首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
10~30 d时效的延伸期预报,作为无缝隙预报预测体系中至关重要的一环,连接着天气预报和短期气候预测。受不断加剧的气候变化的影响,延伸期预报将面临更为重大的挑战。首先概述国内外延伸期预报现状,然后分析了全球气候变化对极端天气气候事件分布特征、关键环流系统可预报性等方面的影响,发现气候变化将导致延伸期预报难度加大、需求更加旺盛,同时也更加突显延伸期预报在防灾减灾方面的作用。进一步展望延伸期预报将面临的新挑战以及未来业务发展的新动向,提出了适应气候变化的应对措施和建议,如大力发展数值预报模式、深入开展延伸期预报机理研究、大力发展动力—统计相结合的预报方法以及尝试多学科交叉协作等。  相似文献   

2.
10~30 d延伸期可预报性与预报方法研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
10~30 d延伸期的可预报性既依赖于初始条件,也与缓变的下垫面有关,寻找延伸期时段内可预报性较高的低频特征,识别延伸期的可预报性来源及影响的物理机制是提高延伸期预报水平的关键。近年延伸期可预报性来源、热带大气季节内振荡监测预测和影响等领域的研究取得较大进展,提出和应用了动力统计相结合以及大气低频信号释用等新的延伸期预报方法。对延伸期可预报性来源及其与初值和外强迫异常的关系分析表明,海气相互作用能提高亚洲和西太平洋区域延伸期时段大气环流和要素的可预报性。热带大气季节内振荡、平流层爆发性增温以及各种次季节尺度的海气、陆气耦合作用和大气响应均为延伸期预报提供了重要的可预报性来源。由于数值模式延伸期时段的预报性能与实际业务需求还存在一定距离,基于动力统计相结合和物理统计的延伸期预报方法被广泛应用于业务预报,表现出一定的预报技巧。  相似文献   

3.
简要介绍了动力气候模式预测系统(DCMPS)以及基于此的山东省延伸期预报业务建设、延伸预报产品的应用情况,并深入分析了应用效果,结果表明:延伸预报产品在气象服务中起到了一定的指导作用;预报产品显示平台具有高效的服务能力、良好的稳定性以及较好的应用价值;延伸期预报业务发展前景广阔。  相似文献   

4.
青藏高原积雪深度对延伸期预报技巧的影响   总被引:1,自引:0,他引:1  
高原积雪是重要的陆面因子,其变化的时间尺度长于大气而短于海洋。本文利用国家气候中心第二代月动力延伸期预测模式(DERF2.0)历史回报资料与被动微波资料(SMMR)、被动微波成像专用传感器(SSM/I)数据反演的逐日雪深资料,分析了1983~2014年冬季和春季转换季节高原积雪对热带外地区延伸期尺度预测技巧的影响。结果表明,高原积雪异常年动力模式在高原积雪显著影响的青藏高原地区、贝加尔湖地区和北太平洋地区预报技巧明显高于正常年份。随着预报时效的延长,高原积雪偏多年的技巧衰减最慢、其次为积雪偏少年,积雪正常年最快,表明高原积雪异常年可预报时效更长,且高原积雪异常对预报技巧的改善在第1候的预报中就显现出来,尤其是积雪偏多年,其影响时段明显要早于海洋。结果显示高原积雪对延伸期预报技巧有重要贡献,暗示高原积雪异常为东亚延伸期预报的潜在可预报源。  相似文献   

5.
延伸期温度预报误差订正技术初探   总被引:1,自引:0,他引:1  
尹姗  李勇  马杰  邓星  蔡芗宁 《气象》2020,46(3):412-419
应用滑动平均误差订正方法和历史偏差订正方法,对欧洲中期天气预报中心的数值模式延伸期2 m温度预报进行误差订正。研究发现,应用滑动平均误差订正方法进行11~15 d逐日温度预报订正时,25~30 d是最优的训练期长度。对2018年订正预报的检验分析显示,应用上述两种误差订正方法均可减小模式预报的系统偏差,有效修正模式温度预报较实况明显偏低的问题,并将预报准确率提高30%以上。在6—10月,订正后的温度预报平均绝对误差基本在2℃以内,具有一定的参考性,其业务化产品可支撑预报员的业务预报需求。在15 d内的延伸期预报时效上,两种订正方法对温度预报的订正效果差异并不明显。随着时效的延长,历史偏差订正方法的优势逐渐显现。  相似文献   

6.
基于MJO的延伸预报   总被引:30,自引:3,他引:27  
丁一汇  梁萍 《气象》2010,36(7):111-122
近10年来,2~4周的延伸预报成为天气和气候业务预报发展的一个方向。目前比较有效的方法是根据季节内振荡的传播,尤其是MJO振荡(30~60天周期)的传播来制作延伸期预报。国际上一些天气-气候预报中通过数年的业务试验已取得了初步结果。作者首先介绍了MJO振荡及季风的季节内振荡(MISO)特征,并从季节内振荡与中纬度相互作用的角度讨论了制作延伸预报的理论依据;进一步对延伸预报的可预报性、预报方法及国内外业务应用进展进行了综述,并以江淮梅雨为例探讨了我国延伸预报的可预报性及信号;最后阐述了延伸预报的发展趋势。  相似文献   

7.
10-30天延伸期预报及其策略思考   总被引:1,自引:0,他引:1  
在当前的气象预报业务中,10~30 d的延伸期预报是“无缝隙预报”中的难点。由于理论基础尚不完备,致使延伸期的准确预报还存在诸多困难。但对10~30 d延伸期预报业务迫切的社会需求,使其成为众多气象专家关注的研究热点。本文对10~30 d延伸期预报的概念、意义进行了阐述,在此基础上对其物理过程性质和预报困难的原因进行了分析。讨论了延伸期预报的预报对象,并在借鉴前人成果的基础上,总结归纳出了低频振荡方法、经验波传播方法、相似预报方法、物理统计方法、动力学方法(集合预报方法)、大气环流模式和中期模式集合方法、动力统计方法、综合集成方法等8种做延伸期预报的方法。  相似文献   

8.
大气低频振荡与延伸期预报   总被引:7,自引:0,他引:7       下载免费PDF全文
为了能从大气低频振荡角度研究延伸期降水过程预报问题,引入了一种新的预报方法—低频天气图,并且分析了低频天气图的技术要点和技术方法。在低频天气图上,低频天气系统(低频气旋和低频反气旋),以及它们的活动特性可以被用来定性地确定南、北气流(暖、冷空气)的汇合,引起降水过程。2009年6~10月利用该方法进行上海地区延伸期降水过程预报表明,强降水过程预报效果较好,且预报时效为15~45天,可以在延伸期业务预报中应用。  相似文献   

9.
10~30 d延伸期预报在气象业务发展和国民经济服务中具有重要的作用。本文回顾了关于延伸期预报的相关理论和技术研究进展,概要介绍了国内外开展延伸期预报业务现状;结合目前气象科技发展水平,进一步分析和阐述了现阶段我国开展延伸期预报业务亟待解决的关键技术问题,旨在共同探讨和推动延伸期预报业务的发展。  相似文献   

10.
2011年长江中下游梅雨期强降水延伸期集合预报性能初探   总被引:4,自引:3,他引:1  
李勇 《气象》2016,42(9):1114-1123
针对2011年长江中下游旱涝转换时期的环流形势、强降雨期间的四次强降雨过程对欧洲中心集合预报进行了预报性能初步分析。结果表明:集合平均预报对延伸期预报时效内的大尺度环流调整具有较好的预报性能,预报提前时效可达10~15 d。对强降水过程期间主要影响系统的预报在不同预报时效具有较好的稳定性。随着预报时效的临近,集合预报各个成员对天气系统预报的发散度逐渐减小。长江中下游强降水的发生与低层850 hPa较大的风速有密切关联,集合预报给出的延伸期预报时效内大风速出现的小概率预报信息是有意义的,可以为延伸期强降雨过程预报提供参考。  相似文献   

11.
研究大气的可预报性和预报误差产生的原因,对于改进数值预报,提升业务预报技巧具有重要意义。集合敏感性基于具有流依赖特性的集合预报,通过建立预报与初始场或前期预报大气状态之间的统计关系,为揭示与预报对象可预报性相关的动力学特征及理解预报误差来源和传播机制提供了一种新方法。同时,介绍了集合敏感性的定义和度量,并综述了其针对典型天气系统和高影响天气事件研究的进展,并讨论了该方法的优势和局限性。  相似文献   

12.
A new way to predict forecast skill   总被引:1,自引:0,他引:1  
Forecast skill (Anomaly Correlated Coefficient, ACC) is a quantity to show the forecast quality of the products of numerical weather forecasting models. Predicting forecast skill, which is the foundation of ensemble forecasting, means submitting products to predict their forecast quality before they are used.Checking the reason is to understand the predictability for the real cases. This kind of forecasting service has been put into operational use by statistical methods previously at the National Meteorological Center (NMC), USA (now called the National Center for Environmental Prediction (NCEP)) and European Center for Medium-range Weather Forecast (ECMWF). However, this kind of service is far from satisfactory because only a single variable is used with the statistical method. In this paper, a new way based on the Grey Control Theory with multiple predictors to predict forecast skill of forecast products of the T42L9 of the NMC, China Meteorological Administration (CMA) is introduced. The results show: (1) The correlation coefficients between “forecasted“ and real forecast skill range from 0.56 to 0.7 at different seasons during the two-year period. (2) The grey forecasting model GM(1,8) forecasts successfully the high peaks, the increasing or decreasing tendency, and the turning points of the change of forecast skill of cases from 5 January 1990 to 29 February 1992.  相似文献   

13.
月动力延伸预报产品的评估和解释应用   总被引:25,自引:9,他引:16  
该文用3种客观评分方法对国家气候中心的月动力延伸预报结果(500 hPa位势高度场)进行了全面评估。结果表明,延伸预报环流的旬和月平均场预报准确率明显高于持续性预报,有一定的预报技巧和业务参考价值,但仍未达到可用于实际业务预报的技巧。对形势预报进一步分析发现,500 hPa的部分环流特征量模拟效果好,其预报技巧高于整个形势场的预报。根据已有的经验和研究成果,这些环流特征量和要素预报有较好的相关,可以直接在业务中应用。该方法为动力产品的解释应用提供了又一条途径。  相似文献   

14.
张华  陈玉春 《高原气象》1996,15(1):68-76
兰州区域气象中心暴雨增强数值预报业务系统包括资料处理,质量控制、客观分析、模式预报、图形处理及显示、评分检验和作业流程控制等。由于业务系统采用了先进的并行计算技术,同时对模式结构和部分物理过程进行了改进,使模式的分辨率得到了大幅度的提高。  相似文献   

15.
BP神经网络在长期天气过程预报中的应用试验   总被引:3,自引:2,他引:3  
采用误差反传前向网络(简称BP网络)方法,以日、月相概率作为输入因子,建立长期天气预报模型。结果表明,模型的业务预报试验效果比较理想,对较大降水和升(降)温过程均有一定预报能力,相对于传统的单纯运用日、月相概率预报长期天气过程的方法,BP神经网络方法具有预报较客观、准确率较高等特点,在目前长期天气预报理论和数值预报模式尚不能用于实际业务的情况下具有较大的应用价值。  相似文献   

16.
基于季节内振荡的延伸预报试验   总被引:11,自引:2,他引:9  
粱萍  丁一汇 《大气科学》2012,36(1):102-116
2~4周的延伸预报是近年来国际上天气和气候业务预报发展的一个重要方向。本文以江淮梅雨区降水为例, 在利用集合经验模态分解 (EEMD) 及多变量EOF方法获取梅雨区降水及其影响系统低频信号的基础上, 采用最优子集回归方法、 经验波传播 (EWP) 方法及全球海气耦合模式产品, 对梅雨季节内演变的延伸期预报方法进行了预报和试验, 以期为建立延伸期预报业务提供科学依据。试验结果表明: (1) 大气季节内振荡对梅雨区降水的延伸预报具有重要的应用价值, 可能是联系天气过程和异常的重要系统。(2) 通过EEMD方法提取前期降水演变及影响因子的季节内振荡信号, 采用最优子集回归统计学方法对梅雨区逐候降水量演变进行超前30天预报是有可能的。(3) EWP经验动力方法对热带ITCZ活跃异常的未来40天东传可能具有较好的预报效果, 还可能较好地预报出延伸期的梅雨区风场距平演变, 具有一定应用价值。(4) 全球海气耦合动力模式输出产品在延伸期环流形势趋势预报及20天左右的MJO指数预报方面有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号