首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Renard 65, a diamondiferous pipe in the Neoproterozoic Renard kimberlite cluster (Québec, Canada), is a steeply-dipping and downward-tapering diatreme comprised of three pipe-filling units: kimb65a, kimb65b, and kimb65d. The pipe is surrounded by a marginal and variably-brecciated country rock aureole and is crosscut by numerous hypabyssal dykes: kimb65c. Extensive petrographic and mineralogical characterization of over 700 m of drill core from four separate drill holes, suggests that Renard 65 is a Group I kimberlite, mineralogically classified as phlogopite kimberlite and serpentine-phlogopite kimberlite. Kimb65a is a massive volcaniclastic kimberlite dominated by lithic clasts, magmaclasts, and discrete olivine macrocrysts, hosted within a fine-grained diopside and serpentine-rich matrix. Kimb65b is massive, macrocrystic, coherent kimberlite with a groundmass assemblage of phlogopite, spinel, perovskite, apatite, calcite, serpentine and rare monticellite. Kimb65c is a massive, macrocrystic, hypabyssal kimberlite with a groundmass assemblage of phlogopite, serpentine, calcite, perovskite, spinel, and apatite. Kimb65d is massive volcaniclastic kimberlite with localized textures that are intermediate between volcaniclastic and coherent, with tightly packed magmaclasts separated by a diopside- and serpentine-rich matrix. Lithic clasts of granite-gneiss in kimb65a are weakly reacted, with partial melting of feldspars and crystallization of richterite and actinolite. Lithic clasts in kimb65b and kimb65d are entirely recrystallized to calcite + serpentine/chlorite + pectolite and display inner coronas of diopside-aegirine and an outer corona of phlogopite. Compositions are reported for all minerals in the groundmass of coherent kimberlites, magmaclasts, interclast matrices, and reacted lithic clasts. The Renard 65 rocks are texturally classified as Kimberley-type pyroclastic kimberlites and display transitional textures. The kimberlite units are interpreted to have formed in three melt batches based on their distinct spinel chemistry: kimb65a, kimb65b and kimb65d. We note a strong correlation between the modal abundances of lithic clasts and the textures of the kimberlites, where increasing modal abundances of granite/gneiss are observed in kimberlites with increasingly fragmental textures.

  相似文献   

2.

The Renard 2 pipe is currently the deepest-drilled and most extensively studied kimberlite body in the Renard cluster, central Québec, Canada, forming the major component of the Mineral Resource of Stornoway Diamond Corporation’s Renard Mine. Renard 2 is infilled with two distinct kimberlite units that exhibit Kimberley-type pyroclastic kimberlite and related textures. Hypabyssal kimberlite also occurs as smaller cross-cutting sheets and irregular intrusions. The units are distinguished by their rock textures, groundmass mineral assemblages, olivine macrocryst size distributions and replacement products, mantle and country rock xenolith contents, whole rock geochemical signatures, bulk densities and diamond grades. These differences are interpreted to reflect different mantle ascent and near-surface emplacement processes and are here demonstrated to be vertically continuous from present surface to over 1000 m depth. The distinctive petrological features together with sharp, steep and cross-cutting internal contact relationships, show that each unit was formed from a separate batch of mantle-derived kimberlite magma, and was completely solidified before subsequent emplacement of the later unit. The mineralogy and textures of the ultra-fine-grained interclast matrix are consistent with those described at numerous Kimberley-type pyroclastic kimberlite localities around the world and are interpreted to reflect rapid primary crystallization during emplacement of separate kimberlite magmatic systems. The units of fractured and brecciated country rock surrounding the main kimberlite pipe contain kimberlite-derived material including carbonate providing evidence of subsurface brecciation. Together these data show that Renard 2 represents the deeper parts of a Kimberley-type pyroclastic kimberlite pipe system and demonstrates that their diagnostic features result from magmatic crystallisation during subsurface volcanic emplacement processes.

  相似文献   

3.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   

4.

The Renard 2 kimberlite pipe is one of nine diamondiferous kimberlite pipes that form a cluster in the south-eastern portion of the Superior Province, Québec, Canada and is presently being extracted at the Renard Mine. It is interpreted as a diatreme-zone kimberlite consisting of two Kimberley-type pyroclastic units and related country rock breccias, all cross-cut by coherent kimberlite dykes and irregular intrusives. Renard 2 has been the subject of numerous diamond drilling campaigns since its discovery in 2001. The first two geological models modelled kimberlite and country rock breccia units separately. A change in modelling philosophy in 2009, which incorporated the emplacement envelope and history, modelled the entire intrusive event and projected the pipe shape to depth allowing for more targeted deep drilling where kimberlite had not yet been discovered. This targeted 2009 drilling resulted in a > 400% increase in the volume of the Indicated Resource. Modelling only the kimberlite units resulted in a significant underestimation of the pipe shape. Current open pit and underground mapping of the pipe shape corresponds well to the final 2015 geological model and contact changes observed are within the expected level of confidence for an Indicated Resource. This study demonstrates that a sound understanding of the geological emplacement is key to developing a reliable 3D geological and resource model that can be used for targeted delineation drilling, feasibility studies and during the initial stages of mining.

  相似文献   

5.
First data on the geologic and geochemical compositions of kimberlites from nine kimberlite pipes of southwestern Angola are presented. In the north of the study area, there are the Chikolongo and Chicuatite kimberlite pipes; in the south, a bunch of four Galange pipes (I–IV); and in the central part, the Ochinjau, Palue, and Viniaty pipes. By geochemical parameters, these rocks are referred to as classical kimberlites: They bear mantle inclusions of ultrabasites, eclogites, various barophilic minerals (including ones of diamond facies), and diamonds. The kimberlite pipes are composed of petrographically diverse rocks: tuffstones, tuff breccias, kimberlite breccias, autolithic kimberlite breccias, and massive porphyritic kimberlites. In mineralogical, petrographic, and geochemical compositions the studied kimberlites are most similar to group I kimberlites of South Africa and Fe-Ti-kimberlites of the Arkhangel’sk diamondiferous province. Comparison of the mineralogical compositions of kimberlites from southwestern Angola showed that the portion of mantle (including diamondiferous) material of depth facies in kimberlite pipes regularly increases in the S-N direction. The northern diamond-bearing kimberlite pipes are localized in large destructive zones of NE strike, and the central and southern diamond-free pipes, in faults of N-S strike.  相似文献   

6.
Discovery of diamondiferous kimberlites in the Mainpur Kimberlite Field, Raipur District, Chhattisgarh in central India, encouraged investigation of similar bodies in other parts of the Bastar craton. The earlier known Tokapal ultramafic intrusive body, located beyond the 19-km milestone in Tokapal village along the Jagdalpur–Geedam road, was reinterpreted as crater-facies kimberlite. Its stratigraphic position in the Meso-Neoproterozoic intracratonic sedimentary Indravati basin makes it one of the oldest preserved crater-facies kimberlite systems. Ground and limited subsurface data (dug-, tube-wells and exploratory boreholes) have outlined an extensive surface area (>550 ha) of the kimberlite. The morphological and surface color features of this body on enhanced satellite images suggest that there is a central feeder surrounded by a collar and wide pyroclastic apron. Exploration drilling indicates that the central zone probably corresponds to a vent overlain by resedimented volcaniclastic (epiclastic) rocks that are surrounded by a 2-km-wide spread of pyroclastic rocks (lapilli tuff, tuff/ash beds and volcaniclastic breccia). Drill-holes also reveal that kimberlitic lapilli tuffs and tuffs are sandwiched between the Kanger and Jagdalpur Formations and also form sills within the sedimentary sequence of the Indravati basin. The lapilli tuffs are commonly well stratified and display slumping. Base surges and lava flows occur in the southern part of the Tokapal system. The geochemistry and petrology of the rock correspond to average Group I kimberlite with a moderate degree of contamination. However, the exposed rock is intensely weathered and altered with strong leaching of mobile elements (Ba, Rb, Sr). Layers of vesicular fine-grained glassy material represent kimberlitic lava flows. Tuffs containing juvenile lapilli with pseudomorphed olivine macrocrysts are set in a talc–serpentine–carbonate matrix with locally abundant spinel and sphene. Garnet has not been observed, and phlogopite is very rare. Very limited microdiamond testing (two 18-kg samples) proved negative; however, the composition of chromite grains indicate crystallization in the diamond stability field.  相似文献   

7.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.  相似文献   

8.
This paper reports new petrographic and mineralogical data on the Manchary kimberlite pipe, which was discovered south of Yakutsk (Central Yakutia) in 2007–2008, 100 km. The pipe breaks through the Upper Cambrian carbonate deposits and is overlain by Jurassic terrigenous rock masses about 100 m thick. It is composed of greenish-gray kimberlite breccia with a serpentine-micaceous cement of massive structure. The porphyry texture of kimberlite is due to the presence of olivine, phlogopite, and picroilmenite phenocrysts. The SiO2 and Al2O3 contents of the groundmass are indicative of typical noncontaminated kimberlites. The groundmass has a significant content of ore minerals: Fe- and Cr-spinels, perovskite, magnetite, and, less commonly, magnesian Cr-magnetite. Pyropes occur in kimberlites as sharp-edged fragments and show uneven distribution. Chemically, they belong to lherzolite, wehrlite, or nondiamondiferous dunite–harzburgite parageneses. Garnets corresponding to lherzolites of anomalous composition make up 8%; this is close to the garnet content of Middle Paleozoic kimberlites from the Yakutian kimberlite province. The pyropes from the new pipe are compositionally similar to those from diamond-poor Middle Paleozoic kimberlites in the north of the Yakutian diamondiferous province. Chemically, pyropes from the Manchary pipe and those from the modern alluvium of the Kengkeme and Chakyya Rivers differ substantially. Consequently, the rocks of the pipe could not be a source of pyropes for this alluvium. They probably occured from other sources. This fact along with numerous “pipelike” geophysical anomalies, suggest the existence of a new kimberlite field in Central Yakutia.  相似文献   

9.
Basic explosion pipes occur along with basic dikes, sills, and chonoliths within the Vilyui—Markha basic dike belt in the northwestern marginal part of the Vilyui Rift, characterized by widespread basaltic magmatism. The explosion pipes are of interest for exploration geology owing to their specific composition and tectonic setting, similar in many respects to the structural localization of kimberlite bodies in the sedimentary cover of the Siberian Platform. The basic explosion pipes from the Mirny district were referred to as tholeiitic and alkali-basaltic petrochemical rock series. Peculiar potassic and ultrapotassic rocks—potassium olivine basalts and picrobasalts—were identified in the alkali-basaltic series. These rocks were regarded as related to the deepest sources among basalts and were recommended for use as a prospecting guide for primary diamond sources. Our investigations allowed us to interpret the elevated K and Mg contents in basic fragments from some explosion pipes and associated intrusive bodies as a result of low-temperature metasomatic alteration. The explosion breccias and metasomatically altered basic rocks probably mark areas favorable for explosion activity and intrusion of both basic and kimberlitic rocks.  相似文献   

10.
The formation and evolution conditions for alkaline magmatism and associated igneous rocks in the western framing of the Siberian craton are shown by the example of alkaline and subalkaline intrusive bodies of the Yenisei Ridge. Here we present petrographic, mineralogical, geochemical, and geochronological data for the rocks of the Srednetatarka and Yagodka plutons located within the Tatarka–Ishimba suture zone. Ferroan and metaluminous varieties enriched with rare elements (Nb, Ta, Zr, Hf, and REE) are making up most of the studied rocks. They formed at the stages of fractional crystallization of alkaline magma in a setting of active continental margin in the west of the Siberian craton in the Late Neoproterozoic (710–690 Ma). As differentiates of mantle magmas, these rocks associate with Nb-enriched rocks—A-type leucogranites and carbonatites. Sm/Nd and Rb/Sr isotopic data imply a predominance of the mantle component in the magmatic sources of the mafic and intermediate rocks as well as contamination processes of various volumes of continental crustal material by this magma.  相似文献   

11.
瓦房店地区是我国金刚石矿主要矿集区.金伯利岩浆侵入活动主要受超岩石圈郯庐深断裂控制.有利于岩体赋存的部位是基底东西向构造发生继承性活动形成的北东东向断裂.该两组断裂联合控制了区内金伯利岩体群沿北北东方向成排、沿北东东方向呈带的空间分布规律.由于北东东向断裂活动强度的差异,Ⅰ、Ⅱ、Ⅲ号金伯利岩带由北向南呈现了岩体数量渐少、规模渐小、含矿性渐弱的规律性变化.基于此,认为在矿集区以北瓦窝-松树镇一带应具有对称性的1~2条金伯利岩带存在,并预测该区原生金刚石具有较大的资源潜力.另据区内已勘探矿床中含矿岩体剥蚀程度,推测约有3000万克拉金刚石被剥蚀形成砂矿.因此,区内侏罗纪-第四纪地层和第四系松散堆积物中金刚石也具有较丰富的资源潜力.  相似文献   

12.
Diamondiferous kimberlites occur in eastern Finland, in the areas of Kaavi–Kuopio and Kuhmo. Active diamond exploration has been ongoing in the country for over two decades, but the Karelian craton still remains under explored given its size and potential. In order to develop techniques that can be applied to diamond exploration in glaciated terrains, the Geological Survey of Finland (GTK) carried out a detailed heavy mineral and geochemical survey of Quaternary till in 2001–2003 around two of the known kimberlitic bodies in Finland, Pipe 7 in Kaavi and Dyke 16 in Kuhmo. The mineralogical and geochemical signatures of these two kimberlites were studied in the basal till deposited down-ice from the targets. The kimberlites were selected to represent two different types in terms of shape, size, age and petrology, as well as showing contrasting country rocks and Quaternary deposits. Till samples up to 60 kg in weight were taken by excavator and by drill rig. Kimberlitic indicator mineral grains (0.25–1.0 mm) were concentrated using a GTK modified 3″Knelson Concentrator. Fine fractions (< 0.063 mm) of selected samples were analyzed by XRF and ICP-MS. The indicator grains down-ice from Pipe 7 form a well-defined fan in the basal till that can be followed for at least 2 km with a maximum concentration at 1.2 km distance from the pipe. Another kimberlitic body discovered during the study 300 m down-ice from Pipe 7 demonstrates that there are in fact at least two superimposed indicator fans. The results do not rule out the possibility of even more undiscovered kimberlitic sources in the area. In contrast, the indicator dispersal trail from Dyke 16 is shorter (1 km) and less well-defined than that at Kaavi, mainly due to the lower indicator content in the kimberlite itself and subsequently in till, as well as a large population of background chromites in till. The latter population is likely having been derived from the Archean Näätäniemi serpentinite massif and the associated ultramafic metavolcanics of the Kuhmo greenstone belt, located ca. 30 km up-ice from the sampling area. The indicator maximum at Seitaperä dyke swarm occurs immediately down-ice from the kimberlite, after which the concentration drops rapidly. Results of this study contribute to the overall understanding of the Quaternary history of the Kaavi and Kuhmo areas, and more importantly, provide key information to diamond exploration in these particular regions and also elsewhere in glaciated terrains.  相似文献   

13.
E.M.W. Skinner  J.S. Marsh 《Lithos》2004,76(1-4):183-200
Field and Scott Smith [Field, M., Scott Smith, B.H., 1999. Contrasting geology and near-surface emplacement of kimberlite pipes in southern Africa and Canada. Proc. 7th Int. Kimb. Conf. (Eds. Gurney et al.) 1, 214–237.] propose that kimberlite pipes can be grouped into three types or classes. Classical or Class 1 pipes are the only class with characteristic low temperature, diatreme-facies kimberlite in addition to hypabyssal- and crater-facies kimberlite. Class 2 and 3 pipes are characterized only by hypabyssal-and crater-facies kimberlite. In an increasing number of Class 1 pipes a new kimberlite facies, transitional-facies kimberlite, is being found. In most cases this facies forms a zone several metres wide at the interface between the hypabyssal- and diatreme-facies. The transitional-facies exhibits textural and mineralogical features, which are continuously gradational between the hypabyssal and the diatreme types. The textural gradations are from a coherent magmatic texture to one where the rock becomes increasingly magmaclastic and this is accompanied by concomitant mineralogical gradations involving the decline and eventual elimination of primary calcite at the expense of microlitic diopside. Both transitional- and diatreme-facies kimberlites are considered to have formed in situ from intruding hypabyssal kimberlite magma as a consequence of exsolution of initially CO2-rich volatiles from the volatile-rich kimberlite magma. The transitional-facies is initiated by volatile exsolution at depths of about 3 km below the original surface. With subsequent cracking through to the surface and resultant rapid decompression, the further catastrophic exsolution of volatiles and their expansion leads to the formation of the diatreme facies. Thus diatreme-facies kimberlite and Class 1 pipes are emplaced by essentially magmatic processes rather than by phreatomagmatism.

Distinctly different petrographic features characterize crater-facies kimberlite in each of the three pipe classes. In crater-facies kimberlites of Class 1 pipes, small pelletal magmaclasts and abundant microlitic diopside are characteristic. These features appear to reflect the derivation of the crater-facies material from the underlying diatreme zone. Most Class 2 pipes have shallow craters and the crater-facies rocks are predominantly pyroclastic kimberlites with diagnostic amoeboid lapilli, which are sometimes welded and have vesicles as well as glass. Possible kimberlite lava also occurs at two Class 2 pipes in N Angola. The possible presence of lava as well as the features of the pyroclastic kimberlite is indicative of hot kimberlite magma being able to rise to levels close to the surface to form Class 2 pipes. Most Class 3 kimberlites have very steep craters and crater-facies rocks are predominantly resedimented volcaniclastic kimberlites, in some cases characterized by the presence of abundant angular magmaclasts, which are petrographically very similar to typical hypabyssal-facies kimberlite found in Class 1 pipes. The differences in crater-facies kimberlite of the three classes of pipe reflect different formation and depositional processes as well as differences in kimberlite composition, specifically volatile composition. Kimberlite forming pipe Classes 1 and 3 is thought to be relatively water-rich and is emplaced by processes involving magmatic exsolution of volatiles. The kimberlite magma forming Class 2 pipes is CO2-rich, can rise to shallow levels, and can initiate phreatomagmatic emplacement processes.  相似文献   


14.
杨占兴  王彬娜 《世界地质》2016,35(2):378-386
对瓦房店地区30号金伯利岩管岩石学、地球化学和成矿地质条件等研究认为,30号岩管金伯利岩岩浆来源于深部地幔,部分遭到壳源混染,碳来源于深源,属于富含碱性组分正常系列超基性岩;岩管中金伯利岩SiO_2、MgO含量较低,而CaO、CO_2含量较高;微量元素含量与地幔中石榴二辉橄榄岩微量元素含量相似;矿床形成于晚古生代;郯庐断裂为导矿构造,金伯利岩浆在北东东向和东西向断裂交汇处侵入成矿,岩管是由爆发与侵入交替作用形成。  相似文献   

15.
Ilmenite is one of the common kimberlitic indicator minerals recovered during diamond exploration, and its distinction from non-kimberlitic rock types is important. This is particularly true for regions where these minerals are present in relatively low abundance, and they are the dominant kimberlitic indicator mineral recovered. Difficulty in visually differentiating kimberlitic from non-kimberlitic ilmenite in exploration concentrates is also an issue, and distinguishing kimberlitic ilmenite from those derive from other similar rocks, such as ultramafic lamprophyres, is practically impossible. Ilmenite is also the indicator mineral whose compositional variety has the most potential to resolve provenance issues related to mineral dispersions with contributions from multiple kimberlite sources.

Various published data sets from selected kimberlitic (including kimberlites, lamproites, and various ultramafic lamprophyres) and non-kimberlitic rock types have been compiled and evaluated in terms of their major element compositions. Compositional fields and bounding reference lines for ilmenites derived from kimberlites (sensu stricto), ultramafic lamprophyres, and other non-kimberlitic rock types have been defined primarily on MgO–TiO2 graphs as well as MgO–Cr2O3 relationships.  相似文献   


16.
Strontium isotopic studies of kimberlites reveal no significant differences between the respective whole-rock Sr87/Sr86 ratios of fissure and pipe kimberlites. Kimberlites from the Swartruggens fissure (calcareous micaceous kimberlite) have Sr87/Sr86 ratios of from 0.709 to 0.716, whilst those from the Wesselton pipe have Sr87/Sr86 ratios of from 0.708 to 0.715. Other kimberlites range from 0.706 to 0.715. Samples are considered to be late Cretaceous to early Tertiary and thus the ratios are approximately initial ratios. The Sr87/Sr86 ratios bear no relation to the Rb or Sr content of individual kimberlite bodies. The high initial ratios are not due to bulk assimilation of granitic material in either a kimberlite or carbonatitic magma. Rb-Sr data for garnet peridotites and eclogite xenoliths in kimberlite are not compatible with production of kimberlite by eclogite fractionation from a melt derived from garnet lherzolite. The Sr isotopic composition of kimberlite is compatible with partial melting of garnet mica peridotite. The isotopic composition of liquids formed by partial melting of this rock can be modified by (i) gross contamination with material of low Sr87/Sr86 ratio or (ii) selective diffusion of material of high Sr87/Sr86 ratio into kimberlitic fluids.  相似文献   

17.
FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration   总被引:1,自引:0,他引:1  
Our study of olivines from Canadian kimberlites shows that the application of FTIR spectroscopy significantly improves the reliability of olivine as a kimberlite indicator mineral (KIM). We have developed an algorithm that yields the water concentration and the normalized intensity of the OH IR absorption band at 3572 cm−1 from unpolished olivine grains of unknown thickness. For 80% of kimberlitic olivines these two parameters are significantly higher than those for olivines from non-kimberlitic magmas and consequently, olivines with water concentrations >60 ppm and a strong absorption band at 3572 cm−1 can be reliably classified as being kimberlitic.We have identified two major spectral features in the OH absorption bands of kimberlitic olivines that allow for a more detailed classification: (a) the presence of three types of high-requency OH absorption bands (Group 1A, 1B and 1C) and (b) the proportion of low-frequency OH absorption bands (Group 2) relative to high-frequency bands (Group 1). Comparison of our results with experimental studies suggests that differences within Group 1 OH absorption bands are due to different pressures of crystallization or hydrogenation. The three identified types of Group 1 OH absorption bands approximately correspond to high (P > 2 GPa, Group 1A), moderate (2-1 GPa, Group 1B), and low (<1 GPa, Group 1C) pressures of hydrogenation. Group 2 OH IR absorption bands in olivines with NiO > 3500 ppm are interpreted to reflect olivine-orthopyroxene equilibria and hence are indicative of xenocrystic olivine derived from lherzolitic or harzburgitic mantle sources. Interaction of xenocrystic olivine with hydrous kimberlitic melts with low silica activity likely will cause a gradual increase in Group 1 absorption bands. Therefore, FTIR spectra of olivine can be used to obtain qualitative estimates of the duration of interaction between mantle material and a kimberlitic melt.In addition to applications in kimberlite and diamond exploration, FTIR spectra of olivine phenocrysts, combined with mineral chemical data, may also provide insights into kimberlite evolution. Our data suggest that in some instances the ascent of kimberlitic magmas could have been interrupted at or near the Moho, followed by olivine crystallization and exsolution of aqueous fluids.  相似文献   

18.
The volcanics exposed in the northeast Niğde area are characterized by pumiceous pyroclastic rocks present as ash flows and fall deposits and by compositions ranging from dacite to rhyolite. Xenoliths found in the volcanics are basaltic andesite, andesite and dacite in composition. These rocks exhibit linear chemical variations between end‐member compositions and a continuity of trace element behaviour exists through the basaltic andesite–andesite–dacite–rhyolite compositional range. This is consistent with the fractionation of ferromagnesian minerals and plagioclase from a basaltic andesite or andesite parent. These rocks are peraluminous and show typical high‐K calc‐alkaline differentiation trends with total iron content decreasing progressively with increasing silica content. Bulk rock and mineral compositional trends and petrographic data suggest that crustal material was added to the magmas by subducted oceanic crust and is a likely contaminant of the source zone of the Niğde magmas. The chemical variations in these volcanics indicate that crystal liquid fractionation has been a dominant process in controlling the chemistry of the northeast Niğde volcanics. It is also clear, from the petrographic and chemical features, that magma mixing with disequilibrium played a significant role in the evolution of the Niğde volcanic rocks. This is shown by normal and reverse zoning in plagioclase and resorption of most of the observed minerals. The xenoliths found in the Niğde volcanics represent the deeper part of the magma reservoir which equilibrated at the higher pressures. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
金刚石及其寄主岩石是人类认识地球深部物质组成和性质、壳幔和核幔物质循环重要研究对象。本文总结了中国不同金刚石类型的分布,着重对比了博茨瓦纳和中国含金刚石金伯利岩的地质特征,取得如下认识:(1)博茨瓦纳含矿原生岩石仅为金伯利岩,而中国含矿岩石成分复杂,金伯利岩主要出露在华北克拉通,展布于郯庐、华北中央和华北北缘金伯利岩带,具有工业价值的蒙阴和瓦房店矿床分布于郯庐金伯利岩带中;钾镁煌斑岩主要出露在华南克拉通,重点分布在江南和华南北缘钾镁煌斑岩带中;(2)钙钛矿原位U-Pb年龄和Sr、Nd同位素显示,86~97 Ma奥拉帕金伯利岩群和456~470 Ma蒙阴和瓦房店金伯利岩均具有低87Sr/86Sr(0.703~0.705)和中等εNd(t)(-0.09~+5)特征,指示金伯利岩浆源自弱亏损地幔或初始地幔源区;(3)博茨瓦纳金伯利岩体绝大多数以岩筒产出,而中国以脉状为主岩筒次之;博茨瓦纳岩筒绝大部分为火山口相,中国均为根部相,岩筒地表面积普遍小于前者;(4)奥拉帕A/K1和朱瓦能金伯利岩体是世界上为数不多的主要产出榴辉岩捕虏体和E型金刚石的岩筒之一,而同位于奥拉帕岩群的莱特拉卡内、丹姆沙和卡罗韦岩体与我国郯庐带的金伯利岩体类似,均主要产出地幔橄榄岩捕虏体以及P型和E型金刚石;(5)寻找含矿金伯利岩重点注意以下几点:克拉通内部和周缘深大断裂带是重要的控岩构造;镁铝榴石、镁钛铁矿、铬透辉石、铬尖晶石和铬金红石等是寻找含金刚石金伯利岩重要的指示矿物;航磁等地球物理测量需与土壤取样找矿方法相结合才能取得更好效果;(6)郯庐金伯利岩带、江南钾镁煌斑岩带和塔里木地块是中国重要含矿岩石的找矿靶区,冲积型金刚石成矿潜力巨大。  相似文献   

20.
In the late 1990s, the Fazenda Largo kimberlite cluster was discovered in the Piauí State of Brazil. As with earlier known kimberlites in this area – Redondão, Santa Filomena-Bom Jesus (Gilbues) and Picos – this cluster is located within the Palaeozoic Parnaiba Sedimentary Basin that separates the São Francisco and the Amazonian Precambrian cratons. Locations of kimberlites are controlled by the ‘Transbrasiliano Lineament’. The Fazenda Largo kimberlites are intensely weathered, almost completely altered rocks with a fine-grained clastic structure, and contain variable amounts of terrigene admixture (quartz sand). These rocks represent near-surface volcano-sedimentary deposits of the crater parts of kimberlite pipes. By petrographic, mineralogical and chemical features, the Fazenda Largo kimberlites are similar to average kimberlite. The composition of the deep-seated material in the Fazenda Largo kimberlites is quite diverse: among mantle microxenoliths are amphibolitised pyrope peridotites, garnetised spinel peridotites, ilmenite peridotites, chromian spinel + chromian diopside + pyrope intergrowths, and large xenoliths of pyrope dunite. High-pressure minerals are predominantly of the ultramafic suite, Cr-association minerals (purplish-red and violet pyrope, chromian spinel, chromian diopside, Cr-pargasite and orthopyroxene). The Ti-association minerals of the ultramafic suite (picroilmenite and orange pyrope), as well as rare grains of orange pyrope-almandine of the eclogite association, are subordinate. Kimberlites from all four pipes contain rare grains of G10 pyrope of the diamond association, but chromian spinel of the diamond association was not encountered. By their tectonic position, by geochemical characteristics, and by the composition of kimberlite indicator minerals, the Fazenda Largo kimberlites, like the others of such type, are unlikely to be economic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号