首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
For coastal areas, given the large and growing concentration of population and economic activity, as well as the importance of coastal ecosystems, sea level rise is one of the most damaging aspects of the warming climate. Huge progress in quantifying the cause of sea level rise and closure of sea level budget for the period since the 1990s has been made mainly due to the development of the global observing system for sea level components and total sea levels. We suggest that a large spread (1.2 ± 0.2–1.9 ± 0.3 mm year?1) in estimates of sea level rise during the twentieth century from several reconstructions demonstrates the need for and importance of the rescue of historical observations from tide gauges, with a focus on the beginning of the twentieth century. Understanding the physical mechanisms contributing to sea level rise and controlling the variability of sea level over the past few 100 years are a challenging task. In this study, we provide an overview of the progress in understanding the cause of sea level rise during the twentieth century and highlight the main challenges facing the interdisciplinary sea level community in understanding the complex nature of sea level changes.  相似文献   

2.
Glacier mass balance and secular changes in mountain glaciers and ice caps are evaluated from the annual net balance of 137 glaciers from 17 glacierized regions of the world. Further, the winter and summer balances for 35 glaciers in 11 glacierized regions are analyzed. The global means are calculated by weighting glacier and regional surface areas. The area-weighted global mean net balance for the period 1960?C2000 is ?270 ± 34 mm a?1 w.e. (water equivalent, in mm per year) or (?149 ± 19 km3 a?1 w.e.), with a winter balance of 890 ± 24 mm a?1 w.e. (490 ± 13 km3 a?1 w.e.) and a summer balance of ?1,175 ± 24 mm a?1 w.e. (?647 ± 13 km3 a?1 w.e.). The linear-fitted global net balance is accelerating at a rate of ?9 ± 2.1 mm a?2. The main driving force behind this change is the summer balance with an acceleration of ?10 ± 2.0 mm a?2. The decadal balance, however, shows significant fluctuations: summer melt reached its peak around 1945, followed by a decrease. The negative trend in the annual net balance is interrupted by a period of stagnation from 1960s to 1980s. Some regions experienced a period of positive net balance during this time, for example, Europe. The balance has become strongly negative since the early 1990s. These decadal fluctuations correspond to periods of global dimming (for smaller melt) and global brightening (for larger melt). The total radiation at the surface changed as a result of an imbalance between steadily increasing greenhouse gases and fluctuating aerosol emissions. The mass balance of the Greenland ice sheet and the surrounding small glaciers, averaged for the period of 1950?C2000, is negative at ?74 ± 10 mm a?1 w.e. (?128 ± 18 km3 a?1 w.e.) with an accumulation of 297 ± 33 mm a?1 w.e. (519 ± 58 km3 a?1 w.e.), melt ablation ?169 ± 18 mm a?1 w.e. (?296 ± 31 km3 a?1 w.e.), calving ablation ?181 ± 19 mm a?1 w.e. (?316 ± 33 km3 a?1 w.e.) and the bottom melt-21 ± 2 mm a?1 w.e. (?35 ± 4 km3 a?1 w.e.). Almost half (?60 ± 3 km3 a?1) of the net mass loss comes from mountain glaciers and ice caps around the ice sheet. At present, it is difficult to detect any statistically significant trends for these components. The total mass balance of the Antarctic ice sheet is considered to be too premature to evaluate. The estimated sea-level contributions in the twentieth Century are 5.7 ± 0.5 cm by mountain glaciers and ice caps outside Antarctica, 1.9 ± 0.5 cm by the Greenland ice sheet, and 2 cm by ocean thermal expansion. The difference of 7 cm between these components and the estimated value with tide-gage networks (17 cm) must result from other sources such as the mass balance of glaciers of Antarctica, especially small glaciers separated from the ice sheet.  相似文献   

3.
Relative sea level rise at Kerguelen Island over the last 55 years has been investigated using a combination of historical and recent tide gauge data. The best estimate of relative sea level trend from data sets spanning 38 years is estimated to be 1.1±0.7 mm year?1. We have tried to quantify the error budget due to some of the possible sources of uncertainty. As expected, the main source of uncertainty comes from oceanic interannual variability, preventing an accurate estimate of sea level trend over short record lengths. However, our values are reasonably consistent with other reported southern hemisphere sea level trends for similar time periods.  相似文献   

4.
ABSTRACT

The aim of this paper is to estimate the effect that climate change will have on groundwater recharge at the Yucatan Peninsula, Mexico. The groundwater recharge is calculated from a monthly water balance model considering eight methods of potential and actual evapotranspiration. Historical data from 1961–2000 and climate model outputs from five downscaled general circulation models in the near horizon (2015–2039), with representative concentration pathway (RCP) 4.5 and 8.5 are used. The results estimate a recharge of 118 ± 33 mm·year–1 (around 10% of precipitation) in the historical period. Considering the uncertainty from GCMs under different RCP and evapotranspiration scenarios, our monthly water balance model estimates a groundwater recharge of 92 ± 40 mm·year–1 (RCP4.5) and 94 ± 38 mm·year–1 (RCP8.5) which represent a reduction of 23% and 20%, respectively, a result that threatens the socio-ecological balance of the region.  相似文献   

5.
Both coastal and global mean sea level rise by about 3.0 ± 0.5 mm/year from January 1993 to December 2004. Over shorter intervals the coastal sea level rises faster and over longer intervals slowly than the global mean, which trend is almost constant for each interval and is equal to 2.9 ± 0.5 mm/year in 1993–2008. The different trends are due to the higher interannual variability of coastal sea level, caused by the sea level regional variability, that is further averaged out when computing the global mean.Coastal sea level rise is well represented by a selected set of 267 stations of the Permanent Service for Mean Sea Level and by the corresponding co-located altimeter points. Its departure from coastal sea level computed from satellite altimetry in a 150 km distance from coast, dominated by a large rise in the Eastern Pacific, is due to the regional interannual variability.Regionally the trends of the coastal and open-ocean sea level variability are in good agreement and the main world basins have a positive averaged trend. The interannual variability is highly correlated with the El Nino Southern Oscillation (SO) and the North Atlantic Oscillation (NAO) climatic indices over both the altimeter period and the interval 1950–2001. Being the signal of large scale a small number of stations with good spatial coverage is needed. The reconstruction of the interannual variability using the spatial pattern from altimetry and the temporal patterns from tide gauges correlated to NAO and SOI restitutes about 50% of the observed interannual variability over 1993–2001.  相似文献   

6.
ABSTRACT

The Guarani Aquifer System (GAS) is a subsurface reservoir that contains the largest volume of fresh groundwater in South America. Despite the relevance of the GAS, a lack of attention has been paid to land use effects on its recharge. We present the most detailed long-term (2004–2011) results of land-use effects on recharge in an outcrop area of the GAS. Water table fluctuations (WTFs) were measured at 11 monitoring wells, which are distributed between different land uses (i.e. eucalyptus, sugarcane, citrus and grassland). Recharge was estimated using a point-scale method (WTF) for each monitored well. The annual recharge estimates for different land uses are eucalyptus forest (135 mm year-1), sugarcane (248 mm year-1), citrus areas (296 mm year-1) and grassland (401 mm year-1). The results indicate that the evapotranspiration seems to be a key parameter in the assessment of recharge in the study area.  相似文献   

7.
“The Ekman Drain”: a conduit to the deep ocean for shelf material   总被引:1,自引:1,他引:0  
A long (167 days) acoustic Doppler current profiler time series from the European continental slope west of Scotland has been analysed to investigate the influence of bathymetric steering on the slope current and the extent of down-slope transport in the bottom boundary layer. Within an interior region between the surface and bottom boundary layers, the direction of the flow is found to be remarkably consistent as required by the Taylor-Proudman theorem for geostrophic flow. The mean value of this interior flow direction is taken to be the effective direction of the bathymetry in controlling the geostrophic flow and so defines the rotation of coordinates required to determine along and cross-flow transports. Within a bottom boundary layer (BBL) of thickness ~100 m, the direction of the flow was deflected increasingly to the left with the mean veering angle ~12.5° at 12 mab and a down-slope speed of 2.6 cm s?1. The corresponding integrated transport (the “Ekman drain”) had an average value of ~1.6 m2 s?1 over the full observation period. This down-slope flow was significantly correlated (at 0.1 % level), with the stress applied by the along-slope flow although with considerable scatter (r.m.s. ~1 m2 s?1) which suggests the influence of other forcing mechanisms. Combining the BBL volume transport with an estimate of the mean concentration of suspended particulate material indicates an annual down-slope flux of 3.0?±?0.6 tonnes m?1 year?1, of which ~0.36?±?0.1 tonnes m?1 year?1 is carbon. Biogeochemical measurements indicate that the carbon flux in the Ekman drain predominates over settlement of organic material through the water column over the slope and provides for relatively rapid delivery of material to deep water.  相似文献   

8.
Abstract

This paper analyses the temporal dynamics of soil water balance components in a representative recharge area of the Sierra de Gádor (Almeria, southeastern Spain) in two hydrological years. Two approaches are used to estimate daily potential recharge (PR): Approach 1 based on deriving PR from the water balance as the difference between measurements of rainfall (P) and actual evapotranspiration (E) obtained by eddy covariance; and Approach 2 with PR obtained from the dynamic pattern of the soil moisture (θ) recorded at two depths in the site's thin soil (average 0.35 m thickess). For the hydrological year 2003/04, which was slightly drier than the 30-year average, E accounted for 64% of rainfall and occurred mainly in late spring and early summer. The PR estimated by Approach 1 was 181 ± 18 mm year-1 (36% of rainfall), suggesting an effective groundwater recharge in the study area. In the unusually dry hydrological year 2004/05, E was about 215 mm year-1, close to the annual rainfall input, and allowing very little (8 ± 12 mm year-1) PR according to Approach 1. Estimation of PR based on Approach 2 resulted in PR rates lower than those found by Approach 1, because Approach 2 does not take into account the recharge that occurs through preferential flow pathways (cracks, joints and fissures) which were not monitored with the θ probes. Moreover, using Approach 2, the PR estimates differed widely depending on the time scale considered: with daily mean θ data, PR estimation was lower, especially in late spring, while θ data at 30 min resolution yielded a more reliable prediction of the fraction of total PR resulting from the downward movement of soil water by gravity.

Citation Cantón, Y., Villagarcía, L., Moro, M. J., Serrano-Ortíz, P., Were, A., Alcalá, F. J., Kowalski, A. S., Solé-Benet, A., Lázaro, R. & Domingo, F. (2010) Temporal dynamics of soil water balance components in a karst range in southeastern Spain: estimation of potential recharge. Hydrol. Sci. J. 55(5), 737–753.  相似文献   

9.
Relations among observed changes in global mean surface temperature, ocean heat content, ocean heating rate, and calculated radiative forcing, all as a function of time over the twentieth century, that are based on a two-compartment energy balance model, are used to determine key properties of Earth’s climate system. The increase in heat content of the world ocean, obtained as the average of several recent compilations, is found to be linearly related to the increase in global temperature over the period 1965–2009; the slope, augmented to account for additional heat sinks, which is an effective heat capacity of the climate system, is 21.8 ± 2.1 W year m?2 K?1 (one sigma), equivalent to the heat capacity of 170 m of seawater (for the entire planet) or 240 m for the world ocean. The rate of planetary heat uptake, determined from the time derivative of ocean heat content, is found to be proportional to the increase in global temperature relative to the beginning of the twentieth century with proportionality coefficient 1.05 ± 0.06 W m?2 K?1. Transient and equilibrium climate sensitivities were evaluated for six published data sets of forcing mainly by incremental greenhouse gases and aerosols over the twentieth century as calculated by radiation transfer models; these forcings ranged from 1.1 to 2.1 W m?2, spanning much of the range encompassed by the 2007 assessment of the Intergovernmental Panel on Climate Change (IPCC). For five of the six forcing data sets, a rather robust linear proportionality obtains between the observed increase in global temperature and the forcing, allowing transient sensitivity to be determined as the slope. Equilibrium sensitivities determined by two methods that account for the rate of planetary heat uptake range from 0.31 ± 0.02 to 1.32 ± 0.31 K (W m?2)?1 (CO2 doubling temperature 1.16 ± 0.09–4.9 ± 1.2 K), more than spanning the IPCC estimated “likely” uncertainty range, and strongly anticorrelated with the forcing used to determine the sensitivities. Transient sensitivities, relevant to climate change on the multidecadal time scale, are considerably lower, 0.23 ± 0.01 to 0.51 ± 0.04 K (W m?2)?1. The time constant characterizing the response of the upper ocean compartment of the climate system to perturbations is estimated as about 5 years, in broad agreement with other recent estimates, and much shorter than the time constant for thermal equilibration of the deep ocean, about 500 years.  相似文献   

10.
We measured spatial and temporal variations in carbon concentrations, isotopic compositions and exports during a complete hydrological cycle in nine watercourses draining a lowland forested podzolized catchment, flowing into the Arcachon lagoon (France). In addition, integrated fluxes of CO2 across the water-atmosphere interface were estimated to assess the relative importance of CO2 evasion versus lateral carbon transport at the catchment scale. Watercourse similarities and specificities linked to the local catchment characteristics are discussed and compared with other riverine systems. Low concentrations of suspended particulate matter and particulate organic carbon (POC) were generally measured in all the watercourses (8.4 ± 3.4 and 1.6 ± 0.6 mg L?1, respectively), reflecting limited mechanical soil erosion. The generally high POC content in the suspended matter (20 %), low Chl a concentrations (1.3 ± 1.4 μg L?1) and the relatively constant δ13C-POC value (near ?28 ‰) throughout the year reveal this POC originates from terrestrial C3 plant and soil detritus. The presence of podzols leads to high levels of dissolved organic carbon (DOC; 6.6 ± 2.2 mg L?1). Similarly, high dissolved inorganic carbon (DIC) concentrations were measured in the Arcachon lagoon catchment (5.9 ± 2.2 mg L?1). The δ13C-DIC value around ?20 ‰ throughout the year in many small watercourses reveals the predominance of terrestrial carbon mineralisation and silicate rock weathering in soils as the major DIC source. With pCO2 between 1,000 and 10,000 ppmv, all watercourses were a source of CO2 to the atmosphere, particularly during the low river stage. Organic carbon parameters remained relatively stable throughout the year, whereas DIC parameters showed strong seasonal contrasts closely linked to the hydrological regime and hyporheic flows. In total, the carbon export from the Arcachon watershed was estimated at 15,870 t C year?1 or 6 t C km?2 year?1, mostly exported to the lagoon as DOC (35 %), DIC (24 %) and lost as CO2 degassing to the atmosphere (34 %).  相似文献   

11.
Global mean sea level is a potentially sensitive indicator of climate change. Global warming will contribute to worldwide sea-level rise (SLR) from thermal expansion of ocean water, melting of mountain glaciers and polar ice sheets. A number of studies, mostly using tide-gauge data from the Permanent Service for Mean Sea Level, Bidston Observatory, England, have obtained rates of global SLR within the last 100 years that range between 0·3 and 3 mm yr?1, with most values concentrated between 1 and 2 mm yr?1. However, the reliability of these results has been questioned because of problems with data quality and physical processes that introduce a high level of spatial and temporal variability. Sources of uncertainty in the sea-level data include variations in winds, ocean currents, river runoff, vertical earth movements, and geographically uneven distribution of long-term records. Crustal motions introduce a major source of error. To a large extent, these can be filtered by employing palaeo-sea-level proxies, and geophysical modelling to remove glacio-isostatic changes. Ultimately, satellite geodesy will help resolve the inherent ambiguity between the land and ocean level changes recorded by tide gauges. Future sea level is expected to rise by ~ 1 m, with a ‘best-guess’ value of 48 cm by the year 2100. Such rates represent an acceleration of four to seven times over present rates. Local land subsidence could substantially increase the apparent SLR. For example, Louisiana is currently experiencing SLR trends nearly 10 times the global mean rate. These recently reduced SLR estimates are based on climate models that predict a zero to negative contribution to SLR from Antarctica. Most global climate models (GCMs) indicate an ice accumulation over Antarctica, because in a warmer world, precipitation will exceed ablation/snow-melt. However, the impacts of attritional processes, such as thinning of the ice shelves, have been downplayed according to some experts. Furthermore, not all climate models are in agreement. Opposite conclusions may be drawn from the results of other GCMs. In addition, the West Antarctic Ice Sheet is potentially subject to dynamic and volcanic instabilities that are difficult to predict. Because of the great uncertainty in SLR projections, careful monitoring of future sea-level trends by upgraded tide-gauge networks and satellite geodesy will become essential. Finally, because of the high spatial variability in crustal subsidence rates, wave climates and tidal regimes, it will be the set of local conditions (especially the relative sea-level rise), rather than a single global mean sea-level trend, that will determine each locality's vulnerability to future SLR.  相似文献   

12.
鉴于卫星测高技术在南极周边海域会受到海面浮冰影响,且在利用测高序列分析海平面周期性动态变化时还会受到潮汐周期混叠效应的影响,为此,本文开展了基于GPS和验潮数据联合的南极大陆附近海域从1994-2014年间海平面的绝对变化研究.研究结果显示:在围绕南极大陆及附近海域的15个验潮站中,海平面绝对变化速度最大的是Diego Ramirez验潮站,达到11.10±0.04 mm·a-1;在西南极南极半岛的德雷克海峡,海平面变化最为活跃,变化均值在8.31±0.05 mm·a-1;在东南极,从Syowa站依次到Casey站,海平面的绝对变化速度相对平稳,四个潮位站海平面变化均值为3.35±0.04 mm·a-1;在罗斯冰架右下侧的罗斯岛附近,由于冰川崩解入海导致Scott Base站处的海平面上升速度较快,达到了9.61±0.07 mm·a-1.综合15个验潮站计算结果可得南极半岛德雷克海峡和罗斯岛附近海域,海平面绝对变化速度要高于同期南大洋海平面绝对变化速度,而东南极4个潮位站海平面绝对变化均值则与其相当.这也进一步反映了南极不同海域间海平面变化的差异性,相比较于对南大洋海平面变化的一个整体研究,分区研究海平面变化更具针对性,能更好地了解南极不同区域冰盖、冰架崩解和消融的情况.  相似文献   

13.
Tal Ezer 《Ocean Dynamics》2018,68(10):1259-1272
Tropical storms and hurricanes in the western North Atlantic Ocean can impact the US East Coast in several ways. Direct effects include storm surges, winds, waves, and precipitation and indirect effects include changes in ocean dynamics that consequently impact the coast. Hurricane Matthew [October, 2016] was chosen as a case study to demonstrate the interaction between an offshore storm, the Gulf Stream (GS) and coastal sea level. A regional numerical ocean model was used, to conduct sensitivity experiments with different surface forcing, using wind and heat flux data from an operational hurricane-ocean coupled forecast system. An additional experiment used the observed Florida Current (FC) transport during the hurricane as an inflow boundary condition. The experiments show that the hurricane caused a disruption in the GS flow that resulted in large spatial variations in temperatures with cooling of up to ~?4 °C by surface heat loss, but the interaction of the winds with the GS flow also caused some local warming near fronts and eddies (relative to simulations without a hurricane). A considerable weakening of the FC transport (~?30%) has been observed during the hurricane (a reduction of ~?10 Sv in 3 days; 1Sv?=?106 m3 s?1), so the impact of the FC was explored by the model. Unlike the abrupt and large wind-driven storm surge (up to 2 m water level change within 12 h in the South Atlantic Bight), the impact of the weakening GS on sea level is smaller but lasted for several days after the hurricane dissipated, as seen in both the model and altimeter data. These results can explain observations that show minor tidal flooding along long stretches of coasts for several days following passages of hurricanes. Further analysis showed the short-term impact of the hurricane winds on kinetic energy versus the long-term impact of the hurricane-induced mixing on potential energy, whereas several days are needed to reestablish the stratification and rebuild the strength of the GS to its pre-hurricane conditions. Understanding the interaction between storms, the Gulf Stream and coastal sea level can help to improve prediction of sea level rise and coastal flooding.  相似文献   

14.
This paper summarizes results obtained for Greenland??s mass balance observed with NASA??s GRACE mission. We estimate a Greenland ice sheet mass loss at ?201 ± 19 Gt/year including a discernible acceleration of ?8 ± 7 Gt/year2 between March 2003 and February 2010. The mass loss of glacier systems on the South East of Greenland has slowed down while the mass loss increases toward the North along the West side of Greenland. The mass balance can be compared with results obtained by a regional climate model of the Greenland system and ice sheet altimeter data obtained from NASA??s ICEsat mission. Our GRACE-only results differ to within 15% from these independently calculated values; we will comment on the possible causes and the quality of the glacial isostatic adjustment model which is used to correct geodetic datasets.  相似文献   

15.
Soil is an essential resource for human livelihoods. Soil erosion is now a global environmental crisis that threatens the natural environment and agriculture. This study aimed to assess the annual rate of soil erosion using distributed information for topography, land use and soil, with a remote sensing (RS) and geographical information system (GIS) approach and comparison of simulated with observed sediment loss. The Shakkar River basin, situated in the Narsinghpur and Chhindwara districts of Madhya Pradesh, India, was selected for this study. The universal soil loss equation (USLE) with RS and GIS was used to predict the spatial distribution of soil erosion occurring in the study area on a grid-cell basis. Thematic maps of rainfall erosivity factor (R), soil erodibility factor (K), topographic factor (LS), crop/cover management factor (C), and conservation/support practice factor (P) were prepared using annual rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and a satellite image of the study area in the GIS environment. The annual rate of soil erosion was estimated for a 15-year period (1992–2006) and was found to vary between 6.45 and 13.74 t ha?1 year?1, with an average annual rate of 9.84 t ha?1 year?1. The percentage deviation between simulated and observed values varies between 2.68% and 18.73%, with a coefficient of determination (R2) of 0.874.  相似文献   

16.
In this study, a new estimate of the contribution of glaciers and ice caps to the sea-level rise over the period 1800?C2005 is presented. We exploit the available information on changes in glacier length. Length records form the only direct evidence of glacier change that has potential global coverage before 1950. We calculate a globally representative signal from 349 glacier length records. By means of scaling, we deduce a global glacier volume signal, that is calibrated on the mass-balance and geodetic observations of the period 1950?C2005. We find that the glacier contribution to sea-level rise was 8.4 ± 2.1 cm for the period 1800?C2005 and 9.1 ± 2.3 cm for the period 1850?C2005.  相似文献   

17.
Banda Sea surface-layer divergence   总被引:3,自引:0,他引:3  
Sea-surface temperature (SST) within the Banda Sea varies from a low of 26.5 °C in August to a high of 29.5 °C in December and May. Ekman upwelling reaches a maximum in May and June of approximately 2.5 Sv (Sv=106 m3 s?1) with Ekman downwelling at a maximum in February of approximately 1.0 Sv. The Ekman pumping annual average is 0.75 Sv upwelling. During the upwelling period, from April through December the average Ekman upwelling velocity is 2.36 × 10?6 m s?1 (1.27 Sv). ENSO modulation is generally within 0.5 Sv of the mean Ekman curve, with weaker (stronger) July to October upwelling during El Niño (La Niña). Combined TOPEX/POSEIDON and ERS 1993–1999 altimeter data reveal a 33 cm maximum range of sea level. Steric effects are minor, with well over 80% of the sea level change due to mass divergence (some bias due to unresolved tidal aliasing may still be present). The annual and interannual sea level behavior follows the monsoonal and ENSO phenomena, respectively. Lower (higher) sea level occurs in the southeast (northwest) monsoon and during El Niño (La Niña) events. The surface-layer volume anomaly and the surface-layer divergence, assuming a two-layer ocean, are estimated. Maximum divergence is attained during the transitional monsoon months of October/November: 1.7 Sv gain (convergence), with matching loss (divergence) in the April/May. During the El Niño growth period of 1997 the surface layer is divergent, but in 1998 when the El Niño was on the wane, the average rate of change is convergent. Surface-layer divergence attains values as high as 4 Sv. Banda Sea surface-water divergence correlates reasonably well with the 3-month lagged export of surface (upper 100?m) water into the Indian Ocean as estimated by a shallow pressure gauge array. It is concluded that the Banda Sea surface-layer divergence influences the timing and transport profile of the Indonesian throughflow export into the Indian Ocean, as proposed by Wyrtki in 1958, and that satellite altimetry may serve as an effective means of monitoring this phenomena.  相似文献   

18.
Two of the most important topics in Sea Level Science are addressed in this paper. One is concerned with the evidence for the apparent acceleration in the rate of global sea level change between the nineteenth and twentieth centuries and, thereby, with the question of whether the twentieth century sea level rise was a consequence of an accelerated climate change of anthropogenic origin. An acceleration is indeed observed in both tide gauge and saltmarsh data at different locations around the world, yielding quadratic coefficients ??c?? of order 0.005 mm/year2, and with the most rapid changes of rate of sea level rise occurring around the end of the nineteenth century. The second topic refers to whether there is evidence that extreme sea levels have increased in recent decades at rates significantly different from those in mean levels. Recent results, which suggest that at most locations rates of change of extreme and mean sea levels are comparable, are presented. In addition, a short review is given of recent work on extreme sea levels by other authors. This body of work, which is focused primarily on Europe and the Mediterranean, also tends to support mean and extreme sea levels changing at similar rates at most locations.  相似文献   

19.
Recent studies in the Mediterranean area have shown gully erosion to have a very significant contribution to total soil loss. In the Penedès vineyard region (NE Spain), between 15 and 27% of the land is affected by large gullies and gully‐wall retreat seems to be an ongoing process. Multi‐date digital elevation model (DEM) analysis has allowed computation of sediment production by gully erosion, showing that the sediment production rates are very high by the, up‐to‐date, usual global standards. Here, we present a study carried out using large‐scale multi‐date (1975 and 1995) aerial photographs (1 : 5000 and 1 : 7000) to monitor sediment yield caused by large gullies in the Penedès region (NE Spain). High‐resolution DEMs (1 m grid) were derived and analysed by means of geographical information systems techniques to determine the gully erosion rates. Rainfall characteristics within the same study period were also analysed in order to correlate with the soil loss produced. Mass movement was the main process contributing to total sediment production. This process could have been favoured by rainfalls recorded during the period: 58% of the events were of an erosive character and showed high kinetic energy and erosivity. A sediment production rate of 846 ± 40 Mg ha?1 year?1, a sediment deposition rate of 270 ± 18 Mg ha?1 year?1 and a sediment delivery ratio of 68·1% were computed for a gully area of 0·10 km2. The average net erosion within the study period (1975–95) was 576 ± 58 Mg ha?1 year?1. In comparison with other methods, the proposed method also includes sediment produced by processes other than only overland flow, i.e. downcutting, headcutting, and mass movements and bank erosion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
This study shows the assessment of radiation hazard parameters due to terrestrial radionuclides in the soil around artisanal gold mining for addressing the issue of natural radioactivity in mining areas. Hence, the levels 238U, 232Th, 40K and 226Ra in soil (using gamma spectrometry), 222Rn in soil and 222Rn in air were determined. Radiation hazard parameters were then computed. These include absorbed dose D, annual effective dose E, radium equivalent activity Raeq, external hazard Hex, annual gonadal dose equivalent hazard index AGDE and excess lifetime cancer risk ELCR due to the inhalation of radon (222Rn) and consumption of radium (226Ra) in vegetation. Uranium (238U), thorium (232Th) and potassium (40K) averages were, respectively, 26, 36 and 685 Becquerel per kilogram (Bq kg?1). Soil radon (4671 Bq m?3) and radon in air (14.77 Bq m?3) were found to be less than worldwide data. Nevertheless, the average 40K concentration was 685 Bq kg?1. This is slightly higher than the United Nations Scientific Committee on the Effects of Atomic Radiation average value of 412 Bq kg?1. The obtained result indicates that some of the radiation hazard parameters seem unsavory. The mean value of absorbed dose rate (62.49 nGy h?1) was slightly higher than average value of 57 nGy h?1 (~?45% from 40K), and that of AGDE (444 μSv year?1) was higher than worldwide average reported value (300 μSv year?1). This study highlights the necessity to launch extensive nationwide radiation protection program in the mining areas for regulatory control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号