首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 Hydrological landslide-triggering thresholds separate combinations of daily and antecedent rainfall or of rainfall intensity and duration that triggered landslides from those that failed to trigger landslides. They are required for the development of landslide early warning systems. When a large data set on rainfall and landslide occurrence is available, hydrological triggering thresholds are determined in a statistical way. When the data on landslide occurrence is limited, deterministic models have to be used. For shallow landslides directly triggered by percolating rainfall, triggering thresholds can be established by means of one-dimensional hydrological models linked to the infinite slope model. In the case of relatively deep landslides located in topographic hollows and triggered by a slow accumulation of water at the soil-bedrock contact, simple correlations between landslide occurrence and rainfall can no longer be established. Therefore real-time failure probabilities have to be determined using hydrological catchment models in combination with the infinite slope model. Received: 15 October 1997 · Accepted: 25 June 1997  相似文献   

2.
 Landslide erosion has an established history in New Zealand. Some broad estimates of economic costs for short-term event damage, long-term landslide damage, and proactive measures are provided and compared on a national and international level. Frequency and magnitude analysis based on historical records of landslide-triggering rainstorms demonstrates that 1) landslides are a nationwide problem, 2) recognition and recording of these events is dependent on public awareness and therefore related to population distribution and extent of urbanized areas, and 3) deforestation increases the frequency of landslide events, but not necessarily the total magnitude of their impact. However, some regions such as Northland and Wellington in the North Island and Greymouth and North Otago in the South Island are more frequently and more strongly affected than others. Landslide occurrence in time and space, within representative study areas in Hawke's Bay, Wairarapa, and Wellington, is correlated with the climatic variable daily precipitation. Different regional hydrological thresholds for landslide triggering are established. Received: 15 Ocotober 1997 · Accepted: 25 June 1997  相似文献   

3.
Rainfall patterns for shallow landsliding in perialpine Slovenia   总被引:2,自引:0,他引:2  
This paper presents two types of analysis: an antecedent rainfall analysis based on daily rainfall and an intensity-duration analysis of rainfall events based on hourly data in perialpine Slovenia in the ?kofjelo?ko Cerkljansko hills. For this purpose, eight rainfall events that are known to have caused landslides in the period from 1990 to 2010 were studied. Over the observed period, approximately 400 records of landslides were collected. Rainfall data were obtained from three rain gauges. The daily rainfall from the 30 days before landslide events was investigated based on the type of landslides and their geo-environmental setting, the dates of confirmed landslide activity and different consecutive rainfall periods. The analysis revealed that the rainfall events triggering slope failure can be divided into two groups according to the different antecedent periods. The first group of landslides typically occurred after short-duration rainstorms with high intensity, when the daily rainfall exceeded the antecedent rainfall. The second group comprises the rainfall events with a longer antecedent period of at least 7 days. A comparison of the plotted peak and mean intensities indicates that the rainfall patterns that govern slope failure are similar but do not necessarily reflect the rainfall intensity at the time of shallow landslides in the Dav?a or Poljane areas, where the majority of the landslides occurred. Because of several limitations, the suggested threshold cannot be compared and evaluated with other thresholds.  相似文献   

4.
A combination of empirical and physically based hydrological models has been used to analyze historical data on rainfall and debris-flow occurrence in western Campania, to examine the correlation between rainfall and debris-flow events.

Rainfall data from major storms recorded in recent decades in western Campania were compiled, including daily series from several rain gauges located inside landslide areas, supplemented by hourly rainfall data from some of the principal storms.

A two-phase approach is proposed. During phase 1, soil moisture levels have been modelled as the hydrological balance between precipitation and evapotranspiration, on a daily scale, using the method of Thornthwaite [Geograph. Rev. 38 (1948) 55].

Phase 2 is related to the accumulation of surplus moisture from intense rainfall, leading to the development of positive pore pressures. These interactions take place on an hourly time scale by the “leaky barrel” (LB) model described by Wilson and Wiezoreck [Env. Eng. Geoscience, 1 (1995) 11]. In combination with hourly rainfall records, the LB model has been used to compare hydrological effects of different storms. The critical level of retained rain water has been fixed by the timing of debris-flow activity, related to recorded storm events.

New rainfall intensity–duration thresholds for debris-flow initiation in western Campania are proposed. These thresholds are related to individual rain gauge and assume a previously satisfied field capacity condition. The new thresholds are somewhat higher than those plotted by previous authors, but are thought to be more accurate and thus need less conservatism.  相似文献   


5.
A global database of 2,626 rainfall events that have resulted in shallow landslides and debris flows was compiled through a thorough literature search. The rainfall and landslide information was used to update the dependency of the minimum level of rainfall duration and intensity likely to result in shallow landslides and debris flows established by Nel Caine in 1980. The rainfall intensity–duration (ID) values were plotted in logarithmic coordinates, and it was established that with increased rainfall duration, the minimum average intensity likely to trigger shallow slope failures decreases linearly, in the range of durations from 10 min to 35 days. The minimum ID for the possible initiation of shallow landslides and debris flows was determined. The threshold curve was obtained from the rainfall data using an objective statistical technique. To cope with differences in the intensity and duration of rainfall likely to result in shallow slope failures in different climatic regions, the rainfall information was normalized to the mean annual precipitation and the rainy-day normal. Climate information was obtained from the global climate dataset compiled by the Climate Research Unit of the East Anglia University. The obtained global ID thresholds are significantly lower than the threshold proposed by Caine (Geogr Ann A 62:23–27, 1980), and lower than other global thresholds proposed in the literature. The new global ID thresholds can be used in a worldwide operational landslide warning system based on global precipitation measurements where local and regional thresholds are not available..  相似文献   

6.
Critical rainfall thresholds for landslides are powerful tools for preventing landslide hazard. The thresholds are commonly estimated empirically starting from rainfall events that triggered landslides in the past. The creation of the appropriate rainfall–landslide database is one of the main efforts in this approach. In fact, an accurate agreement between the landslide and rainfall information, in terms of location and timing, is essential in order to correctly estimate the rainfall–landslide relationships. A further issue is taking into account the average moisture conditions prior the triggering event, which reasonably may be crucial in determining the sufficient amount of precipitation. In this context, the aim of this paper is exploiting historical landslide and rainfall data in a spatial database for the derivation of critical rainfall thresholds for landslide occurrence in Sicily, southern Italy. The hourly rainfall events that caused landslides occurred in the twentieth century were specifically identified and reconstructed. A procedure was proposed to automatically convert rain guages charts recorded on paper tape into digital format and then to provide the cumulative rainfall hyetograph in digital format. This procedure is based on a segmentation followed by signal recognition techniques which allow to digitalize and to recognize the hyetograph automatically. The role of rainfall prior to the landslide events was taken into account by including in the analysis the rainfall occurred 5, 15 and 30 days before each landslide. Finally, cumulated rainfall duration thresholds for different exceedance probability levels were determined. The obtained thresholds resulted in agreement with the regional curves proposed by other authors for the same area; antecedent rainfall turned out to be particularly important in triggering landslides.  相似文献   

7.
The Bavarian Alps region is strongly affected by various natural hazards, mainly hydrological events (floods, debris flows), geomorphic/geological events (landslides, rock falls), and avalanches. Extraordinary floods, like in 2002 or in the summer of 2005 in south Bavaria, have again posed the question of the possible extent and frequency of recurrence of catastrophic events. To put risk assessment on a broader basis historical data about all kinds of past natural hazards were detected in the archives of local authorities and administrative offices for water management. More than 10,000 sources (written accounts, maps, and photographs) were collated in a database. The majority of this information reaches back to the middle of the 19th century. In addition, many documents referring to events dating back even as far as the middle age were found. The Historische Analyse von NaturGefahren (HANG, historical analysis of natural hazards) project at the University of Eichstaett mainly focuses on a small-scale examination of the data. Initial results of the data analysis show that most catastrophic events in the Bavarian Alps only affect parts of the area, but not the whole region. Therefore it is necessary to assess the risk potential on a local scale like valleys, the catchment areas of mountain streams, or even single streams. Firstly the presented data is aimed to help engineers in future planning of hazard-protection measures. Secondly the information can form a vital component to enhance our knowledge of hydrological and geomorphic/geological dynamics in the Alps.  相似文献   

8.
太湖沉积对流域极端降水和洪水响应的研究   总被引:2,自引:1,他引:1  
认识极端洪水特征和周期,急需建立长期洪水记录和序列。过去150 a来长江下游极端降水引发了多次太湖特大洪水,太湖湖泊沉积提供了长于观测资料的洪水记录。本文利用太湖中心开阔水域的近现代沉积,采用210Pb和137Cs测年法和粒度、磁学特征分析,与区域夏季降水和长江下游洪峰流量进行相关分析,恢复了太湖流域150 a来的历史洪水事件。根据长江下游极端夏季降水(Pjja≥90%百分位)和极端径流(Q≥90%百分位)以及历史文献记载,太湖流域自1840年以来约有24次特大洪水年,而湖泊沉积物砂级粒径与低频磁化率等特征能捕获与之对应的中洪水事件15次。这表明湖泊沉积记录能较好地反演过去洪水变化,为利用沉积记录认识百年极端洪水长周期变化和特征提供了沉积学、磁学等方面的科学依据。  相似文献   

9.
Database of geo-hydrological disasters for civil protection purposes   总被引:6,自引:2,他引:4  
This paper presents the results of a research concerning available historical information about natural hazards (landslides and floods) and consequent disasters in the Consortium of Mountain Municipalities of Valtellina di Tirano, in Northern Italy. A geo-referenced database, collecting information till 2008, was designed with the aim of using available data of historical events for hazard estimation and the definition of risk scenarios as a basis for Civil Protection planning and emergency management purposes. This database and related statistics about landslides and floods are shown, and a brief overview of historical disasters caused by natural hazards in the study area is presented. A case study showing how useful the database can be to define a simple but realistic scenario is described. Information availability and reliability is discussed and possible uncertainties are underlined. The study shows that collecting and making use of historical information for the definition of hypothetical scenarios and the evaluation of territorial threats is a fundamental source of knowledge to deal with future emergencies.  相似文献   

10.
In Portugal, few studies have been made of the historical floods of the RiverTagus (the longest in the Iberian Peninsula). This fact led to the study of theLower Tagus (Santarém region) using written historical documents,cartographic documents and hydrological data, consisting mainly of waterlevel records. With the support of the historical documents and the analysisof all the maps, it was possible to verify that the human intervention has beenfundamental in the morphological changes of the Tagus' channel. It becameaware that the river changed from a braided to a single channel with alternatebars. From the hydrological data, return periods for the floods were determined,using the Pearson Type 3 distribution. The selection of the most important floods,from 1855 to 1998, enabled to build a ``flood hazard scale' for this region.  相似文献   

11.
We present a review on studies focusing on memories in hydrological time series in the Yangtze Basin based on observational and reconstructed historical data.Memory appears as scaling of power spectra,S(f)~f-β,with 0 <β≤ 1.The presence of scaling is noteworthy in daily river discharge time series:1)from weeks to a couple of years,power spectra follow flicker noise,that is β≈ 1;2)beyond years,spectral scaling appraaclTes β≈0.3.In historical time series of floods and draughts,power spectra also shows scaling with β≈ 0.38 ~0.52.Furthermore,a 70-year peak is detected in historical maritime events series,which also appears in other past climate indicators.Presence of memory in these hydrological time series implies clustering of extremes and scaling of their recurrence times,therefore,probabilistic forecast potential for extremes can be derived.On the other hand,although several physical processes,for example,soil moisture storage and high intermittency of precipitation,have been suggested to be the possible candidates contributing to the presence of long term memory,they remain open for future research.  相似文献   

12.
The evaluation of the combined influence of rainfall patterns (in terms of mean intensity and duration) and the geomorphological and mechanical characteristics of hillslopes on their stability conditions is a major goal in the assessment of the shallow landslide triggering processes. Geographic Information Systems (GIS) represent an important tool to develop models that combine hydrological and geomechanical analyses for the evaluation of slope stability, as they allow to combine information concerning rainfall characteristics with topographic and mechanical properties of the slopes over wide areas. In this paper, a GIS-based code is developed to determine physically based intensity/duration rainfall thresholds at the local scale. Given the rainfall duration and the local geometric, hydrological and mechanical characteristics of the slopes, the code evaluates the spatial distribution of the minimum rainfall intensity that triggers shallow landslides and debris flows over a given area. The key feature of the code is the capability of evaluating the time t p required to reach the peak pore pressure head on the failure surface and computing the corresponding critical intensity/duration thresholds based on post-event peak pore pressures. The reliability of the model is tested using a set of one-dimensional analyses, comparing the physically based thresholds obtained for three different slopes with some empirical rainfall thresholds. In a log–log scale, the thresholds provided by the model decrease linearly with increased rainfall duration and they are bracketed by the empirical thresholds considered. Finally, an example of application to a study area of the Umbria region in central Italy is presented, describing the capability of the model of providing site-specific thresholds for different rainfall scenarios.  相似文献   

13.
Majority of landslides in the Indian sub-continent are triggered by rainfall. Several attempts in the global scenario have been made to establish rainfall thresholds in terms of intensity-duration and antecedent rainfall models on global, regional and local scales for the occurrence of landslides. However, in the context of the Indian Himalayas, the rainfall thresholds for landslide occurrences are not yet understood fully. Neither on regional scale nor on local scale, establishing such rainfall thresholds for landslide occurrences in Indian Himalayas has yet been attempted. This paper presents an attempt towards deriving local rainfall thresholds for landslides based on daily rainfall data in and around Chamoli-Joshimath region of the Garhwal Himalayas, India. Around 128 landslides taken place in last 4 years from 2009 to 2012 have been studied to derive rainfall thresholds. Out of 128 landslides, however, rainfall events pertaining to 81 landslides were analysed to yield an empirical intensity–duration threshold for landslide occurrences. The rainfall threshold relationship fitted to the lower boundary of the landslide triggering rainfall events is I?=?1.82 D ?0.23 (I?=?rainfall intensity in millimeters per hour and D?=?duration in hours). It is revealed that for rainfall events of shorter duration (≤24 h) with a rainfall intensity of 0.87 mm/h, the risk of landslide occurrence in this part of the terrain is expected to be high. Also, the role of antecedent rainfall in causing landslides was analysed by considering daily rainfall at failure and different period cumulative rainfall prior to failure considering all 128 landslides. It is observed that a minimum 10-day antecedent rainfall of 55 mm and a 20-day antecedent rainfall of 185 mm are required for the initiation of landslides in this area. These rainfall thresholds presented in this paper may be improved with the hourly rainfall data vis-à-vis landslide occurrences and also data of later years. However, these thresholds may be used in landslide warning systems for this particular region of the Garhwal Himalayas to guide the traffic and provide safety to the tourists travelling along this pilgrim route during monsoon seasons.  相似文献   

14.
Mass movements varying in type and size, some of which are periodically reactivated, affect the urban area of Avigliano. The disturbed and remoulded masses consist of sandy–silty or silty–clayey plastic material interbedded with stone fragments and conglomerate blocks. Five landslides that were markedly liable to rainfall-associated instability phenomena were selected.

The relationships between landslides and rainfall were investigated using a hydrological and statistical model based on long-term series of daily rainfall data. The model was used to determine the return period of cumulative daily rainfall over 1–180 days. The resulting hydrological and statistical findings are discussed with the aim of identifying the rainfall duration most critical to landslides.

The concept of a precipitation threshold was generalized by defining some probability classes of cumulative rainfall. These classes indicate the thresholds beyond which reactivation is likely to occur. The probability classes are defined according to the return period of the cumulative rainfall concomitant with landslide reactivation.  相似文献   


15.
Multi-hazard susceptibility prediction is an important component of disasters risk management plan. An effective multi-hazard risk mitigation strategy includes assessing individual hazards as well as their interactions. However, with the rapid development of artificial intelligence technology, multi-hazard susceptibility prediction techniques based on machine learning has encountered a huge bottleneck. In order to effectively solve this problem, this study proposes a multi-hazard susceptibility mapping framework using the classical deep learning algorithm of Convolutional Neural Networks (CNN). First, we use historical flash flood, debris flow and landslide locations based on Google Earth images, extensive field surveys, topography, hydrology, and environmental data sets to train and validate the proposed CNN method. Next, the proposed CNN method is assessed in comparison to conventional logistic regression and k-nearest neighbor methods using several objective criteria, i.e., coefficient of determination, overall accuracy, mean absolute error and the root mean square error. Experimental results show that the CNN method outperforms the conventional machine learning algorithms in predicting probability of flash floods, debris flows and landslides. Finally, the susceptibility maps of the three hazards based on CNN are combined to create a multi-hazard susceptibility map. It can be observed from the map that 62.43% of the study area are prone to hazards, while 37.57% of the study area are harmless. In hazard-prone areas, 16.14%, 4.94% and 30.66% of the study area are susceptible to flash floods, debris flows and landslides, respectively. In terms of concurrent hazards, 0.28%, 7.11% and 3.13% of the study area are susceptible to the joint occurrence of flash floods and debris flow, debris flow and landslides, and flash floods and landslides, respectively, whereas, 0.18% of the study area is subject to all the three hazards. The results of this study can benefit engineers, disaster managers and local government officials involved in sustainable land management and disaster risk mitigation.  相似文献   

16.
 The expansion of Caramanico Terme in this century has led to the urbanization of marginally stable valley slopes, and this has coincided with the apparent acceleration of landslide processes. Recent landslides on man-modified slopes were caused, but not necessarily triggered, by heavy precipitation (antecedent moisture was a more critical factor than the amount of storm rainfall). Because no important landslides on natural slopes in the same period were reported in the Caramanico area, a clear distinction must be made between natural settings and those modified by man when determining rainfall thresholds for predictive purposes. In recently urbanized mountainous environments, the thresholds used to assess landslide hazards should not be weighted too heavily on old historical records of precipitation and associated mass movements. Instead, more weight ought to be given to the period following the occurrence of any major anthropogenic and natural (e.g. high-magnitude earthquake) modification of slope setting. Received: 19 October 1996 · Accepted: 25 June 1997  相似文献   

17.
Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfall-induced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity-Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall triggering events. Going from winter to summer conditions requires a strong increase of intensity and/or duration to induce landslides. The results identify an approach to account for different hazard conditions related to seasonality of hydrological processes inside the ash-fall pyroclastic soil mantle. Moreover, they highlight another important factor of uncertainty that potentially affects rainfall thresholds triggering shallow landslides reconstructed by empirical approaches.  相似文献   

18.
Floods and associated landslides account for the largest number of natural disasters and affect more people than any other type of natural disaster. With the availability of satellite rainfall analyses at fine time and space resolution, it has also become possible to mitigate such hazards on a near-global basis. In this article, a framework to detect floods and landslides related to heavy rain events in near-real-time is proposed. Key components of the framework are: a fine resolution precipitation acquisition system; a comprehensive land surface database; a hydrological modeling component; and landslide and debris flow model components. A key precipitation input dataset for the integrated applications is the NASA TRMM-based multi-satellite precipitation estimates. This dataset provides near real-time precipitation at a spatial-temporal resolution of 3 h and 0.25° × 0.25°. In combination with global land surface datasets it is now possible to expand regional hazard modeling components into a global identification/monitoring system for flood/landslide disaster preparedness and mitigation.  相似文献   

19.
Modeling landslide recurrence in Seattle, Washington, USA   总被引:5,自引:0,他引:5  
To manage the hazard associated with shallow landslides, decision makers need an understanding of where and when landslides may occur. A variety of approaches have been used to estimate the hazard from shallow, rainfall-triggered landslides, such as empirical rainfall threshold methods or probabilistic methods based on historical records. The wide availability of Geographic Information Systems (GIS) and digital topographic data has led to the development of analytic methods for landslide hazard estimation that couple steady-state hydrological models with slope stability calculations. Because these methods typically neglect the transient effects of infiltration on slope stability, results cannot be linked with historical or forecasted rainfall sequences. Estimates of the frequency of conditions likely to cause landslides are critical for quantitative risk and hazard assessments. We present results to demonstrate how a transient infiltration model coupled with an infinite slope stability calculation may be used to assess shallow landslide frequency in the City of Seattle, Washington, USA. A module called CRF (Critical RainFall) for estimating deterministic rainfall thresholds has been integrated in the TRIGRS (Transient Rainfall Infiltration and Grid-based Slope-Stability) model that combines a transient, one-dimensional analytic solution for pore-pressure response to rainfall infiltration with an infinite slope stability calculation. Input data for the extended model include topographic slope, colluvial thickness, initial water-table depth, material properties, and rainfall durations. This approach is combined with a statistical treatment of rainfall using a GEV (General Extreme Value) probabilistic distribution to produce maps showing the shallow landslide recurrence induced, on a spatially distributed basis, as a function of rainfall duration and hillslope characteristics.  相似文献   

20.
An analysis of the occurrences of events related to precipitation, considering extensive and intensive risk, i.e., emergencies and disasters, based on twenty-nine years of data for five cities of Ecuador provided relevant information about the behavior over time of floods, river overflows and landslides. The records of events were examined in the immediate and in the short term, which corresponded to 5 and 30 days, respectively, using the data mining methods k-means and association rules, to identify the patterns that govern their behaviors with respect to the observed amount of precipitation. The results show an increase in the frequency of similar events, with the occurrences being separated by shorter periods in recent decades. The behavior of emergencies and disasters indicates that emergencies are expected for periods of 5 days, with low quantities of precipitation and for periods of 30 days with normal quantities of precipitation. Disasters are expected, for both periods of 5 and 30 days, in the higher quantiles of precipitation. Interrelations between floods, river overflows and landslides were identified in all cities, with at least one relationship between two of the hazards for each city. An apparent floodriver overflowlandslide cycle could explain the mechanics of their occurrence. The information provided by the results indicates the vulnerability of the cities over time, their low capacity to support normal quantities of precipitation and their high exposure to hydro-meteorological hazards. The products obtained could be used together with precipitation prediction to anticipate possible effects and to formulate adequate risk management policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号