性试验研究对进一步探讨冰盖下的紊流冲刷具有一定的指导意义。本文借助室内模拟试验,对不同流速、水深、冰盖糙率等条件下的冰盖下水流垂线流速及紊动强度进行了观测与分析,得出了以下结论:在水流条件基本一致的情况下,冰盖下水流纵向紊动强度比明流大;且随冰盖糙率的增大,冰盖下水流的纵向紊动强度逐渐增大。  相似文献   

2.
天然感潮河道水流紊动特性分析   总被引:5,自引:0,他引:5  
采用多谱勒三相流速仪,在长江口徐六泾水文观测断面分别进行了涨潮、落潮时中泓与近岸垂线的流速观测,根据这些观测资料,对天然感潮河段潮流紊动的周期、频率、概率密度函数等进行了定量的数学描述,并对时均流速、紊动强度、雷诺应力等沿垂线分布进行了分析计算。  相似文献   

3.
复式河道滩地植物对水流紊动结构影响的试验研究   总被引:9,自引:0,他引:9  
利用室内变坡水槽,精细模拟了复式河道滩地不同植物对漫滩水流的干扰作用,并借助声学多普勒测速仪(ADV)观测了不同垂线、不同测点的瞬时流速,计算了水质点三维相对紊动强度,分析了其变化特征,探讨了滩地不同种类植物对水流内部结构的影响。试验发现,滩地植物改变了复式河道水流内部结构,导致植物带内近床面处各个方向水流相对紊动强度明显减弱,横向因植物丛内阻力和流速变化引起的滩区壅水导致横比降增加,主槽相对紊动强度显著增强;植物淹没条件下水流相对紊动强度沿水深的分布明显存在转折点,此位置可以认为是滩地植物对水流影响的“第二边界”。  相似文献   

4.
生态空心块体是一种兼有调控水流与生态修复功能的工程结构物,在海堤、丁坝等近海工程中被广泛应用。通过室内水槽试验,设计多种来水来沙工况,研究生态空心块体与柔性植被共同影响下的水沙动力特性,重点探究生态空心块体内的水沙动力效应。结果表明:生态空心块体组成的坝体结构缓流效果显著,坝体内外侧水流流速分布差异明显,坝体内部的水流流速远小于外侧水流流速;生态空心块体内紊动强度、雷诺应力在空心块体上方出现拐点,空心块体内紊动强度、雷诺应力均小于外侧;近底层水流在受壁面阻水作用下产生回流,易出现小范围旋涡;由于生态空心块体内水流流速、紊动强度的减小,内部悬沙浓度由表至底逐渐增大;柔性植被的冠层部分对水流减速、促淤效果最为明显,柔性植被会减缓前后相邻侧空心块体的水流流速,增大悬沙浓度。  相似文献   

5.
采用激光诱导荧光技术(laser induced fluorescence-LIF)对同向流动环境中具有不同喷口高宽比(aspect ratio-AR)、射流比(velocity ratio-VR)的椭圆喷口射流与圆喷口射流的标量物质浓度场进行可视化和定量化研究。系统研究了同向流动环境中椭圆喷口射流浓度场的各种掺混稀释特性:中心线稀释度,射流扩展宽度,下游不同断面上的时均浓度分布和紊动强度分布。采用紊流理论和量纲分析方法对实验数据进行分析讨论,给出同向流动环境中受动量控制的椭圆射流稀释度预报方法,提出该类椭圆射流稀释度预报方法归并到已有圆射流系列预报模型中的实现途径,比较了具有相同出口超值动量Me0的圆射流与椭圆射流的沿程稀释度变化。由于椭圆射流比圆射流具有更高的稀释度增长比率,说明椭圆射流比圆射流具有更好的掺混稀释效果。  相似文献   

6.
基于紊流随机理论的航槽三维流动数学模型   总被引:1,自引:0,他引:1  
根据窦国仁的紊流随机理论,建立了一种模拟河口海岸水域中航槽三维流动的数学模型。采用控制体积法导出三维偏微分方程的离散格式;将水压力分解为动水压力和静水压力,用Patankar和Spalding提出的压力校正法求解动水压力,通过求解水位控制方程来得到自由表面;紊流模型采用安国仁提出的紊流随机理论,克服了k—ε模型中采用各向同性紊动粘滞系数的不足,而k—ε模型可作为紊流随机理论的一个特例。该模型计算了各种不同挖深比,各种航槽与水流交角的航槽流速分布,利用该模型计算得到的挖槽中的流速分布与水槽及水池试验资料相吻合。利用该模型可为开敞水域中开挖航槽的选择提供依据。  相似文献   

7.
钱塘江涌潮具有动力作用强和流速变化快等特点。涌潮水流紊动复杂,流速的垂向分布和紊动强度息息相关。通过涌潮水流实测资料的分析可以发现,涌潮作用下流速垂向分布在底部和上层存在差异。为研究涌潮作用下流速垂向分布的特征,应用基于非结构网格下有限体积法模型FVCOM对钱塘江涌潮河段水流运动进行三维数值模拟。考虑到涌潮紊动作用复杂且对流速的垂向分布起着重要影响,采用不同的湍流模式对涌潮传播过程中水流的运动特征开展研究。通过与涌潮河段实测资料的验证,复演涌潮到达前后水流运动特征,给出涌潮水流湍动能的变化过程。研究成果有助于深入认识涌潮水流紊动特征和流速的分布规律,为涌潮作用下物质输运的研究提供基础。  相似文献   

8.
针对管线绕流剪切层区的水流特征,利用射流分析的类似方法,通过简化控制方程,从理论上探讨了剪切层区的时均速度分布规律。物理试验中采用ADV测速仪对回流区流场进行了测量,对各流区流速和紊动强度变化趋势进行了讨论,并将试验结果与理论推导进行对比,二者基本吻合,为进一步研究海底管线防护措施提供了理论依据。  相似文献   

9.
空心块体具有良好的阻水和促淤功能,近年来被广泛用于生态修复工程。本文结合水槽试验及Flow-3D数值模拟,分析了开敞型和半封闭型空心块体的阻水效应和泥沙淤积特性。结果表明:空心块体的开孔率对内部水流流速、紊动强度起主导作用,开孔率较小的半开敞型空心块体减速、制紊效果更强;开敞型和半封闭型空心块体近底层悬沙浓度分别增大56%和75%,两者均有利于促进泥沙在块体内部淤积,近底层水流紊动越强,泥沙淤积形态差异越大;空心块体所营造的低流速、泥沙微淤、内外连通的水沙环境是大型底栖生物的生境需求,半封闭型空心块体内部的低紊动水流结构更有利于大型底栖生物的栖息、繁衍。  相似文献   

10.
通过改进海床阻力系数和设置合适的垂向紊动背景系数,应用FVCOM模型成功再现了钱塘江河口强涌潮的演进过程。海床阻力系数采用Manning公式形式,取值随水深、地形在0.000 2~0.002 9之间变化;垂向紊动背景系数取1×10-4 m2/s。模拟结果较好地复演了涌潮到达时刻、涌潮高度及涌潮抬升过程、涌潮水平流速以及其沿垂向分布规律,表明阻力系数及垂向紊动背景系数等关键参数的改进和处理是合理的,可应用于涌潮三维潮流运动特征模拟。  相似文献   

11.
《Coastal Engineering》2006,53(5-6):441-462
The structure of large-scale turbulence under a broken solitary wave on a 1 in 50 plane slope was studied. Three-component velocity measurements were taken at different heights above a smooth bed in the middle surf zone using an acoustic Doppler velocimeter. The measured data showed that turbulent velocity components were well correlated in the middle part of the water column. The velocity correlations could be produced by an oblique vortex similar to the obliquely descending eddy observed previously by other investigators. The vertical distributions of the relative values of the components of the Reynolds stress tensor showed that the structure of turbulence evolved continuously between the free surface and the bottom. The evolution was related to transition from two-dimensional to three-dimensional flow structures and the effect of the solid bottom on flow structures. Time histories of measured turbulent kinetic energy and turbulence stresses showed episodic turbulent events near the free surface but more sporadic turbulence in the lower layer. Large or intense turbulent events were found to have short duration and time lag relative to the wave crest point. These events also maintained good correlations between the turbulence velocity components close to the bottom.Instantaneous turbulent velocity fields were measured near the bottom at the same cross-shore location by using a stereoscopic particle image velocimetry system. These measurements showed that the near-bed flow field was characterized by large-scale, coherent flow structures that were the sources of most of the turbulent kinetic energy and turbulence stresses. The types of organized flow structures observed included vortices and downbursts of turbulence descending directly from above, lateral spreading of turbulent fluid along the bed, and formation of vortices in shear layers between fluid streams. A common feature of the organized flow structures near the bed was the large turbulence velocities in the longitudinal and transverse directions, which reflected the influence of a solid bottom on the breaking-wave-generated turbulence arriving at the bed.  相似文献   

12.
A boundary layer flow under spilling breakers in a laboratory surf zone with a smooth bottom is investigated using a high resolution particle image velocimetry (PIV) technique. By cross-correlating the images, oscillatory velocity profiles within a viscous boundary layer of O(1) mm in thickness are resolved over ten points. Using PIV measurements taken for an earlier study and the present study, flow properties in the wave bottom boundary layer (WBBL) over the laboratory surf zone are obtained, including the mean velocities, turbulence intensity, Reynolds stresses, and intermittency of coherent events. The data are then used to estimate the boundary layer thickness, phase variation, and bottom shear stress. It is found that while the time averaged mass transport inside the WBBL is onshore in the outer surf zone, it changes to offshore in the inner surf zone. The zero Eulerian mass transport occurs at h/hb ≈ 0.92 in the outer surf zone. The maximum overshoot of the streamwise velocity and boundary layer thickness are not constant across the surf zone. The bottom shear stress is mainly contributed by the viscous stress through mean velocity gradient while the Reynolds stress is small and negligible. The turbulence level is higher in the inner surf zone than that in the outer surf zone, although only a slight increase of turbulent intensity is observed inside the WBBL from the outer surf zone to the inner surf zone. The variation of phase inside and outside the WBBL was examined through the spatial velocity distribution. It is found the phase lead is not constant and its value is significantly smaller than previous thought. By analyzing instantaneous velocity and vorticity fields, a remarkable number of intermittent turbulent eddies are observed to penetrate into the WBBL in the inner surf zone. The size of the observed large eddies is about 0.11 to 0.16 times the local water depth. Its energy spectra follow the − 5/3 slope in the inertial subrange and decay exponentially in the dissipation subrange.  相似文献   

13.
The characteristics of wave and turbulence velocities created by a broad-banded irregular wave train breaking on a 1:35 slope were studied in a laboratory wave flume. Water particle velocities were measured simultaneously with wave elevations at three cross-shore locations inside the surf zone. The measured data were separated into low-frequency and high-frequency time series using a Fourier filter. The measured velocities were further separated into organized wave-induced velocities and turbulent velocity fluctuations by ensemble averaging. The broad-banded irregular waves created a wide surf zone that was dominated by spilling type breakers. A wave-by-wave analysis was carried out to obtain the probability distributions of individual wave heights, wave periods, peak wave velocities, and wave-averaged turbulent kinetic energies and Reynolds stresses. The results showed that there was a consistent increase in the kurtosis of the vertical velocity distribution from the surface to the bottom. The abnormally large downward velocities were produced by plunging breakers that occurred from time to time. It was found that the mean of the highest one-third wave-averaged turbulent kinetic energy values in the irregular waves was about the same as the time-averaged turbulent kinetic energy in a regular wave with similar deep-water wave height to wavelength ratio. It was also found that the correlation coefficient of the Reynolds stress varied strongly with turbulence intensity. Good correlation between u′ and w′ was obtained when the turbulence intensity was high; the correlation coefficient was about 0.3–0.5. The Reynolds stress correlation coefficient decreased over a wave cycle, and with distance from the water surface. Under the irregular breaking waves, turbulent kinetic energy was transported downward and landward by turbulent velocity fluctuations and wave velocities, and upward and seaward by the undertow. The undertow in the irregular waves was similar in vertical structure but lower in magnitude than in regular waves, and the horizontal velocity profiles under the low-frequency waves were approximately uniform.  相似文献   

14.
Flow characteristics of the hull wake behind a container ship model were investigated under different loading conditions (design and ballast loadings) by employing the particle image velocimetry (PIV) technique. Measurements were made at four transverse locations and two longitudinal planes for three Reynolds numbers (Re) (=U0Lpp/ν, where U0 is the freestream velocity, Lpp is the length between two perpendiculars of the ship model and ν is the kinematic viscosity) of 5.08×105, 7.60×105, and 1.01×106. It was observed that symmetric, large-scale, longitudinal counter-rotating vortices (with respect to centerline) of nearly the same strength were formed in the near wake. For the ballast-loading condition, the vortices appear at propeller plane below the propeller-boss. The vortex center exhibits a significant upward shift near the propeller-boss as the Reynolds number increase, and as the flow moves downstream. Under the design-loading condition, the vortices first appear at a further downstream location than that for the ballast-loading condition above the propeller-boss. This difference in the flow structure can significantly change the inflow conditions to the propeller blades, such as the streamwise mean velocity profiles and turbulence intensity distributions at the propeller plane. In particular, under the ballast-loading condition, asymmetric inflow may weaken the propulsion and cavitation performance of the marine propeller.  相似文献   

15.
《Coastal Engineering》2005,52(3):257-283
Vortex generation and evolution due to flow separation around a submerged rectangular obstacle under incoming cnoidal waves is investigated both experimentally and numerically. The Particle Image Velocimetry (PIV) technique is used in the measurement. Based on the PIV data, a characteristic velocity, phrased in terms of incoming wave height, phase speed, dimension of the obstacle, and a local Reynolds number are proposed to describe the intensity of vortex. The numerical model, which solves the two dimensional Reynolds Averaged Navier Stokes (RANS) equations, is used to further study the effects of wave period on the vortex intensity. Measurements for the mean and turbulent velocity fields further indicate that the time history of the intensity of fluid turbulence is closely related to that of the vortex intensity.  相似文献   

16.
A three-dimensional Large Eddy Simulation (LES) model is used to simulate oscillating tidal boundary layers and test previous results obtained from one-dimensional boundary layer models and turbulence measurements in tidal channels. The LES model produces low-order turbulence statistics in agreement with the semi-analytic theory and observations. It shows a logarithmic layer in the mean velocity profile and a linear distribution of Reynolds stress with water depth. However, the eddy viscosity profile predicted by the LES model is not parabolic but better matches a parabolic profile modified by wake effect observed in the outer part of depth-limited steady boundary layers. Low-order turbulence statistics can be scaled by the instantaneous friction velocity at the bottom boundary. Although turbulence intensities in three directions fluctuate over a tidal cycle, their normalized values are in good agreement with those determined from laboratory experiments of steady open-channel flows. The LES model confirms that tidal turbulence is in quasi-equilibrium. However, it also demonstrates the importance of flow acceleration/deceleration term in the depth-integrated momentum balance for the mean flow. Phase differences are found between flows at different heights above the bottom boundary.  相似文献   

17.
《Coastal Engineering》1999,36(2):111-146
A numerical model based upon a low Reynolds number turbulence closure is proposed to study Reynolds number variation in reciprocating oscillatory boundary layers. The model is used to compute the boundary layer for flow regimes ranging from smooth laminar to rough turbulent. Criteria for fully developed turbulence are derived for walls of the smooth and rough types. In particular, a new criterion to identify the rough turbulent regime is determined based on the time-averaged turbulence intensity. The reliability of the present model is assessed through comparisons with detailed experimental data collected by other investigators. The model globally improves upon standard high Reynolds number closures. Variation through the wave cycle of the main flow variables (ensemble-averaged velocity, shear stress, turbulent kinetic energy) is remarkably well-predicted for smooth walls. Predictions are satisfactory for rough walls as well. Yet, the turbulence level in the rough turbulent regime is overpredicted in the vicinity of the bed.  相似文献   

18.
《Coastal Engineering》2006,53(1):99-113
This paper illustrates the results of experimental research carried out in the wave flume of the Water Engineering and Chemistry Department laboratory of Bari Technical University (Italy) and based on the analysis of three different regular waves breaking on a sloping bottom. The investigation refers particularly to the surf zone, with the aim to develop two themes: the study of velocity and Reynolds shear stress distributions in the shoaling zone of a regular wave field and the study of turbulence in the breaking region, observing that these two aspects greatly influence many coastal processes, such as undertow currents, sediment transport and action on maritime structures.  相似文献   

19.
The submerged 3D turbulent jet flow behavior around a pile on a rigid bed and on a scoured bed was studied experimentally and numerically. ADV was used to obtain the jet velocity distributions and Realizable k–ε turbulence model was used for the prediction of flow field around a pile. The jet flow area was three-dimensional and thus numerical model was a three-dimensional model. The numerical results were used to predict the velocity close to the pile and bed shear stress on the bed. In general, the results indicated that the flow field was also in agreement with the findings of previous experiments in literature and the related principles in the subject area. The experimental results demonstrated that Acoustic Doppler Velocimeter (ADV) measurements were almost identical with the Realizable kε turbulence model results for turbulence intensity I=10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号