首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Enigmatic seafloor gouge marks at depths of 1700–2100 m have been observed from submersible during geological survey work studying mud volcanoes in the eastern Mediterranean Sea. The marks consist of a central groove (about 10 cm deep and 1–2 m long), superimposed on a broader bowl-shaped depression (1–2 m long by about 50 cm wide) with raised rims (up to 10 cm high) to either side of the central groove. We discuss the potential biological causes of these marks, and conclude that they are probably created by Cuvier's beaked whales (Ziphius cavirostris) during foraging dives to these depths. The mud volcanoes have a comparatively rich and diverse benthic ecology associated with methane-rich fluid seeps and thus could be the base of food chains that reach top predators like the deep-diving whales. The characteristic high acoustic backscatter of the mud volcanoes would facilitate their detection by the echolocation system of these whales.  相似文献   

2.
Temperature and depth logging tags were implanted into adult eels released on Atlantic west coasts of France and Ireland to study their oceanic migration behavior. For three of the tags, 25 to 256 days after release there was a dramatic rise in temperature from 10 °C to 36 °C and the dive profile changed from depths of 300–1000 m to repeated ascents to the surface. This indicated that the eels carrying the tags had been eaten by a mammalian predator. Two of the tags had sufficient sampling rate to resolve the dives in detail. They recorded a total of 91 dives to maximum depths of 250–860 m lasting 11–12 min and with surface intervals of 5–7 min. More than two thirds of the dives included a rapid descent from approximately 500 m to 600–700 m. From this we infer that the predator was most likely a deep-diving toothed whale. The dives logged while the tags were inside the predator revealed that the temperature usually decreased during dives, and increased again during surface periods. The temperature drops during dives were probably caused by the ingestion of prey or water. These observations provide insights into the behavior of toothed whales foraging in the mesopelagic zone.  相似文献   

3.
Our objective was to understand how marine birds respond to oceanographic variability across the Southern Indian Ocean using data collected during an 16-day cruise (4–21 January 2003). We quantified concurrent water mass distributions, ocean productivity patterns, and seabird distributions across a heterogeneous pelagic ecosystem from subtropical to sub-Antarctic waters. We surveyed 5155 km and sighted 15,606 birds from 51 species, and used these data to investigate how seabirds respond to spatial variability in the structure and productivity of the ocean. We addressed two spatial scales: the structure of seabird communities across macro-mega scale (1000 s km) biogeographic domains, and their coarse-scale (10 s km) aggregation at hydrographic and bathymetric gradients. Both seabird density and species composition changed with latitudinal and onshore–offshore gradients in depth, water temperature, and chlorophyll-a concentration. The average seabird density increased across the subtropical convergence (STC) from 2.4 birds km−2 in subtropical waters to 23.8 birds km−2 in sub-Antarctic waters. The composition of the avifauna also differed across biogeographic domains. Prions (Pachyptila spp.) accounted for 57% of all sub-Antarctic birds, wedge-tailed shearwaters (Puffinus pacificus) accounted for 46% of all subtropical birds, and Indian Ocean yellow-nosed albatross (Thallasarche carteri) accounted for 32% of all birds in the STC. While surface feeders were the most abundant foraging guild across the study area, divers were disproportionately more numerous in the sub-Antarctic domain, and plungers were disproportionately more abundant in subtropical waters. Seabird densities were also higher within shallow shelf-slope regions, especially in sub-Antarctic waters, where large numbers of breeding seabirds concentrated. However, we did not find elevated seabird densities along the STC, suggesting that this broad frontal region is not a site of enhanced aggregation.  相似文献   

4.
Elephant seals are wide-ranging, pelagic, deep-diving (average of 400–600 m) predators that typically travel to open waters and continental shelf edges thousands of kilometers from their land breeding colonies. We report a less common pattern of foraging in the shallow waters of a continental shelf. Southern elephant seals, Mirounga leonina, that breed at Península Valdés (Argentina), face an extended (∼1,000,000 km2; 400–700 km-wide, depending on track), shallow (<150 m) and seasonally productive plateau, the Patagonian shelf. Adults of both sexes usually cross it in rapid transit to other potential foraging grounds on the shelf edge or in the Argentine Basin, but 2–4 year-old juveniles spread over the plateau and spent months in shallow waters. This behavior was recorded for 9 seals (5 males and 4 females) of 23 satellite-tracked juveniles (springs of 2004 and 2005) and for 2 subadult males studied in previous seasons. Trips included travel trajectories and time spent in areas where swim speed decreased, suggesting foraging. Preferred locations of juvenile females were in the proximity of the shelf break, where stratified waters had relatively high phytoplankton concentrations, but young and subadult males used the relatively cold (7–8 °C), low-salinity (∼33.3) mid-shelf waters, with depths of 105–120 m and a poorly stratified water column. Three of the latter seals, instrumented with time–depth recorders, showed dives compatible with benthic feeding and no diel pattern of depths distribution. Regions of the mid-shelf were used in different seasons and were associated with low chlorophyll-a concentration at the time of the visit, suggesting that surface productivity does not overlap with putative quality habitat for benthic foragers. Benthic diving on the shallow mid-shelf would be a resource partitioning strategy advantageous for young males prior to greater energetic demands of a high growth rate and a large body size. Later in life, the more predictable, bathymetry-forced, shelf-break front may offer the food resources that explain the uninterrupted increase of this population over several decades.  相似文献   

5.
Predators utilize a variety of behavioral techniques to capture elusive prey. Behavioral flexibility is essential among generalist predators that pursue a diversity of prey types, and capture efficiency is expected to be intense during the breeding season for parents that engage in self- and offspring-provisioning. We studied the foraging behavior of parental northern gannets in the northwestern Atlantic (Gulf of St. Lawrence) when they were feeding on Atlantic mackerel almost exclusively. Data-loggers recorded short (mean duration: 6.3 s), high speed (inferred vertical speeds of up to 54.0 m*s 1, equivalent to 194 km*h 1), and shallow dives (mean depth: 4.2 m; maximum: 9.2 m). Dives tended to occur in bouts, varying between 0.3 and 4.6 per hour (mean = 1.6). During foraging, overall flight heights ranged from 0 to 70 m, with no clear preferences for height. Most plunge-dives were initiated at flight altitudes of 11–60 m (mean ± SE = 37.1 ± 2.8 m; range 3–105 m except for 1 of 162 dives that was initiated at the sea surface). Dive depth and flight altitude at plunge-dive initiation were positively and significantly correlated, though it appears that low flight altitudes were sufficient to reach dive depths at which mackerel were present. Almost all dives were V-shaped indicating that a high acceleration attack is the most effective strategy for gannets feeding on large rapid-swimming prey such as mackerel that owing to thermal preferences does not occur below the thermocline and are thus well available and essentially trapped in the water depths exploited by northern gannets.  相似文献   

6.
Since the heterogeneity of oceanographic conditions drives abundance, distribution, and availability of prey, it is essential to understand how foraging predators interact with their dynamic environment at various spatial and temporal scales. We examined the spatio-temporal relationships between oceanographic features and abundance of fin whales (Balaenoptera physalus), the largest free-ranging predator in the Western Mediterranean Sea (WM), through two independent approaches. First, spatial modeling was used to estimate whale density, using waiting distance (the distance between detections) for fin whales along ferry routes across the WM, in relation to remotely sensed oceanographic parameters. At a large scale (basin and year), fin whales exhibited fidelity to the northern WM with a summer-aggregated and winter-dispersed pattern. At mesoscale (20–100 km), whales were found in colder, saltier (from an on-board system) and dynamic areas defined by steep altimetric and temperature gradients. Second, using an independent fin whale satellite tracking dataset, we showed that tracked whales were effectively preferentially located in favorable habitats, i.e. in areas of high predicted densities as identified by our previous model using oceanographic data contemporaneous to the tracking period. We suggest that the large-scale fidelity corresponds to temporally and spatially predictable habitat of whale favorite prey, the northern krill (Meganyctiphanes norvegica), while mesoscale relationships are likely to identify areas of high prey concentration and availability.  相似文献   

7.
The results from a~1 km resolution HYbrid Coordinate Ocean Model (HYCOM), forced by 1/2° Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric data, were used in order to study the dynamic response of the Persian Gulf to wintertime shamal forcing. Shamal winds are strong northwesterly winds that occur in the Persian Gulf area behind southeast moving cold fronts. The period from 20 November to 5 December 2004 included a well defined shamal event that lasted 4–5 days. In addition to strong winds (16 m s?1) the winter shamal also brought cold dry air (Ta=20 °C, qa=10 g kg?1) which led to a net heat loss in excess of 1000 W m?2 by increasing the latent heat flux. This resulted in SST cooling of up to 10 °C most notably in the northern and shallower shelf regions. A sensitivity experiment with a constant specific humidity of qa=15 g kg?1 confirmed that about 38% of net heat loss was due to the air–sea humidity differences. The time integral of SST cooling closely followed the air–sea heat loss, indicating an approximate one-dimensional vertical heat balance. It was found that the shamal induced convective vertical mixing provided a direct mechanism for the erosion of stratification and deepening of the mixed layer by 30 m. The strong wind not only strengthened the circulation in the entire Persian Gulf but also established a northwestward flowing Iranian Coastal Current (ICC, 25–30 cm s?1) from the Strait of Hormuz to about 52°E, where it veered offshore. The strongest negative sea level of 25–40 cm was generated in the northernmost portion of the Gulf while the wind setup against the coast of the United Arab Emirates established a positive sea level of 15–30 cm. The transport through the Strait of Hormuz at 56.2°E indicated an enhanced outflow of 0.25 Sv (Sv≡106 m3 s?1) during 24 November followed by an equivalent inflow on the next day.  相似文献   

8.
The giant diatom Ethmodiscus was examined along an east–west transect at 28–30°N during 2002 and 2003 to determine if abundance, chemical composition or physiological status of this largest of diatoms varied on the scale of 100's–1000's of km in North Pacific gyre. Abundance ranged from <0.1–>2.0 cells m−3 and supported the notion of an abundance mosaic reported previously. However, there was only minimal support for the relationship between abundance and nutrient concentration at 125 m reported previously. Cellular chlorophyll varied little along the transect (7.3–10.9 ng chl cell−1) except at the westernmost station. Cellular N and P quotas co-varied 3–4.5 fold (mean=50.8±3.7 and 3.7±0.8 nmol N and P cell−1) and yielded N:P ratios that closely clustered around the Redfield ratio (average=14.6±1.1). Only low levels of chlorophyll-normalized alkaline phosphatase (APase) activity were observed (0.4–2.5 nmol P μg chl−1 h−1) with APase activity lower than that in either the bulk water, or co-occurring Trichodesmium spp. and Pyrocystis noctiluca. The active fluorescence parameter Fv:Fm, a property sensitive to Fe stress, was uniformly high at all stations (average=0.73±0.04 for 2003, and 0.69±0.05 for 2002), indicating sufficient Fe for optimum photosynthetic competence. These results contrasted sharply with results from Rhizosolenia mats reported along the same transect where there was a significant decline westward in Fv:Fm. Both ferredoxin (Fd) and flavodoxin accumulated in cells of Ethmodiscus, resulting in Fd Index values of<0.6. Iron cell quotas ranged from 0.7–5.1 pmol Fe cell−1. When normalized to cytoplasmic volume, the Fe μm−3 was comparable to that of Escherichia coli. We note that the disproportionate contribution of the vacuole (with its high organic content) to total volume typical of large diatoms is a potentially significant source of error in Fe:C ratios and suggest that Fe should be normalized to cytoplasmic volume whenever possible to permit valid intercomparisons between studies. The composition, Fv:Fm data and Fe:C ratio suggest a relatively uniform population experiencing little N, P or Fe stress. The uncoupling of the Fd Index from these measures is consistent with previous findings showing that the expression of flavodoxin can be characterized as an early stress response and that its accumulation is not necessarily correlated with physiological deficit. Ethmodiscus appears to be well adapted to some of the most oligotrophic waters in the ocean. Because it is an important sedimentary marker, the biology of living Ethmodiscus provides insights into the source of extensive Ethmodiscus oozes. Mass sedimentation after frontal accumulation has been suggested as a source for these oozes. Our data contain no evidence that the flux is linked directly to Fe, N or P stress.  相似文献   

9.
We tested the idea that bacterial cells with high nucleic acid content (HNA cells) are the active component of marine bacterioplankton assemblages, while bacteria with low nucleic acid content (LNA cells) are inactive, with a large data set (>1700 discrete samples) based on flow cytometric analysis of bacterioplankton in the Northeast Pacific Ocean off the coast of Oregon and northern California, USA. Samples were collected in the upper 150 m of the water column from the coast to 250 km offshore during 14 cruises from March 2001 to September 2003. During this period, a wide range of trophic states was encountered, from dense diatom blooms (chlorophyll-a concentrations up to 43 μg l−1) at shelf stations during upwelling season (March–September) to lower chlorophyll-a concentrations (0.1–5 μg l−1) during winter (November–February) and at basin stations (>1700 m depth). We found only weakly positive relations of log total bacterial abundance to log chlorophyll-a concentration (as a proxy for availability of organic substrate), and of HNA bacteria as a fraction of total bacteria to log chlorophyll-a. Abundance of HNA and LNA bacteria co-varied positively in all regions, although HNA bacteria were more responsive to high phytoplankton biomass in shelf waters than in slope and basin waters. Since LNA cell abundance in general showed responses similar to those of HNA cell abundance to changes in phytoplankton biomass, our data do not support the hypothesis that HNA cells are the sole active component of marine bacterioplankton.  相似文献   

10.
Surface distributions of nutrients and phytoplankton were investigated in the vicinity of the subtropical South Pacific islands by using a continuous underway system with a highly sensitive nutrient analysis. A total of 17 transects, whose lengths ranged between 42 and 271 km, were sampled for continuous nutrient measurements. The study area was characterized by an overall depletion of nitrate+nitrite (<15 nM), but phosphate varied from 7 to 192 nM. The transects were grouped into 4 patterns according to distribution of phosphate concentrations. In 7 transects, a mesoscale decrease in phosphate occurred, coinciding with an elevation of in vivo chlorophyll fluorescence, which was accompanied by an increase in phytoplankton abundance as revealed by microscopy, flow cytometry, and accessory pigments. This mirror–image relationship between the phosphate concentration and phytoplankton abundance was most apparent on both a 99-km transect east of Tonga, where the phosphate concentration ranged from 17 to 125 nM, and on a 98-km transect west of Fiji, where the phosphate concentration ranged from 23 to 136 nM. Both these transects contained distinct blooms of Trichodesmium in areas with the lowest concentrations of phosphate. In other 2 transects, fluctuations in phosphate concentrations showed no distinct relationship with chlorophyll fluorescence. Other patterns that emerged included consistently high concentrations, ranging from 109 to 192 nM, in 5 transects and consistently low phosphate concentrations, ranging from 7 to 50 nM, in 3 transects. Abundance of Trichodesmium, Prochlorococcus, Synechococcus, and all accessory pigments examined tended to be higher in the low phosphate transects than in the high phosphate ones. In particular, Trichodesmium occurred in low phosphate water (<25 nM). There was no significant relationship between phosphate concentrations and nanoplanktonic unicellular cyanobacteria. Our observations suggest that surface phosphate decreases are associated with phytoplankton utilization of phosphate, and that nitrogen supply from Trichodesmium may contributes to this utilization.  相似文献   

11.
Dimethylsulfoxide (DMSO) is an important degradation product of the climate-influencing gas dimethylsulfide (DMS). In the Ross Sea, Antarctica, dissolved DMSO (DMSOd) concentrations exhibited substantial seasonal and vertical variations. Surface water DMSOd concentrations in pre-bloom waters were very low (<1 nM) but increased rapidly up to 41 nM during the spring Phaeocystis antarctica bloom (late November). Increases in DMSOd concentrations lagged by several days increases in DMS concentrations. Although DMSOd concentrations reached relatively high levels during the spring bloom, concentrations were generally higher (36.3–60.6 nM) during summer (January), even though phytoplankton biomass and DMS concentrations had decreased by that time. During both seasons, DMSOd concentrations were substantially higher within the surface mixed layer than below it. DMSOd production from biological DMS consumption (BDMSC) was higher during late November (3.4–5.2 nM d?1) than during the summer (0.7–2.4 nM d?1); therefore, production via BDMSC alone could not explain the higher DMSOd concentrations encountered during the summer. Mixed layer-integrated DMSOd production from BDMSC was 2.5–13.7 times greater than production from dissolved DMS photolysis during the P. antarctica bloom, while photolysis contributed 1.3 times more DMSO than BDMSC before the bloom. The DMSO yield from BDMSC was consistently higher within the upper mixed layer than at depths below. Experimental incubations with water from the mixed layer showed that exposure to full spectrum sunlight for 72 h caused an increase in the DMSO yield whereas exposure to only photosynthetically active radiation did not. This suggests that ultraviolet radiation is a potential factor shifting the fate of biologically consumed DMS toward DMSO. In general, the highest DMSO yields from BDMSC were in samples with slow biological DMS turnover, whereas fast turnover favored sulfate rather than DMSO as a major end-product. This study provides the first detailed information about DMSOd distribution and production in the Ross Sea and points to DMSOd as an important biological and photochemical degradation product of DMS and a major reservoir of methylated sulfur in these polar surface waters.  相似文献   

12.
Investigations of biomass, production, and anthropogenic impact require knowledge of the spatial distribution of the species concerned. Studies of the spatial distribution of soft-sediment infauna are inherently difficult, because the organisms are generally not readily visible, necessitating painstaking excavation. Although the large-scale (tens of km) distribution patterns of infaunal bivalves have been studied previously, the fine-scale (1 to tens of meters) has received much less attention. We investigated the fine-scale spatial distribution of the edible cockle Cerastoderma edule at a fishing-impacted site and a non-impacted site on an intertidal mudflat in Bourgneuf Bay, France, in 2009–2010. A preliminary study using a 1 m spatial lag was performed to determine the optimum lags for a nested sampling design. Cohorts were identified using Bhattacharya-resolved size-frequency distributions and verification of isotropy, and the spatial characteristics of each cohort were determined using Moran's I auto-correlation coefficient. The non-impacted site presented one strongly-aggregated main cohort, C3, (Moran's I = 0.67 to − 0.34, spatial range 16 to 20 m, inter-patch distance 41 to 51 m). The impacted site presented two main cohorts, C2 (1.31 cm mean shell length, SL) and C3 (2.11 cm SL) both of which also showed a patchy spatial distribution (C2: Moran's I = 0.7 to − 0.72, spatial range 22 to 35 m; inter-patch distance 63 to 90 m; C3: Moran's I = 0.41 to − 0.63, spatial range 36 to 58 m, inter-patch distance not defined). The C3 cohort was less aggregated than the C2; possibly due to the homogenizing effect of fishing, which typically proceeds via a Lévy walk foraging model.Our results show that the spatial distributions of C. edule retained a strongly aggregated character over the 8 months of the study, suggesting that these characteristics are powerfully maintained by recruitment/post-recruitment processes, despite intense fishing pressure throughout the sampling period, and indeed for decades, prior to this study. These data also show that we cannot assume a random or a regular spatial distribution for this species in studies of biomass, production, trophic relations, or anthropogenic impact; rather, close attention must be paid to the spatial characteristics of studied populations in order to reduce the confounding effects of auto-correlation.  相似文献   

13.
Variations in the nutrient concentrations were studied during two cruises to the Arabian Sea. The situation towards the end of the southwest monsoon season (September/October 1994) was compared with the inter-monsoonal season during November and December 1994. Underway surface transects showed the influence of an upwelling system during the first cruise with deep, colder, nutrient-rich water being advected into the surface mixed layer. During the southwesterly monsoon there was an area of coastal Ekman upwelling, bringing colder water (24.2°C) into the surface waters of the coastal margin. Further offshore at about 350 km there was an area of Ekman upwelling, as a result of wind-stress curl, north of the Findlater Jet axis; this area also had cooler surface water (24.6°C). Further offshore (>1000 km) the average surface temperatures increased to >27°C. These waters were oligotrophic with no evidence of the upwelling effects observed further inshore. In the upwelling regions nutrient concentrations in the close inshore coastal zone were elevated (NO3=18 μmol l-1, PO4=1.48 μmol l-1); higher concentrations also were measured at the region of offshore upwelling off the shelf, with a maximum nitrate concentration of 12.5 μmol l-1 and a maximum phosphate concentration of 1.2 μmol l-1. Nitrate and phosphate concentrations decreased with increasing distance offshore to the oligotrophic waters beyond 1400 km, where typical nitrate concentrations were 35.0 nmol l-1 (0.035 μmol l-1) in the surface mixed layer. A CTD section from the coastal shelf, to 1650 km offshore to the oligotrophic waters, clearly showed that during the monsoon season, upwelling is one of the major influences upon the nutrient concentrations in the surface waters of the Arabian Sea off the coast of Oman. Productivity of the water column was enhanced to a distance of over 800 km offshore. During the intermonsoon period a stable surface mixed layer was established, with a well-defined thermocline and nitracline. Surface temperature was between 26.8 and 27.4°C for the entire transect from the coast to 1650 km offshore. Nitrate concentrations were typically between 2.0 and 0.4 μmol l-1 for the transect, to about 1200 km where the waters became oligotrophic, and nitrate concentrations were then typically 8–12 nmol l-1. Ammonia concentrations for the oligotrophic waters were typically 130 nmol l-1, and are reported for the first time in the Indian Ocean. The nitrogen/phosphorus (N/P) ratios suggest that phytoplankton production was potentially nitrogen-limited in all the surface waters of the Arabian Sea, with the greatest nitrogen limitation during the intermonsoon period.  相似文献   

14.
Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons — (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.  相似文献   

15.
In order to derive a causal understanding of toxic effects in organisms, ecotoxicology may benefit from linking molecular changes, evaluated by ‘omics’-techniques, to phenotypic observations. However, an approach to link these observation levels is still lacking.The aim of this study was to relate metabolic changes in the chlorophyte Scenedesmus vacuolatus to established parameters of toxicity. Therefore, synchronized cultures of the alga were exposed for 14 h to the phytotoxicant N-phenyl-2-naphthylamine (PNA) in the range of 0.00089 μmol L−1 (environmental concentrations) up to 1.82 μmol L−1. Cell growth and photosynthesis inhibition were evaluated but revealed no effect of PNA at experimental concentrations below 0.456 μmol L−1. Changes in the biochemical composition of algae were measured by GC–MS in both polar and non-polar phases. PCA uncovered no separation in the multivariate pattern of mass spectral features at exposure concentrations below 0.00356 μmol L−1 of PNA. However, a clear separation was detected at concentrations higher than 0.00713 μmol L−1. A combined visualization of PCA results for metabolic changes and concentration–response relationships for growth and photosynthesis inhibition revealed (I) a two orders of magnitude higher sensitivity of metabolomics to detects changes after PNA exposure compared to the phenotypic parameters measured and (II) two types of metabolic responses: one group of features was reflecting pharmacological effects at low exposure concentrations and the second group corresponded to adverse effects along with conventional observations of toxicity.  相似文献   

16.
pH and alkalinity measurements from a coastal upwelling area located near 30°S (Coquimbo, Chile), are used to describe the short-term variations of CO2 air–sea exchanges over a period of one week in summer 1996. A 180 km ocean–coastal transect, together with two almost-synoptic grid surveys off Coquimbo covering approximate 2500 km2 each, showed that during and immediately after a 4 day long southwesterly wind event (24–28 January) a large area of cold surface water (≈14°C), highly supersaturated in CO2 (fCO2 up to 900 μatm), was located near the coast. Three days after the end of the event, the second grid survey showed that in most of the study area the surface temperature and pH had increased significantly (by 1–3°C and 0.05–0.2, respectively), and that the surface water was no longer supersaturated in CO2. The CO2-supersaturated water observed in the first grid survey was identified as upwelled subsurface equatorial water, a water mass with its core at about 200 m depth: the depth from which the water upwells is a major determinant of the surface water fCO2. Integrated C fluxes within a 20 km wide coastal strip (1900 km2) indicate a strong outgassing of CO2 from the ocean under upwelling conditions (Grid 1; 121 t C day-1), while the net C exchange was directed to the ocean during the relaxation period (Grid 2; 19 t C day-1). Estimates of CO2 fluxes in upwelling areas based on surface water fCO2 measurements must therefore take into account these short-term variations: reliance on longer-term averages and interpolation will lead to erroneous results.  相似文献   

17.
Measurements of the density of deep pelagic bioluminescent zooplankton (BL) were made with the Intensified Silicon Intensifier Target (ISIT) profiler in the Ligurian, Tyrrhenian, Adriatic, Ionian Seas and the Strait of Sicily from ~300 m to near seafloor. Mean BL densities ranged from 2.61 m?3 at 500–1000 m depth in the Adriatic Sea to 0.01 m?3 at 4000–5000 m depth in the E Ionian Sea. We investigated drivers of spatial variation of deep pelagic BL density. Linear regression was applied between surface chlorophyll a (Chl a) concentration and underlying BL density. Chl a values were determined from satellite derived 100 km radius composites (six 10-day means per ISIT deployment, over preceding 60 days). At 500–1000 m depth we found a significant positive relationship between mean BL density and mean Chl a in the period prior to 0–10 days (at 1% level) and prior to 10–40 days (at 5% level). Beyond 40 days no relationship between BL density and Chl a was found at this depth. At depths 1000–1500 m BL density values were low and no significant relationship with Chl a was detected. Generalised additive modelling (GAM) was used to assess the influence of benthic hotspots (seamount; cold water coral mound; mud volcano) on overlying BL density. A reduction in BL density was found downstream of the Palinuro seamount from 300 to 600 m. No effect on BL density in the overlying water column was detected from the presence of cold water corals. Higher BL densities were detected over the W Madonna dello Ionio mud volcano than at other sites sampled in the NW Ionian Sea. We find surface Chl a to be a good predictor of BL density in the mesopelagic zone; below this depth we hypothesise that processes affecting the efficiency of particle export to deep water may exert greater influence on BL density.  相似文献   

18.
The population structure, dynamics and distribution of Spisula solida, Diogenes pugilator and Branchiostoma lanceolatum, common species in the south coast of Portugal, were studied in a spatial–temporal manner in order to understand the influence of cross-shore sediment transport and anthropogenic activities. Spisula solida is harvested commercially, whereas D. pugilator and B. lanceolatum are non-target species, with little information available on the population dynamics of these species. The study was performed in 2001–2002, and along a gradient of 100–5000 m from the coastline, corresponding to a depth gradient of between 1 and 32 m deep. Spisula solida was distributed preferentially at 3–12 m deep, and its distribution appeared to be influenced seasonally by the cross-shore sediment dynamics. Results suggested benthic recruitment in June. Some recruitments had no expression (year 2001) since adults were not present, which seems to be a direct impact of clams' fisheries. Diogenes pugilator showed preferential distribution at shallow depths, from 1.3 to 8 m. Results suggested recruitments every 4 months, in June, February and October. Branchiostoma lanceolatum showed the widest distribution, from 7 to 26 m deep. Recruitment seemed to start in June until October, when it attained an abundance peak of juveniles. For both non-target species no clear effects of the cross-shore dynamics or the clams' fisheries impact were visible.  相似文献   

19.
Sediment traps were deployed for almost 1 yr at two sites near 178°40′E in 1996–1997 on Chatham Rise (New Zealand). These sites were either side of the Subtropical Front (STF), which is a biologically productive zone, characterised by moderate atmospheric CO2 uptake. At each site, PARFLUX sediment traps (Mk 7G–21) were deployed at 300 and 1000 m in 1500 m water depth. At 42°42′S, north of the STF, approximately 80% of the integrated total mass, POC and biogenic silica flux at 300 m occurred in a 7-day pulse in austral mid-spring (1064, 141 and 6 mg m−2 d−1, respectively, in early October). This pulse was recorded a week later in the 1000 m trap, indicating a particle sinking rate of 100 m d−1. In contrast, at 44°37′S, south of the STF, the main flux of total mass and biogenic silica occurred 3 weeks later in late spring (289 and 3 mg m−2 d−1, respectively, in early November). Organic carbon, nitrogen and phosphorus fluxes were persistently high over spring at the southern site, although total POC flux integrated over 3 months was only 60 mg m−2 d−1. Thus, up to 2–3 times more material was exported north of the STF, compared with fluxes measured <200 km away to the south. As an integrated proportion of the annual total mass flux, however, more organic carbon was exported south of the STF (17% cf. 5–14%). Furthermore, organic material exported in spring from southern waters was labile and protein-rich (C : N — 8–16, C : P — 200–450, N : P — 13–36), compared to the more refractory, diatom-dominated material sinking out north of the STF in spring (C : N 9–22, C : P 50–230, N : P 5–19). These observations are consistent with anomalously high benthic biomass and diversity observed on south Chatham Rise. Resuspension and differential particle settling are probable causes for depth increases in particulate flux. Estimated particle source areas may be up to 120 km away due to high levels of mesoscale activity and mean flow in the STF region.  相似文献   

20.
Determinations of the activity of the respiratory electron transport system (ETS), during the FRAM III expedition permit us to estimate oxygen utilization rates (RO2) from the surface to 2000 m under the polar pack ice in the Nansen Basin just north of Svalbard (83°N, 7°E) during April 1981. We found RO2 at in situ temperatures ranging from 20 pM O2 min−1 just below the ice to 0.2 pM O2 min−1 at 2000 m. These rates are low compared to most other ocean regions, but they could decrease particulate organic carbon and nitrogen by 76% and 74%, respectively, over a period of ∼6 months. The RO2 calculations based on measurements made at 0 °C yielded a power function of RO2 vs. depth (Z) of RO2=67Z−0.5534. When this RO2 profile was superimposed on a more recent oxygen utilization rate profile made using the 3He–3H–AOU method (OUR), in the same vicinity of the Nansen Basin during 1987 (OUR=52Z–0.4058, [Zheng, Y., Schlosser, P., Swift, J.W., Jones, E.P., 1997. Oxygen utilization rates in the Nansen Basin, Arctic Ocean: implications for new production. Deep Sea Research I 44, 1923–1943]), the agreement of the two profiles was close. On one hand, this was to be expected because RO2 is the biological basis of OUR, on the other hand, it was a surprise because the methodologies are so different. Nitrate mineralization obtained from ETS activities also compared favorably with calculations based on the data of Zheng et al. [1997. Oxygen utilization rates in the Nansen Basin, Arctic Ocean: implications for new production. Deep Sea Research I 44, 1923–1943]. Chlorophyll ranged from 6 ng L−1 at 5 m to 0.06 ng L−1 at 2000 m. Particulate organic carbon (POC) decreased from 0.93 μM C just below the ice to less than 0.4 μM C at 500 m. Particulate organic nitrogen (PON) was not detectable below 70 m, however in the upper 70 m it ranged from 0.16 to 0.04 μM N. The C/N mass ratio over these depths ranged from 5.8 to 11.3. Annual carbon productivity as calculated to balance the total water column respiration was 27 g C m−2 y−1. The integrated respiration rate between 50 and 4000 m suggests that exported production and carbon flux from the 50 m level was 24 g C m−2 y−1. These are minimal estimates for the southern Nansen Basin because they are based on measurements made at the end of the Arctic winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号