首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
Polymetamorphic garnet micaschists from the Austroalpine Saualpe Eclogite Unit (Kärnten, Austria, Eastern Alps) display complex microstructural and mineral–chemical relationships. Automated scanning electron microscopy routines with energy dispersive X‐ray (EDX) spectral mapping were applied for monazite detection and garnet mineral–chemical characterization. When the Fe, Mg, Mn and Ca element wt% compositions are used as generic labels for garnet EDX spectra, complex zonations and porphyroblast generations can be resolved in complete thin sections for selective electron‐microprobe analyses. Two garnet porphyroblast generations and diverse monazite age populations have been revealed in low‐Ca and high‐Al‐metapelites. Garnet 1 has decreasing Mn, constant Ca and significantly increasing Mg from cores to rims. Geothermobarometry of garnet 1 assemblages signals a crystallization along a M1 prograde metamorphism at ~650 °C/6–8 kbar. Sporadic monazite 1 crystallization started at c. 320 Ma. Subsequent pervasive 300–250 Ma high‐Y and high‐Gd monazite 1 formation during decompression coincided with the intrusion of Permian and Early Triassic pegmatites. Monazite 1 crystallized along the margin of garnet 1. Coronas of apatite and allanite around the large 320–250 Ma monazite signal a retrogressive stage. These microstructures suggest a Carboniferous‐to‐Early‐Permian age for the prograde M1 event with garnet 1. Such a M1 event at an intermediate‐P/T gradient has not yet been described from the Saualpe, and preceded a Permo‐Triassic low‐P stage. The M2 event with garnet 2 postdates the corona formation around Permian monazite. Garnet 2 displays first increasing XCa at decreasing XMg, then increasing XCa and XMg, and finally decreasing XCa with increasing XMg, always at high Ca and Mg, and low Mn. This records a P–T evolution which passed through eclogite facies conditions and reached maximum temperatures at ~750 °C/14 kbar during decompression‐heating. A monazite 2 population (94–86 Ma) with lower Y and Gd contents crystallized at decreasing pressure during the Cretaceous (Eo‐Alpine) metamorphism M2 at a high‐P/T gradient. The Saualpe Eclogite Unit underwent two distinct clockwise metamorphic cycles at different P–T conditions, related to continental collisions under different thermal regimes. This led to a characteristic distribution pattern of monazite ages in this unit which is different from other Austroalpine basement areas.  相似文献   

2.
Three monazite generations were observed in garnet-bearing micaschists from the Schobergruppe in the basement to the south of the Tauern Window, Eastern Alps. Low-Y monazite of Variscan age (321?±?14?Ma) and high-Y monazite of Permian age (261?±?18?Ma) are abundant in the mica-rich rock matrix and in the outer domains of large garnet crystals. Pre-Alpine monazite commonly occurs as polyphase grains with low-Y Variscan cores and high-Y Permian rims. Monazite of Eo-Alpine age (112?±?22?Ma) is rarer and was observed as small, partly Y-enriched grains (3?wt. %?Y2O3) in the rock matrix and within garnet. Based on monazite-xenotime thermometry, Y?+?HREE values in monazite indicate minimum crystallization conditions of 500?°C during the Variscan and 650?°C for the Permian and Alpine events, respectively. Garnet zoning and thermobarometric calculations with THERMOCALC 3.21 record an amphibolite facies, high-pressure stage of ~600?°C/13?C16?kbar, followed by a thermal maximum at 650?C700?°C and 6?C9?kbar. The Eo-Alpine age for these two events is supported by inclusions of Cretaceous monazite in the garnet domains used for thermobarometric constraints and through the high growth temperatures of Eo-Alpine monazite, which is consistent with that of the thermal maximum (~700?°C). The age and growth conditions of a few Mn-rich garnet cores, sporadically present within Eo-Alpine garnet, are unclear because inclusions of monazite, plagioclase and biotite necessary for thermobarometric- and age constraints are absent. However, based on monazite thermometry, Permian and Variscan metamorphic conditions were high enough for the growth of pre-Alpine garnet. The formation of Variscan garnet and its later resorption, plus Y-release, would also explain the high Y in Permian monazite, which cannot originate from preexisting Variscan monazite only. Monazite of Variscan, Permian and/or Eo-Alpine ages were also observed in other garnet-bearing micaschists from the Schobergruppe. This suggests that the basement of the Schobergruppe was overprinted by three discrete metamorphic events at conditions of at least lower amphibolite facies. While the Variscan event affected all parts of this basement, the younger events are more pronounced in its structurally lower units.  相似文献   

3.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

4.
The Palaeo‐Mesoproterozoic metapelite granulites from northern Garo Hills, western Shillong‐Meghalaya Gneissic Complex (SMGC), northeast India, consist of resorbed garnet, cordierite and K‐feldspar porphyroblasts in a matrix comprising shape‐preferred aggregates of biotite±sillimanite+quartz that define the penetrative gneissic fabric. An earlier assemblage including biotite and sillimanite occurs as inclusions within the garnet and cordierite porphyroblasts. Staurolite within cordierite in samples without matrix sillimanite is interpreted to have formed by a reaction between the sillimanite inclusion and the host cordierite during retrogression. Accessory monazite occurs as inclusions within garnet as well as in the matrix, whereas accessory xenotime occurs only in the matrix. The monazite inclusions in garnet contain higher Ca, and lower Y and Th/U than the matrix monazite outside resorbed garnet rims. On the other hand, matrix monazite away from garnet contains low Ca and Y, and shows very high Th/U ratios. The low Th/U ratios (<10) of the Y‐poor garnet‐hosted monazite indicate subsolidus formation during an early stage of prograde metamorphism. A calculated P–T pseudosection in the MnCKFMASH‐PYCe system indicates that the garnet‐hosted monazite formed at <3 kbar/600 °C (Stage A). These P–T estimates extend backward the previously inferred prograde P–T path from peak anatectic conditions of 7–8 kbar/850 °C based on major mineral equilibria. Furthermore, the calculated P–T pseudosections indicate that cordierite–staurolite equilibrated at ~5.5 kbar/630 °C during retrograde metamorphism. Thus, the P–T path was counterclockwise. The Y‐rich matrix monazite outside garnet rims formed between ~3.2 kbar/650 °C and ~5 kbar/775 °C (Stage B) during prograde metamorphism. If the effect of bulk composition change due to open system behaviour during anatexis is considered, the P–T conditions may be lower for Stage A (<2 kbar/525 °C) and Stage B (~3 kbar/600 °C to ~3.5 kbar/660 °C). Prograde garnet growth occurred over the entire temperature range (550–850 °C), and Stage‐B monazite was perhaps initially entrapped in garnet. During post‐peak cooling, the Stage‐B monazite grains were released in the matrix by garnet dissolution. Furthermore, new matrix monazite (low Y and very high Th/U ≤80, ~8 kbar/850–800 °C, Stage C), some monazite outside garnet rims (high Y and intermediate Th/U ≤30, ~8 kbar/800–785 °C, Stage D), and matrix xenotime (<785 °C) formed through post‐peak crystallization of melt. Regardless of textural setting, all monazite populations show identical chemical ages (1630–1578 Ma, ±43 Ma). The lithological association (metapelite and mafic granulites), and metamorphic age and P–T path of the northern Garo Hills metapelites and those from the southern domain of the Central Indian Tectonic Zone (CITZ) are similar. The SMGC was initially aligned with the southern parts of CITZ and Chotanagpur Gneissic Complex of central/eastern India in an ENE direction, but was displaced ~350 km northward by sinistral movement along the north‐trending Eastern Indian Tectonic Zone in Neoproterozoic. The southern CITZ metapelites supposedly originated in a back‐arc associated with subducting oceanic lithosphere below the Southern Indian Block at c. 1.6 Ga during the initial stage of Indian shield assembly. It is inferred that the SMGC metapelites may also have originated contemporaneously with the southern CITZ metapelites in a similar back‐arc setting.  相似文献   

5.
New results on the pressure–temperature–time evolution, deduced from conventional geothermobarometry and in situ U‐Th‐total Pb dating of monazite, are presented for the Bemarivo Belt in northern Madagascar. The belt is subdivided into a northern part consisting of low‐grade metamorphic epicontinental series and a southern part made up of granulite facies metapelites. The prograde metamorphic stage of the latter unit is preserved by kyanite inclusions in garnet, which is in agreement with results of the garnet (core)‐alumosilicate‐quartz‐plagioclase (inclusions in garnet; GASP) equilibrium. The peak metamorphic stage is characterized by ultrahigh temperatures of ~900–950 °C and pressures of ~9 kbar, deduced from GASP equilibria and feldspar thermometry. In proximity to charnockite bodies, garnet‐sillimanite‐bearing metapelites contain aluminous orthopyroxene (max. 8.0 wt% Al2O3) pointing to even higher temperatures of ~970 °C. Peak metamorphism is followed by near‐isothermal decompression to pressures of 5–7 kbar and subsequent near‐isobaric cooling, which is demonstrated by the extensive late‐stage formation of cordierite around garnet. Internal textures and differences in chemistry of metapelitic monazite point to a polyphasic growth history. Monazite with magmatically zoned cores is rarely preserved, and gives an age of c. 737 ± 19 Ma, interpreted as the maximum age of sedimentation. Two metamorphic stages are dated: M1 monazite cores range from 563 ± 28 Ma to 532 ± 23 Ma, representing the collisional event, and M2 monazite rims (521 ± 25 Ma to 513 ± 14 Ma), interpreted as grown during peak metamorphic temperatures. These are among the youngest ages reported for high‐grade metamorphism in Madagascar, and are supposed to reflect the Pan‐African attachment of the Bemarivo Belt to the Gondwana supercontinent during its final amalgamation stage. In the course of this, the southern Bemarivo Belt was buried to a depth of >25 km. Approximately 25–30 Myr later, the rocks underwent heating, interpreted to be due to magmatic underplating, and uplift. Presumably, the northern part of the belt was also affected by this tectonism, but buried to a lower depth, and therefore metamorphosed to lower grades.  相似文献   

6.
Granulite facies rocks from the northernmost Harts Range Complex (Arunta Inlier, central Australia) have previously been interpreted as recording a single clockwise cycle of presumed Palaeoproterozoic metamorphism (800–875 °C and >9–10 kbar) and subsequent decompression in a kilometre‐scale, E‐W striking zone of noncoaxial, high‐grade (c. 700–735 °C and 5.8–6.4 kbar) deformation. However, new SHRIMP U‐Pb age determinations of zircon, monazite and titanite from partially melted metabasites and metapelites indicate that granulite facies metamorphism occurred not in the Proterozoic, but in the Ordovician (c. 470 Ma). The youngest metamorphic zircon overgrowths from two metabasites (probably meta‐volcaniclastics) yield 206Pb/238U ages of 478±4 Ma and 471±7 Ma, whereas those from two metapelites yield ages of 463±5 Ma and 461±4 Ma. Monazite from the two metapelites gave ages equal within error to those from metamorphic zircon rims in the same rock (457±5 Ma and 462±5 Ma, respectively). Zircon, and possibly monazite ages are interpreted as dating precipitation of these minerals from crystallizing melt within leucosomes. In contrast, titanite from the two metabasites yield 206Pb/238U ages that are much younger (411±5 Ma & 417±7 Ma, respectively) than those of coexisting zircon, which might indicate that the terrane cooled slowly following final melt crystallization. One metabasite has a second titanite population with an age of 384±7 Ma, which reflects titanite growth and/or recrystallization during the 400–300 Ma Alice Springs Orogeny. The c. 380 Ma titanite age is indistinguishable from the age of magmatic zircon from a small, late and weakly deformed plug of biotite granite that intruded the granulites at 387±4 Ma. These data suggest that the northern Harts Range has been subject to at least two periods of reworking (475–460 Ma & 400–300 Ma) during the Palaeozoic. Detrital zircon from the metapelites and metabasites, and inherited zircon from the granite, yield similar ranges of Proterozoic ages, with distinct age clusters at c. 1300–1000 and c. 650 Ma. These data imply that the deposition ages of the protoliths to the Harts Range Complex are late Neoproterozoic or early Palaeozoic, not Palaeoproterozoic as previously assumed.  相似文献   

7.
Abstract

Combined in situ monazite dating, mineral equilibria modelling and zircon U–Pb detrital zircon analysis provide insight into the pressure–temperature–time (PTt) evolution of the western Gawler Craton. In the Nawa Domain, pelitic and quartzo-feldspathic gneisses were deposited after ca 1760?Ma and record high-grade metamorphic conditions of ~7.5?kbar and 850?°C at ca 1730?Ma. Post-peak microstructures, including partial plagioclase coronae and late biotite around garnet, and subtle retrograde garnet compositional zoning, suggest that these rocks cooled along a shallow down-pressure trajectory across an elevated dry solidus. In the northwest Fowler Domain (Colona Block), monazite grains from pelitic gneisses record two stages of growth/recrystallisation interpreted to represent discrete parts of the P–T path: (1) ca 1710?Ma monazite growth during prograde to peak conditions, and (2) ca 1690?Ma Y-enriched monazite growth/recrystallisation during partial garnet breakdown and cooling towards the solidus. Relict prograde growth zoning in garnet suggests rocks underwent a steep up-P path to peak conditions of ~8?kbar at 800?°C. The new P–T–t results suggest basement rocks of the southwestern Nawa and northwestern Fowler were buried to depths of 20–25?km during the Kimban Orogeny, ca 10 Myrs after the sedimentary precursors were deposited. The P–T path for the Kimban Orogeny is broadly anti-clockwise, suggesting that at least the early phase of this event was associated with extension. Exhumation of rocks from both the southwestern Nawa and northwestern Fowler domains may have occurred during the waning stages of the Kimban Orogeny (<ca 1690?Ma). The limited low-grade overprint in these rocks may be explained by a mid-to-upper crustal position for these rocks during the subsequent Kararan Orogeny. Aluminous quartz-feldspathic gneiss of the Nundroo Block in the eastern Fowler Domain records peak conditions of ~7?kbar at 800?°C. Monazite grains from the Nundroo Block are dominated by an age peak at ca 1590?Ma, although the presence of some older ages up to ca 1690?Ma, possibly reflect partial resetting of older monazite domains. The PTt conditions suggest these rocks were buried to 20–25?km at ca 1590?Ma during the Kararan Orogeny. This high-grade metamorphism in the Nundroo Block is a mid-crustal expression of the same thermal anomaly that caused magmatism in the central-eastern Gawler Craton. Juxtaposition of rocks affected by the Kimban and Kararan orogenic events in the western Gawler Craton was controlled by lithospheric-scale shear zones, some of which have facilitated ~20 kilometres of exhumation.  相似文献   

8.
The Fosdick migmatite–granite complex in West Antarctica records evidence for two high‐temperature metamorphic events, the first during the Devonian–Carboniferous and the second during the Cretaceous. The conditions of each high‐temperature metamorphic event, both of which involved melting and multiple melt‐loss events, are investigated using phase equilibria modelling during successive melt‐loss events, microstructural observations and mineral chemistry. In situ SHRIMP monazite and TIMS Sm–Nd garnet ages are integrated with these results to constrain the timing of the two events. In areas that preferentially preserve the Devonian–Carboniferous (M1) event, monazite grains in leucosomes and core domains of monazite inclusions in Cretaceous cordierite yield an age of c. 346 Ma, which is interpreted to record the timing of monazite growth during peak M1 metamorphism (~820–870 °C, 7.5–11.5 kbar) and the formation of garnet–sillimanite–biotite–melt‐bearing assemblages. Slightly younger monazite spot ages between c. 331 and 314 Ma are identified from grains located in fractured garnet porphyroblasts, and from inclusions in plagioclase that surround relict garnet and in matrix biotite. These ages record the growth of monazite during garnet breakdown associated with cooling from peak M1 conditions. The Cretaceous (M2) overprint is recorded in compositionally homogeneous monazite grains and rim domains in zoned monazite grains. This monazite yields a protracted range of spot ages with a dominant population between c. 111 and 96 Ma. Rim domains of monazite inclusions in cordierite surrounding garnet and in coarse‐grained poikiloblasts of cordierite yield a weighted mean age of c. 102 Ma, interpreted to constrain the age of cordierite growth. TIMS Sm–Nd ages for garnet are similar at 102–99 Ma. Mineral equilibria modelling of the residual protolith composition after Carboniferous melt loss and removal of inert M1 garnet constrains M2 conditions to ~830–870 °C and ~6–7.5 kbar. The modelling results suggest that there was growth and resorption of garnet during the M2 event, which would facilitate overprinting of M1 compositions during the M2 prograde metamorphism. Measured garnet compositions and Sm–Nd diffusion modelling of garnet in the migmatitic gneisses suggest resetting of major elements and the Sm–Nd system during the Cretaceous M1 overprint. The c. 102–99 Ma garnet Sm–Nd ‘closure’ ages correspond to cooling below 700 °C during the rapid exhumation of the Fosdick migmatite–granite complex.  相似文献   

9.
The Winding Stair Gap in the Central Blue Ridge province exposes granulite facies schists, gneisses, granofelses and migmatites characterized by the mineral assemblages: garnet–biotite–sillimanite–plagioclase–quartz, garnet–hornblende–biotite–plagioclase–quartz ± orthopyroxene ± clinopyroxene and orthopyroxene–biotite–quartz. Multiple textural populations of biotite, kyanite and sillimanite in pelitic schists support a polymetamorphic history characterized by an early clockwise P–T path in which dehydration melting of muscovite took place in the stability field of kyanite. Continued heating led to dehydration melting of biotite until peak conditions of 850 ± 30 °C, 9 ± 1 kbar were reached. After equilibrating at peak temperatures, the rocks underwent a stage of near isobaric cooling during which hydrous melt ± K‐feldspar were replaced by muscovite, and garnet by sillimanite + biotite + plagioclase. Most monazite crystals from a pelitic schist display patchy zoning for Th, Y and U, with some matrix crystals having as many as five compositional zones. A few monazite inclusions in garnet, as well as Y‐rich cores of some monazite matrix crystals, yield the oldest dates of c. 500 Ma, whereas a few homogeneous matrix monazites that grew in the main foliation plane yield dates of 370–330 Ma. Culling and analysis of individual spot dates for eight monazite grains yields three age populations of 509 ± 14 Ma, 438 ± 5 Ma and 360 ± 5 Ma. These data suggest that peak‐temperature metamorphism and partial melting in the central Blue Ridge occurred during the Salinic or Taconic orogeny. Following near isobaric cooling, a second weaker thermal pulse possibly related to intrusion of nearby igneous bodies resulted in growth of monazite c. 360 Ma, coinciding with the Neoacadian orogeny.  相似文献   

10.
Geothermometry and mineral assemblages show an increase of temperature structurally upwards across the Main Central Thrust (MCT); however, peak metamorphic pressures are similar across the boundary, and correspond to depths of 35–45 km. Garnet‐bearing samples from the uppermost Lesser Himalayan sequence (LHS) yield metamorphic conditions of 650–675 °C and 9–13 kbar. Staurolite‐kyanite schists, about 30 m above the MCT, yield P‐T conditions near 650 °C, 8–10 kbar. Kyanite‐bearing migmatites from the Greater Himalayan sequence (GHS) yield pressures of 10–14 kbar at 750–800 °C. Top‐to‐the‐south shearing is synchronous with, and postdates peak metamorphic mineral growth. Metamorphic monazite from a deformed and metamorphosed Proterozoic gneiss within the upper LHS yield U/Pb ages of 20–18 Ma. Staurolite‐kyanite schists within the GHS, a few metres above the MCT, yield monazite ages of c. 22 ± 1 Ma. We interpret these ages to reflect that prograde metamorphism and deformation within the Main Central Thrust Zone (MCTZ) was underway by c. 23 Ma. U/Pb crystallization ages of monazite and xenotime in a deformed kyanite‐bearing leucogranite and kyanite‐garnet migmatites about 2 km above the MCT suggest crystallization of partial melts at 18–16 Ma. Higher in the hanging wall, south‐verging shear bands filled with leucogranite and pegmatite yield U/Pb crystallization ages for monazite and xenotime of 14–15 Ma, and a 1–2 km thick leucogranite sill is 13.4 ± 0.2 Ma. Thus, metamorphism, plutonism and deformation within the GHS continued until at least 13 Ma. P‐T conditions at this time are estimated to be 500–600 °C and near 5 kbar. From these data we infer that the exhumation of the MCT zone from 35 to 45 km to around 18 km, occurred from 18 to 16 to c. 13 Ma, yielding an average exhumation rate of 3–9 mm year?1. This process of exhumation may reflect the ductile extrusion (by channel flow) of the MCTZ from between the overlying Tibetan Plateau and the underthrusting Indian plate, coupled with rapid erosion.  相似文献   

11.
Metapelitic rock samples from the NE Shackleton Range, Antarctica,include garnet with contrasting zonation patterns and two agespectra. Garnet porphyroblasts in K-rich kyanite–sillimanite–staurolite–garnet–muscovite–biotite schistsfrom Lord Nunatak show prograde growth zonation, and give Sm–Ndgarnet, U–Pb monazite and Rb–Sr muscovite ages of518 ± 5, 514 ± 1 and 499 ± 12 Ma, respectively.Geothermobarometry and PT pseudo-section calculationsin the model system CaO–Na2O–K2O– TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2Oare consistent with garnet growth during prograde heating from540°C/7 kbar to 650°C/7·5 kbar, and partial resorptionduring a subsequent PT decrease to <650°C at <6kbar. All data indicate that rocks from Lord Nunatak were affectedby a single orogenic cycle. In contrast, garnet porphyroblastsin K-poor kyanite–sillimanite– staurolite–garnet–cordierite–biotite-schistsfrom Meade Nunatak show two growth stages and diffusion-controlledzonation. Two distinct age groups were obtained. Laser ablationplasma ionization multicollector mass spectrometry in situ analysesof monazite, completely enclosed by a first garnet generation,yield ages of c. 1700 Ma, whereas monazite grains in open garnetfractures and in most matrix domains give c. 500 Ma. Both agegroups are also obtained by U–Pb thermal ionization massspectrometry analyses of matrix monazite and zircon, which fallon a discordia with lower and upper intercepts at 502 ±1 and 1686 ± 2 Ma, respectively. Sm–Nd garnet datingyields an age of 1571 ± 40 Ma and Rb–Sr biotiteanalyses give an age of 504 ± 1 Ma. Integrated geochronologicaland petrological data provide evidence that rocks from MeadeNunatak underwent a polymetamorphic Barrovian-type metamorphism:(1) garnet 1 growth and subsequent diffusive garnet annealingbetween 1700 and 1570 Ma; (2) garnet 2 growth during the RossOrogeny at c. 500 Ma. During the final orogenic event the rocksexperienced peak PT conditions of about 650°C/7·0kbar and a retrograde stage at c. 575°C/4·0 kbar. KEY WORDS: garnet microtexture; PT pseudosection; geochronology; polymetamorphism; Shackleton Range; Antarctica  相似文献   

12.
Sm–Nd garnet‐whole rock geochronology, phase equilibria, and thermobarometry results from Garnet Ledge, south‐eastern Alaska, provide the first precisely constrained P–T–t path for garnet zone contact metamorphism. Garnet cores from two crystals and associated whole rocks yield a four point isochron age for initial garnet growth of 89.9 ± 3.6 Ma. Garnet rims and matrix minerals from the same samples yield a five point isochron age for final garnet growth of 89 ± 1 Ma. Six size fractions of zircon from the adjacent pluton yield a concordant U–Pb age of 91.6 ± 0.5 Ma. The garnet core and rim, and zircon ages are compatible with single‐stage garnet growth during and/or after pluton emplacement. All garnet core–whole rock and garnet rim‐matrix data from the two samples constrain garnet growth duration to ≤5.5 my. A garnet mid‐point and the associated matrix from one of the two garnet crystals yield an age of 90.0 ± 1.0 Ma. This mid‐point result is logically younger than the 90.7 ± 5.6 Ma core–whole rock age and older than the 88.4 ± 2.5 Ma rim‐matrix age for this sample. A MnNaCaKFMASH phase diagram (P–T pseudosection) and the garnet core composition are used to predict that cores of garnet crystals grew at 610 ± 20 °C and 5 ± 1 kbar. This exceeds the temperature of the garnet‐in reaction by c. 50 °C and is compatible with overstepping of the garnet growth reaction during contact metamorphism. Intersection of three reactions involving garnet‐biotite‐sillimanite‐plagioclase‐quartz calculated by THERMOCALC in average P–T mode, and exchange thermobarometry were used to estimate peak metamorphic conditions of 678 ± 58 °C at 6.1 ± 0.9 kbar and 685 ± 50 °C at 6.3 ± 1 kbar, respectively. Integration of pressure, temperature, and age estimates yields a pressure‐temperature‐time path compatible with near isobaric garnet growth over an interval of c. 70 °C and c. 2.3 my.  相似文献   

13.
The last (decompression) stages of the metamorphic evolution can modify monazite microstructure and composition, making it difficult to link monazite dates with pressure and temperature conditions. Monazite and its breakdown products under fluid‐present conditions were studied in micaschist recovered from the cuttings of the Pontremoli1 well, Tuscany. Coronitic microstructures around monazite consist of concentric zones of apatite + Th‐silicate, allanite and epidote. The chemistry and microstructure of the monazite grains, which preserve a wide range of chemical dates ranging from Upper Carboniferous to Tertiary times, suggest that this mineral underwent a fluid‐mediated coupled dissolution–reprecipitation and crystallization processes. Consideration of the chemical zoning (major and selected trace elements) in garnet, its inclusion mineralogy (including xenotime), monazite breakdown products and phase diagram modelling allow the reaction history among accessory minerals to be linked with the reconstructed P–T evolution. The partial dissolution and replacement by rare earth element‐accessory minerals (apatite–allanite–epidote) occurred during a fluid‐present decompression at 510 ± 35 °C. These conditions represent the last stage of a metamorphic history consisting of a thermal metamorphic peak at 575 °C and 7 kbar, followed by the peak pressure stage occurring at 520 °C and 8 kbar. An anticlockwise P–T path or two clockwise P–T loops can fit the above P–T constraints. The former path may be related to a context of late Variscan strike‐slip‐dominated exhumation with minor Tertiary (Alpine‐related) reworking and fluid infiltration, while the latter requires an Oligocene–Miocene fluid‐present tectono‐metamorphic overprint on the Variscan paragenesis.  相似文献   

14.
Sm–Nd (garnet), U–Pb (monazite) and Rb–Sr (biotite) ages from a composite migmatite sample (Damara orogen, Namibia) constrain the time of high‐grade regional metamorphism and the duration of regional metamorphic events. Sm–Nd garnet whole‐rock ages for a strongly restitic melanosome and an adjacent intrusive leucosome yield ages of 534±5, 528±11 and 539±8 Ma. These results provide substantial evidence for pre‐500 Ma Pan‐African regional metamorphism and melting for this segment of the orogen. Other parts of the migmatite yield younger Sm–Nd ages of 488±9 Ma for melanosome and 496±10, 492±5 and 511±16 Ma for the corresponding leucosomes. Garnet from one xenolith from the leucosomes yields an age of 497±2 Ma. Major element compostions of garnet are different in terms of absolute abundances of pyrope and spessartine components, but the flat shape of the elemental patterns suggests late‐stage retrograde equilibration. Rare earth element compositions of the garnet from the different layers are similar except for garnet from the intrusive leucosome suggesting that they grew in different environments. Monazite from the leucosomes is reversely discordant and records 207Pb/235U ages between 536 and 529 Ma, indicating that this monazite represents incorporated residual material from the first melting event. Monazite from the mesosome MES 2 and the melanosome MEL 3 gives 207Pb/235U ages of 523 and 526 Ma, and 529 and 531 Ma, respectively, which probably indicates another thermal event. Previously published 207Pb/235U monazite data give ages between 525 and 521 Ma for composite migmatites, and 521 and 518 Ma for monazite from neosomes. Monazite from granitic to granodioritic veins indicates another thermal event at 507–505 Ma. These ages are also recorded in 207Pb/235U monazite data of 508 Ma from the metasediment MET 1 from the migmatite and also in the Sm–Nd garnet ages obtained in this study. Taken together, these ages indicate that high‐grade metamorphism started at c. 535 Ma (or earlier) and was followed by thermal events at c. 520 Ma and c. 505 Ma. The latter event is probably connected with the intrusion of a large igneous body (Donkerhoek granite) for which so far only imprecise Rb–Sr whole‐rock data of 520±15 Ma are available. Rb–Sr biotite ages from the different layers of the migmatite are 488, 469 and 473 Ma. These different ages indicate late‐stage disturbance of the Rb–Sr isotopic system on the sub‐sample scale. Nevertheless, these ages are close to the youngest Sm–Nd garnet ages, indicating rapid cooling rates between 13 and 20°C Ma?1 and fast uplift of this segment of the crust. Similar Sm–Nd garnet and U–Pb monazite ages suggest that the closure temperatures for both isotopic systems are not very different in this case and are probably similar or higher than the previously estimated peak metamorphic temperatures of 730±30°C. The preservation of restitic monazite in leucosomes indicates that dissolution of monazite in felsic water‐undersaturated peraluminous melts can be sluggish. This study shows that geochronological data from migmatites can record polymetamorphic episodes in high‐grade terranes that often contain cryptic evidence for the nature and timing of early metamorphic events.  相似文献   

15.
U(–Th)–Pb geochronology, geothermobarometric estimates and macro‐ and micro‐structural analysis, quantify the pressure–temperature–time–deformation (PTtD) history of Everest Series schist and calcsilicate preserved in the highest structural levels of the Everest region. Pristine staurolite schist from the Everest Series contains garnet with prograde compositional zoning and yields a P–T estimate of 649 ± 21 ° C, 6.2 ± 0.7 kbar. Other samples of the Everest Series contain garnet with prograde zoning and staurolite with cordierite overgrowths that yield a P–T estimate of 607 ± 25 ° C, 2.9 ± 0.6 kbar. The Lhotse detachment (LD) marks the base of the Everest Series. Structurally beneath the LD, within the Greater Himalayan Sequence (GHS), garnet zoning is homogenized, contains resorption rinds and yields peak temperature estimates of ~650 ± 50 ° C. P–T estimates record a decrease in pressure from ~6 to 3 kbar and equivalent temperatures from structurally higher positions in the overlying Everest Series, through the LD and into GHS. This transition is interpreted to result from the juxtaposition of the Everest Series in the hangingwall with the GHS footwall rocks during southward extrusion and decompression along the LD system. An age constraint for movement on the LD is provided by the crystallization age of the Nuptse granite (23.6 ± 0.7 Ma), a body that was emplaced syn‐ to post‐solid‐state fabric development. Microstructural evidence suggests that deformation in the LD progressed from a distributed ductile shear zone into the structurally higher Qomolangma detachment during the final stages of exhumation. When combined with existing geochronological, thermobarometric and structural data from the GHS and Main Central thrust zone, these results form the basis for a more complete model for the P–T–t–D evolution of rocks exposed in the Mount Everest region.  相似文献   

16.
The processes leading to the assembly of the Rodinia supercontinent through Grenvillian collisional orogeny are relatively well known. In contrast, accretionary orogenic processes occurring at the supercontinent periphery following Rodinia assembly are poorly understood. To fill this gap, we have identified metamorphic rocks in the Mongolia collage of the Central Asian Orogenic Belt, where numerous data testify for Meso- to Neoproterozoic magmatic reworking. The tectono-metamorphic evolution of the peri-Siberian tract of the Central Asian Orogenic Belt is mainly characterized by the late Proterozoic–early Cambrian (Baikalian) cycle. However, we document here a Tonian age metamorphism at the northern part of the Precambrian Baidrag block, previously considered as a typical example of the Baikalian metamorphic belt. This study incorporates zircon and in-situ monazite geochronology linked to P-T modelling of Grt-Sil-Ky migmatite gneiss and Grt-St micaschist. Grt-Sil-Ky gneiss records initial burial to the sillimanite stability field at ~720 °C and 6.0 kbar followed by further burial to the kyanite stability field at ~750 °C and ~9 kbar and decompression to ~650 °C and ~8 kbar. The Grt-St schist records initial burial to the staurolite stability field at ~620 °C and 6 kbar, followed by further burial to ~590 °C and 8.5 kbar. The monazite data yield a continuum of 207Pb-corrected 238U/206Pb dates of ca. 926–768 Ma in the Grt-Sil-Ky gneiss, and ca. 937–754 Ma in the Grt-St schist. Based on monazite textural positon, internal zoning, and REE patterns, the time of prograde burial to 6.0 kbar under a thermal gradient of 27–32 °C/km is estimated at ca. 890–853 Ma. It is not clear whether such high-grade conditions prevailed until a phase of further burial under a geothermal gradient of 18–22 °C/km dated at ca. 835–815 Ma. The late monazite recrystallization at ca. 790 Ma is related to decompression. Additionally, monazite with dates of ca. 568–515 Ma occur as whole grains or as rims with sharp boundaries on Tonian monazite in Grt-St schist suggesting a minor Baikalian overprint. Metamorphic zircon rims with Th/U ratios of ~ 0.01–0.06 in Grt-Sil-Ky gneiss with 877 ± 7 Ma age, together with lower intercepts of detrital zircon discordia lines in both Grt-Sil-Ky gneiss and Grt-St schist further support the Tonian age of high-grade metamorphism. The anticlockwise P-T evolution is interpreted as a result of thickening of a supra-subduction extensional and hot edifice – probably of back-arc or arc type. This kind of prograde metamorphism has so far only been described on the northern part of the Tarim block and was interpreted to be a result of initiation of peri-Rodinian subduction of the Mirovoi Ocean. The geodynamic consequences of a unique discovery of Tonian metamorphism are discussed in terms of tectonic switch related to initiation of peri-Rodinian oceanic subduction during supercontinent assembly, followed by strong mechanical coupling potentially related to onset of Rodinia dispersal.  相似文献   

17.
SHRIMP U–Pb geochronology and monazite EPMA chemical dating from the southeast Gawler Craton has constrained the timing of high-grade reworking of the Early Paleoproterozoic (ca 2450 Ma) Sleaford Complex during the Paleoproterozoic Kimban Orogeny. SHRIMP monazite geochronology from mylonitic and migmatitic high-strain zones that deform the ca 2450 Ma peraluminous granites indicates that they formed at 1725 ± 2 and 1721 ± 3 Ma. These are within error of EPMA monazite chemical ages of the same high-strain zones which range between 1736 and 1691 Ma. SHRIMP dating of titanite from peak metamorphic (1000 MPa at 730°C) mafic assemblages gives ages of 1712 ± 8 and 1708 ± 12 Ma. The post-peak evolution is constrained by partial to complete replacement of garnet–clinopyroxene-bearing mafic assemblages by hornblende–plagioclase symplectites, which record conditions of ~600 MPa at 700°C, implying a steeply decompressional exhumation path. The timing of Paleoproterozoic reworking corresponds to widespread deformation along the eastern margin of the Gawler Craton and the development of the Kalinjala Shear Zone.  相似文献   

18.
Phase equilibrium modelling and monazite microprobe dating were used to characterize the polymetamorphic evolution of metapelites from the northern part of the Vepor Unit, West Carpathians. Three generations of garnet and associated metamorphic assemblages found in these rocks correspond to three distinct metamorphic events related to the Variscan orogeny, a Permian phase of crustal extension and the Alpine orogeny. Variscan staurolite‐bearing and Alpine chloritoid‐bearing assemblages record medium‐temperature and medium‐pressure regional metamorphisms reaching 540–570 °C/5–7.5 kbar and 530–550 °C/5–6.5 kbar respectively. The Permian metamorphic assemblage involves garnet, andalusite, sillimanite, biotite, muscovite, plagioclase and corundum and locally forms silica‐undersaturated andalusite‐biotite‐spinel coronas around older staurolite. The transition from andalusite to sillimanite indicates a prograde low‐pressure and medium‐temperature metamorphism characterized by temperature increase from 500 to 650 °C at ~3 kbar. As accessory monazite is abundant in the rocks, an attempt was made to derive its age of formation by means of electron microprobe‐based Th‐U‐Pb chemical dating. Despite the polymetamorphic nature of the metapelites, the monazite yielded uniform Permian ages. Microstructures confirm that monazite was formed in relation to the low‐pressure and medium‐temperature paragenesis, and the weighted average ages obtained for two different samples are 278 ± 5 and 275 ± 12 Ma respectively. The virtual lack of Variscan and Alpine monazite populations points to interesting aspects concerning the growth systematics of monazite in metamorphic rocks.  相似文献   

19.
Petrographic analysis of peraluminous metapelites from two separate regions of the Karakoram metamorphic complex, North Pakistan, has produced new insights into the P–T–t evolution of the deep crust along the south Asian margin before and after the India‐Asia collision. Average P–T estimates and pseudosection construction in the MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (MnNCKFMASHTO) system using THERMOCALC have provided prograde and peak metamorphic conditions and U–Pb geochronology of metamorphic monazite has provided age constraints. Two new events in the tectonothermal evolution of the Hunza Valley have been documented; an andalusite‐grade contact metamorphic event at 105.5 ± 0.8 Ma, at unknown P–T conditions, associated with the widespread subduction‐related granite magmatism before the India‐Asia collision, and a kyanite‐grade overprint of sillimanite‐grade rocks with peak P–T conditions of ~7.8 kbar, 645 °C at 28.2 ± 0.8 Ma associated with the ongoing India‐Asia collision. A kyanite‐grade event observed in the Baltoro region with similar peak P–T conditions (~7.4–8.0 kbar, ~640–660 °C) is interpreted to have occurred sometime after 21.8 ± 0.6 Ma, however, previous studies have suggested that this event commenced in the Baltoro as early as c. 28 Ma. A calculated prograde P–T path for this kyanite‐grade event in the Baltoro indicates that garnet first nucleated on an initially high geothermal gradient (~30 °C km?1) and grew during a significant increase in pressure of ~2.6 kbar over a temperature increase of ~100 °C. This event is thought to represent evidence for conductive heating of the middle crust during early stages of intrusion and lateral migration of the Baltoro batholith, with thermal conditions comparable with tectonic models of magmatic over‐accretion.  相似文献   

20.
LA-ICP-MS U–Pb geochronological data from metamorphic monazite in granulite-facies metapelites in the Barossa Complex, southern Australia, yield ages in the range 1580–1550 Ma. Metapelitic rocks from the Myponga and Houghton Inliers contain early biotite–sillimanite-bearing assemblages that underwent partial melting to produce peak metamorphic garnet–sillimanite-bearing anatectic assemblages. Phase equilibrium modelling suggests a clockwise P–T evolution with peak temperatures between 800 and 870°C and peak pressures of 8–9 kbar, followed by decompression to pressures of ~6 kbar. In combination with existing age data, the monazite U–Pb ages indicate that the early Mesoproterozoic evolution of the Barossa Complex is contemporaneous with other high geothermal gradient metamorphic terranes in eastern Proterozoic Australia. The areal extent of early Mesoproterozoic metamorphism in eastern Australia suggests that any proposed continental reconstructions involving eastern Proterozoic Australia should share a similar tectonothermal history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号