首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
The Global Imager (GLI) aboard the Advanced Earth Observing Satellite-II (ADEOS-II) made global observations from 2 April 2003 to 24 October 2003. In cooperation with several institutes and scientists, we obtained quality controlled match-ups between GLI products and in-situ data, 116 for chlorophyll-a concentration (CHLA), 249 for normalized water-leaving radiance (nLw) at 443 nm, and 201 for aerosol optical thickness at 865 nm (Tau_865) and Angstrom exponent between 520 and 865 nm (Angstrom). We evaluated the GLI ocean color products and investigated the causes of errors using the match-ups. The median absolute percentage differences (MedPD) between GLI and in-situ data were 14.1–35.7% for nLws at 380–565 nm, 52.5–74.8% nLws at 625–680 nm, 47.6% for Tau_865, 46.2% for Angstrom, and 46.6% for CHLA, values that are comparable to the ocean-color products of other sensors. We found that some errors in GLI products are correlated with observational conditions; nLw values were underestimated when nLw at 680 nm was high, CHLA was underestimated in absorptive aerosol conditions, and Tau_865 was overestimated in sunglint regions. The error correlations indicate that we need to improve the retrievals of the optical properties of absorptive aerosols and seawater and sea surface reflection for further applications, including coastal monitoring and the combined use of products from multiple sensors.  相似文献   

2.
The performance of the “version 2” Global Imager (GLI) standard atmospheric correction algorithm, which includes empirical absorptive aerosol correction and sun glint correction, was evaluated using data collected with handheld above-water SIMBADA radiometers during 23 cruises of opportunity (research vessels, merchant ships), mostly in the North Atlantic and European seas. A number of 100 match-up data sets of GLI-derived and SIMBADA-measured normalized water-leaving radiance (nL W ) and aerosol optical thickness (AOT) were sorted out, using objective selection criteria, and analyzed. The Root-Mean-Square (RMS) difference between GLI and SIMBADA nL W was about 0.32 μW/cm2/nm/sr for the 412 nm band, showing improvement by 30% in RMS difference with respect to the conventional “version 1” GLI atmospheric correction algorithm, and the mean difference (or bias) was reduced significantly. For AOT, the RMS difference was 0.1 between GLI estimates and SIMBADA measurements and the bias was small (a few 0.01), but the ?ngstr?m exponent was systematically underestimated, by 0.4 on average, suggesting a potential GLI calibration offset in the near infrared. The nL W differences were not correlated to AOT, although performance was best in very clear conditions (AOT less than 0.05 in the 865 nm band). Despite the relatively large scatter between estimated and measured nL W , the derived chlorophyll-a concentration estimates, applying the same ratio algorithm (GLI OC4V4) to GLI and SIMBADA, were consistent and highly correlated in the range of 0.05–2 μg/l. The large variability in chlorophyll-a concentration estimate for clear clean water areas (e.g. with the concentration range lower than about 0.05 μg/l) turns out to be due to the nature of the “band ratio” based in-water algorithm.  相似文献   

3.
基于POLDER多角度观测数据,对其大气校正算法进行了研究。该大气校正算法中,大气分子散射利用多次散射加偏振的精确瑞利散射来计算,同时,对太阳耀斑及白帽散射进行了校正。由本文大气校正算法可以反演得到气溶胶光学厚度以及海水反射率,与POLDER二级产品相比表明,利用该算法反演所得产品效果较好,相对误差在10%左右,从而为未来中国多角度水色遥感的发展提供一些参考。  相似文献   

4.
Ocean color products retrieval and validation around China coast with MODIS   总被引:1,自引:1,他引:0  
Waters along China coast are very turbid with high concentrations of suspended sediment nearly all the time,especially at the Hangzhou Bay,the Changjiang (Yangtze) River Estuary and the shoal along Jiangsu Province.In these turbid and optically complex waters,the standard MODIS ocean color products tend to have invalid values.Because the water-leaving radiances in the near-infrared (NIR) are significant resulting from the strong scattering of suspended particles,the standard MODIS atmospheric correction algorithm often gets no results or produces significant errors.And because of the complex water optical properties,the OC3 model used in the standard MODIS data processing tends to get extremely high chlorophyll-a (Chl-a) concentrations.In this paper,we present an atmospheric correction approach using MODIS short wave infrared (SWIR) bands based on the fact that water-leaving radiances are negligible in the SWIR region because of the extreme strong absorption of water even in turbid waters.A regional Chl-a concentration estimation model is also constructed for MODIS from in situ data.These algorithms are applied to MODIS Aqua data processing in the China coastal regions.In situ data collected in the Yellow Sea and the East China Sea in spring and autumn,2003 are used to validate the performance.Reasonably good results have been obtained.It is noted that water-leaving reflectance in the NIR bands are significant in waters along the China coast with high sediment loadings.The satellite derived and in-situ reflectance spectra can match in the turbid waters along China coast,and there is relatively good linear relationship between satellite derived and in-situ reflectance.The RMSE value of Rrs(λ) is 0.0031 sr ?1 for all the nine ocean color bands (412 to 869 nm).The satellite-derived Chl-a value is in the reasonable range and the root mean square percentage difference is 46.1%.  相似文献   

5.
This paper first describes the atmospheric correction algorithm for OCTS visible band data used at NASDA/EOC. Sharing a basic structure with Gordon and Wang’s Sea WiFS algorithm, it uses 10 candidate aerosol models including the “Asian dust model” introduced in consideration of the unique feature of aerosols over the east Asian waters. Based on the observations at 670 and 865 nm bands, the algorithm selects a pair of aerosol models that account best for the observed spectral reflectances, and synthesizes the aerosol reflectance used for the atmospheric correction. Two different schemes for determining the value of the parameter for the aerosol model selection are presented and their anticipated estimation error is analyzed in terms of retrieved water reflectance at 443 nm. The results of our numerical simulation show that the standard deviation of the estimation error of the “weighted average” scheme is mostly within the permissible level of ±0.002, reducing the error by 18% on average compared to the “simple average” scheme. The paper further discusses the expected error under the old CZCS-type atmospheric correction, which assumes constant aerosol optical properties throughout the given image. Although our algorithm has a better performance than the CZCS algorithm, further analysis shows that the error induced by the assumption taken in the algorithm that the water-leaving radiance at 670 nm band is negligibly small may be large in high pigment concentration waters, indicating the necessity for future improvements.  相似文献   

6.
FY-3A/MERSI, ocean color algorithm, products and demonstrative applications   总被引:1,自引:0,他引:1  
A medium resolution spectral imager (MERSI) on-board the first spacecraft of the second generation of China’s polar-orbit meteorological satellites FY-3A, is a MODIS-like sensor with 20 bands covering visible to thermal infrared spectral region. FY-3A/MERSI is capable of making continuous global observations, and ocean color application is one of its main targets. The objective is to provide information about the ocean color products of FY-3A/MERSI, including sensor calibration, ocean color algorithms, ocean color products validation and applications. Although there is a visible on-board calibration device, it cannot realize the on-board absolute radiometric calibration in the reflective solar bands. A multisite vicarious calibration method is developed, and used for monitoring the in-flight response change and providing post-launch calibration coefficients updating. FY-3A/MERSI ocean color products consist of the water-leaving reflectance retrieved from an atmospheric correction algorithm, a chlorophyll a concentration (CHL1) and a pigment concentration (PIG1) from global empirical models, the chlorophyll a concentration (CHL2), a total suspended mater concentration (TSM) and the absorption coefficient of CDOM and NAP (YS443) from China’s regional empirical models. The atmospheric correction algorithm based on lookup tables and ocean color components concentration estimation models are described. By comparison with in situ data, the FY-3A/MERSI ocean color products have been validated and preliminary results are presented. Some successful ocean color applications such as algae bloom monitoring and coastal suspended sediment variation have demonstrated the usefulness of FY-3A/MERSI ocean color products.  相似文献   

7.
Atmospheric correction for China''s coastal water color remote sensing   总被引:14,自引:0,他引:14  
INTRODUcrIONMeasurements from satellite have demonstrated that space sensor can be applied to measurethe sPectra of water-leaving radiance and proven that ocean color remote sensing is a powerfultcol for understanding oceanic, biological and physical processes. One sPecial ocean color satel-lite heaStar was successfully launched in August l997. It has brought to oceanOgraphers a wel-comed and improvd renewal of the ocean color of CZCS, VHRSR and arS. ffeaWiFS con-tributes much bette…  相似文献   

8.
气溶胶的光学厚度与反射率比的处理方法   总被引:2,自引:0,他引:2  
气溶胶光学厚度与气溶胶反射率比都是大气校正所需的重要大气参数,同时也是海洋水色卫星主要的数据产品,它们的测量精度将直接到卫星数据产品正演的精度和卫星数据产品的应用。文章在简述气溶胶光学厚度与气溶胶反射率比的基本测量原理和处理方法的基础上,结合多次试验数据结果进行简要的评价。  相似文献   

9.
提出一种适用于中国近岸二类水体的大气校正方法,解决了水色遥感软件SEADAS由于无法计算近岸的二类水体离水辐射率而简单地将其设为0的问题。应用该方法计算出的离水辐射率反演了渤海表层水体的叶绿素浓度,并选取近岸同期监测点的实测值对反演结果进行验证。通过对比反演值与实测值,多数相对误差值均较小于10%,证明了反演结果较为准确,同时反演的叶绿素浓度的空间分布也符合冬季渤海的水团和环流状况。这说明应用改进后的大气校正方法能够很好地用于渤海表层水体的叶绿素浓度反演。  相似文献   

10.
水色遥感大气校正方程的研究进展   总被引:1,自引:0,他引:1  
李刚  刘铁根 《海洋技术学报》2007,26(3):64-66,69
大气校正是水色遥感研究中必不可少的一步,文中概括总结了对于一类水体、二类水体的大气校正以及在每类水体中对气溶胶单散射、复散射两种情况下的大气校正方法,列出了比较实用的计算流程。  相似文献   

11.
A practical algorithm of atmospheric correction for turbid coastal and inland waters is provided. The present algorithm uses the property that the water-leaving radiance at 412 nm increases very tittle with the increasing of water turbidity. Thus, in very turbid coastal and inland waters, the radiance at 412 nm can be used to estimate the aerosol scattering radiance at 865 nm. The performance of the new algorithm is validated with simulation for several cases. It is found that the retrieved remotely sensed reflectance is usually with error less than 10% for the first six bands of SeaWiFS. This new algorithm is also tested under various atmospheric conditions in the Changjiang River Estuary and the Hangzhou Bay where the sediment concentration is very high and the standard SeaWiFS atmospheric correction algorithm creates a mask due to atmospheric correction failure. The result proves the efficiency of this simple algorithm in reducing the errors of the water-leaving radiance retrieving using SeaWiFS satellite data.  相似文献   

12.
This paper describes an atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI) and its early phase evaluation. This algorithm was implemented in GOCI Data Processing System (GDPS) version 1.1. The algorithm is based on the standard SeaWiFS method, which accounts for multiple scattering effects and partially updated in terms of turbid case-2 water correction, optimized aerosol models, and solar angle correction per slot. For turbid water correction, we used a regional empirical relationship between water reflectance at the red (660 nm) and near infrared bands (745 nm and 865 nm). The relationship was derived from turbid pixels in satellite images after atmospheric correction, and processed using aerosol properties derived for neighboring non-turbid waters. For validation of the GOCI atmospheric correction, we compared our results with in situ measurements of normalized water leaving radiance (nL w ) spectra that were obtained during several cruises in 2011 around Korean peninsula. The match up showed an acceptable result with mean ratio of the GOCI to in situ nL w (??), 1.17, 1.24, 1.26, 1.15, 0.86 and 0.99 at 412 nm, 443 nm, 490 nm, 555 nm, 660 nm and 680 nm, respectively. It is speculated that part of the deviation arose from a lack of vicarious calibration and uncertainties in the above water nLw measurements.  相似文献   

13.
气溶胶光学厚度的时空变化   总被引:2,自引:0,他引:2  
在大气中气溶胶微粒是一种重要的大气微量成分。气溶胶光学厚度也是大气校正所需的重要大气参数,同时也是海洋水色卫星主要的数据产品。由于气溶胶光学厚度的时空变化较大,所以如何准确获取大气校正和卫星数据产品真实性检验所需的气溶胶光学厚度则是至关重要的。在简述气溶胶光学性质的基础上,并结合2002年6月HY—1南海实验数据来阐述现场气溶胶光学厚度的准确获取。  相似文献   

14.
The first Geostationary Ocean Color Imager (GOCI) launched by South Korea in June 2010 constitutes a major breakthrough in marine optics remote-sensing for its capabilities to observe the diurnal cycles of the ocean. The light signal recorded at eight wavelengths by the sensor allows, after correction for Solar illumination and atmospheric effects, the retrieval of coloured biogeochemical products such as the chlorophyll, suspended sediment and coloured dissolved organic matter concentrations every hour between 9:00 am and 4:00 pm local time around the Korean peninsula. However operational exploitation of the mission needs beforehand a sound validation of first the radiometric calibration, i.e. inspection of the top-of-atmosphere reflectance, and second atmospheric corrections for retrieval of the water-leaving reflectance at sea surface. This study constitutes a contribution to the quality assessment of the GOCI radiometric products generated by the Korea Ocean Satellite Center (KOSC) through comparison with concurrent data from the MODerate-resolution Imaging Spectroradiometer (MODIS, NASA) and MEdium Resolution Imaging Spectrometer (MERIS, ESA) sensors as well as in situ measurements. These comparisons are made with spatially and temporally collocated data. We focus on Rayleigh-corrected reflectance (?? RC ) and normalized remote-sensing marine reflectance (nRrs). Although GOCI compares reasonably well with MERIS and MODIS, what demonstrates the success of Ocean Colour in geostationary orbit, we show that the current GOCI atmospheric correction systematically masks out data over very turbid waters and needs further examination and correction for future release of the GOCI products.  相似文献   

15.
Top-of-atmosphere reflectance measured above the ocean in the visible and near infrared, after correction for molecular scattering, may be linearly combined to retrieve surface chlorophyll-a abundance directly, without explicit correction for aerosol scattering and absorption. The coefficients of the linear combination minimize the perturbing effects, which are modeled by a polynomial, and they do not depend on geometry. The technique has been developed for Global Imager (GLI) spectral bands centered at 443, 565, 667, and 866 nm, but it is applicable to other sets of spectral bands. Theoretical performance is evaluated from radiation-transfer simulations for a wide range of geophysical and angular conditions. Using a polynomial with exponents of −2, −1, and 0 to determine the coefficients, the residual influence of the atmosphere on the linear combination is within ±0.001 in most cases, allowing chlorophyll-a abundance to be retrieved with a root-mean-squared (RMS) error of 8.4% in the range 0.03–3 mgm−3. Application of the method to simulated GLI imagery shows that estimated and actual chlorophyll-a abundance are in agreement, with an average RMS difference of 32.1% and an average bias of −2.2% (slightly lower estimated values). The advantage of the method resides in its simplicity, flexibility, and rapidity of execution. Knowledge of aerosol amount and type is avoided. There is no need for look-up tables of aerosol optical properties. Accuracy is adequate, but depends on the polynomial representation of the perturbing effects and on the bio-optical model selected to relate the linear combination to chlorophyll-a abundance. The sensitivity of the linear combination to chlorophyll-a abundance can be optimized, and the method can be extended to the retrieval of other bio-optical variables.  相似文献   

16.
The Changjiang (Yangtze) Estuary is located in the East China Sea shelf with shallow water. Affected by the tide mixing and the runoff of the Changjiang River and the Qiantang River, the turbidity is very high. Generally, the water-leaving radiance is high in the turbid water because of the large particle scattering. Based on the in-situ data and ocean color remote sensing data of SeaWiFS, it was found that there was a black water region with the normalized water-leaving radiances less than 0.5 mW/(cm2·μm2·...  相似文献   

17.
王浩  黄文骞  王健 《海洋测绘》2021,41(2):44-48
针对目前传统大气辐射传输模型使用时难以确定气溶胶光学厚度的问题,提出一种仅依靠影像自身信息的大气校正算法,该算法针对南海水域清澈的特点,将暗像元法和大气辐射传输模型相结合,通过暗像元匹配和迭代运算确定气溶胶。实验结果表明:该算法与Sen2cor算法相比大气校正后的地物剖面光谱曲线基本一致,校正后影像能够反映出水深与蓝绿波段对数比值较好的相关性,具有较好的使用价值。  相似文献   

18.
我国海区SeaWiFS资料大气校正   总被引:13,自引:1,他引:13  
利用光谱辐射传输理论,结合海上同步实测资料,开发出我国海区SeaWiFS资料大气校正模型。经卫星资料处理结果比对,本模型在一类水体,基本消除了412nm和443nm波段离水辐射率小于0的现象;在二类水体,利用临近一类水体的大气条件进行了有效的大气校正;同时建立了670nm,765nm,865nm波段的大气校正模型,这三个面适用于高浓度悬浮泥沙的信息提取。本模型用于处理我国海区的SeaWiFS资料比美国NASA模型更适合我国海区特定的大气和海洋环境,为SeaWiFS资料海洋水色信息提取和我国海洋一号(HY-1)及风云一号(FY-1C)卫星资料的大气校正研究提供了技术基础。  相似文献   

19.
基于2007年8月海洋光学浮标在珠江口投放期间获得的近16天的实测生物光学数据, 对一次藻华过程中水体总吸收系数和水色光谱的变化特性及其相互关系进行了研究。结果表明, 藻华前后水体中非藻类物质尤其是有色溶解有机物在蓝光波段具有较强的吸收贡献, 而当藻华爆发时, 随着叶绿素a浓度的急剧增大, 浮游植物的吸收贡献明显增强; 各波段之间总吸收系数呈现出较好的线性相关关系, 吸收光谱蓝绿波段比值的变化对遥感反射率的光谱分布有重要的贡献; 据此建立了对水体总吸收系数反演的经验关系模型, 表现出较高的反演精度, 计算值与实测值之间相对偏差的均方根在可见光波段可控制在24%以内。  相似文献   

20.
A multi-spectral classification scheme is proposed to identify water with red tide(s) using satellite ocean color imagery obtained by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The study area was the eastern Seto Inland Sea in Japan, where serious red tides frequently occur. “Background Ocean Colors” (BOCs hereafter), or colors of water around a red tide or those of the water before/after a red tide, are calculated as the monthly climatological average of normalized water-leaving radiances (nLw) with 0.01 degree spatial resolution with SeaWiFS imagery. Criteria for detecting red-tide pixels are established from analyses of characteristics of the nLws (in the 443, 490, 510, and 555 nm bands) anomalies from BOCs and the nLw spectra together with the red-tide records in Osaka Bay. The proposed scheme can efficiently indicate the presence or absence of red tides for independent match-ups with 83% accuracy. Additional validations of specific events indicate that the algorithm performed well in the study area. These results suggest that the scheme is appropriate to detect red tides in the optically complex coastal water of the eastern Seto Inland Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号