首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用非线性大直径薄壁铺设变形和应力计算模型,对水中铺设的典型工况进行了空间形态和应力分布的模拟计算,分析了实际工程中的两种铺设方案-采用刚性托架和托架船辅助铺设及仍采用刚性托铺设,并计算了水中铺设时的纵向水流对铺设时的管线空间形态和应力分布的影响,对计算结果作了定性的分析,提出了相应工况时该管道铺设工程中应该注意的考虑的问题。  相似文献   

2.
Long steel piles with large diameters have been more widely used in the field of ocean engineering.Owing to the pile with a large diameter,soil plug development during pile driving has great influences on pile driveability and beating capacity.The response of soil plug developed inside the open-ended pipe pile during the dynamic condition of pile-driving is different from the response under the static condition of loading during service.This paper addresses the former aspect.A numerical procedure for soil plng effect prediction and pile driveability analysis is proposed and described.By taking into consideration of the pile dimension effect on side and tip resistance,this approach introduces a dimensional coefficient to the conventional static equilibrium equations for the plug differential unit and proposes an improved static equity method for the plug effect prediction.At the same time,this approach introduces a simplified model by use of one-dimensional stress wave equation to simulate the interaction between soft ping and pile inner wall.The proposed approach has been applied in practical engineering analyses.Results show that the calculated plug effect and pile driveability based on the proposed approach agree well with the observed data.  相似文献   

3.
Dynamic and quasi-static models for analysis of a pipe lay spread are presented in the paper. Depending on the type of a pipe, spooling it on a big drum (reel) may cause plastic deformations. When the pipe is reeled out at sea, again it undergoes plastic deformations. In order to model such a nonlinear behaviour, a model, which includes both elasto-plastic material characteristics and large deformations, is required. Discretisation of the pipe is performed by means of the Rigid Finite Element Method (RFEM), which allows us to study static and dynamic problems, taking into account required properties of the model. Different sea conditions are simulated and analysed. It is shown how operational conditions can limit the ability of laying operation by a dedicated vessel, due to an unstable system response. The second part of the paper presents an upgrade of a passive reel drive by application of an active drive. In the model used for control applications, the pipe is modelled by a neural network. This allows us to perform a real-time calculations. In this fast-response calculation model, nonlinear aspects of the system are taken into account. The improvements in a pipe laying vessel performance are presented by some results of numerical simulations. The conclusions are also formulated.  相似文献   

4.
采用卷管法进行海底管道铺设过程中,管道首先通过牵引作用上卷于卷筒进行储存。管道与卷筒发生非线性接触,可能会产生复杂的塑性变形和局部屈曲。通过全尺寸柔性管力学性能试验获得柔性管轴力—应变以及弯曲—曲率等非线性力学性能关系,将试验所得的非线性材料性能参数导入建立的两种柔性管上卷ABAQUS有限元模型(梁—实体单元模型与壳和桁架—实体单元模型),实现柔性管较大轴向抗拉刚度和较小抗弯刚度的同步模拟以及管道与卷筒的非线性接触响应特征。通过对比分析两种有限元模型数值模拟得到的管道弯矩、弯曲曲率、管道轴力、管道与卷筒的接触压强等数据,发现在管道上卷过程中管道沿副法线方向的SM3弯矩占据其弯曲变形主导地位;管道与卷筒之间的摩擦效应对于管道轴力的影响较为显著;管道与卷筒的最大接触压强主要发生在卷管过渡段区域。  相似文献   

5.
A piggyback pipeline consists of two pipes such that the secondary line rides on the main pipe with a fixed distance between two pipes in length. The novel strategy is utilized in offshore areas instead of a single flow line. In this regard, there are only a handful of experimental and numerical studies investigating the effect of scour below a piggyback pipeline under steady current. Hence, this study focuses on examining the influential factors on scouring due to steady current including the pipe diameter and the gap between pipes through numerical simulations and experimental tests. Accordingly, at the first phase of the research, a single pipe was established and tested in laboratory to compare the results with those of an empirical equation. After finishing experimental verifications,piggyback pipelines were also assembled to study the scouring under steady current conditions. It was concluded that by increasing the gap distance between the pipes, the maximum scour depth decreases; however, an increase in the small pipe's diameter results in a larger maximum scour depth. Secondly, numerical simulations were carried out using the FLOW-3D software which was found to be a suitable tool for the numerical investigation of this study.Finally, the numerical results have been compared with the corresponding experimental data and a relatively good agreement was achieved between them.  相似文献   

6.
采用卷管法铺设管道时,管道和铺设设备之间的接触作用十分复杂,并且管道在弯曲过程中将会产生塑性变形并可能发生局部屈曲,导致管道失效。基于有限元模型(FEM)实时模拟卷管法安装的整个过程,研究管道与铺设设备之间的接触作用;分析管道对于环境载荷和船体运动的动态响应;获得管道的应力应变值以校核局部屈曲。研究结果表明,管道弯矩大部分来源于管道与安装设备间的接触作用,而环境载荷及船体运动对管道的弯曲应力影响较小。  相似文献   

7.
卷管式铺管法在海管铺设中的应用愈发广泛,在铺设作业中管道会发生几何非线性变形,导致出现复杂的力学性能变化。针对管道在上卷、退卷过程中的屈服变化过程,通过弹塑性理论进行分析,推导出管道退卷后残余轴向应力的解析解;随后利用有限元软件ABAQUS建立模型实例,对比解析解与有限元模型,两者的计算结果基本吻合。基于上述有限元模型,研究上卷时的张力和退卷时的后张力对椭圆度、截面轴向应力和剪切应力的影响,并进行敏感性分析。模拟结果表明张力和后张力变化会影响管道截面的变形程度,退卷后截面上残余的轴向应力远高于剪切应力,并且通过敏感性分析,得到了残余椭圆度、残余应力随张力和后张力变化的规律。研究可为卷管铺设过程中张力和后张力的选择提供参考和借鉴。  相似文献   

8.
An Overview of Deepwater Pipeline Laying Technology   总被引:1,自引:0,他引:1  
The technology and methods involved in pipeline laying in shallow water have evolved to the level of routine and commonplace. However, regarding the unexpected deepwater complexity, the traditional pipeline laying techniques have to confront many new challenges arisen from the increase of the water depth, diameter of the pipe and the welding difficuhy, all of which should be modified and/or innovated based on the existed mature experiences. The purpose of this investigation is to outline the existing and new engineering laying techniques and the associated facilities, which can provide some significant information to the related research. In the context, the latest deepwater pipeline laying technology and pipe laying barges of the renowned companies from Switzerland, Norway, Italy etc., are introduced and the corresponding comparison and discussion are presented as well.  相似文献   

9.
The winding and unwinding of a pipeline onto a large diameter reel as practiced in the reeling installation method, induces bending strains of 1–3% followed by straightening, and reverse bending. The operator must ensure that such plastic deformations are sustained free of local buckling or rupture in the line. Such failures are for example precipitated by pipeline discontinuities in wall thickness and yield stress as they act as stress risers, lead to localized deformations severe enough to result in local buckling. The effect of such discontinuities is studied using a large-scale nonlinear finite element model that simulates the reeling/unreeling of a pipeline. Nonlinear kinematic hardening is used to capture the elasto-plastic behavior of the material imposed by the bending/reverse bending history. Discontinuities in wall thickness and yield stress are shown to result in sharp local changes in curvature that extend over 3–4 pipe diameters accompanied by severe local straining and ovalization. The extent of the disturbance is governed by the bending strain imposed by the ratio of pipe to reel diameter. It can be reduced by an increase in the applied tension but at the expense of additional ovalization of the pipeline. It can also be reduced by increasing the pipe wall thickness but with the consequent increase in costs. A parametric study of the effect of such discontinuities demonstrates that for some combinations of process parameters, the disturbance can lead to local buckling either during winding or unwinding. It is concluded that a modeling framework such as the one presented should be used to generate a design protocol for reel-installed pipelines.  相似文献   

10.
Numerical modelling of deep sea air-lift   总被引:2,自引:0,他引:2  
K. Pougatch  M. Salcudean   《Ocean Engineering》2008,35(11-12):1173-1182
Deep sea air-lifting of solid particles from depth of 1600 m is simulated with a mathematical model of the three-phase flow in an upward pipe. The computations are carried out for an axisymmetric domain in a transient way. Phase distributions, pressure and velocity profiles together with flow rates for all phases are presented and analysed. The influence of the pipe diameter on the air-lift efficiency was studied for air-lift pipes of different lengths and found to be significant. The lifting efficiency increases with the increase of the pipe diameter due to the reduction of the wall friction influence on the flow. In addition, the efficiency also increases with the increase of the solid particles volume fraction at the inlet. The presented numerical model can be utilized during various stages of the design of the air-lift pumps to help answer fundamental questions on the process, and during their operation to select optimal process parameters and to address possible problems.  相似文献   

11.
The present paper is concerned with determining the effect of thickness variation on collapse pressure of seamless pipes. There exists extensive information on the effects external pressure has on pipelines. A substantial amount of literature deals with results of analysis, numerical modelling and testing of pipes those are gradually subject to external pressure. This knowledge has been incorporated into standards which are intended for designing linepipe operating in deepwater locations. One such example is the DNV-OS-101 (DNV, 2007) Submarine Pipeline Systems standard. This code only addresses pipes with a nominally uniform wall thickness making it inadequate for designing seamless pipe which is prone to thickness variation arising from the manufacturing process. The DNV (2007) code effectively ignores the problem as it simply provides a vague statement regarding a conservative value of wall thickness that should be used in the design calculations.The present paper uses finite element analysis (FAE) modelling to predict the external pressure acting on the pipes. The present paper explains the manner in which FEA models will be used to study the effect wall thickness variation will have on the pressure at which the pipe will collapse. An improvement to the DNV (2007) code is then suggested by interpreting the results of the FEA models. The case study that follows provides insight on the savings the improved method is projected to offer.  相似文献   

12.
The axial friction response of subsea pipelines in soft clays is a very important aspect for designers of subsea pipelines but the response is not well understood so far. There is a pressing need for the comprehension of the response. In this paper, model tests are performed using full-scale pipes coated with polyethylene (PE) to study the effects of the set-up period, the pipe diameter, the buried depth of the pipe, the shear strength of soft clays and the loading rate on the axial friction response of pipelines in soft clays. The variations of the axial friction coefficient are analyzed using the effective stress method based on model test results. The results show that the axial friction resistance increases with the increasing pipe diameter but the effect of the pipe diameter on the axial friction coefficient can be neglected. The ultimate axial resistance also increases with the increase of the buried depth of pipelines, the undrained shear strength of soft clays and the loading rate. The axial friction coefficient increases with the increasing loading rate. However, the axial friction coefficient decreases with the increasing buried depth. The method to determine the axial friction coefficient is developed by analyzing model test results, which considers the effects of the diameter, the buried depth, the undrained shear strength of soft clays and the loading rate. The study results not only extend the industry data base but also supply a basis to determine the axial friction coefficient of PE-coated pipes in soft clays for ocean engineering geological investigations.  相似文献   

13.
Abstract

This study established a Couple Eulerian–Lagrange model to simulate monopile vibratory penetration for the investigation of soil plugging effect during high-frequency penetration of monopiles for wind turbine. Simulation analysis is focused particularly on soil plugging effect of a large diameter monopile during vibratory penetration into sand, clay, or layered soil. The results of the numerical simulation show that soil plugging effect is unlikely to occur during monopile penetration into the clay soil, while partial soil plugging may occur during the sand penetration. Penetration resistance at the pile toe is transferred to the radial stress around the pile wall. At a critical point penetration process, internal shaft friction becomes larger than external shaft friction. Moreover, radial pressure factors increase during partial soil plugging effect. For layered soil, the topsoil not only has great influence on the soil plugging effect, but also affects shaft friction in the subsoil during monopile penetration.  相似文献   

14.
Considering the shear deformation and thickness stretching of large deformation, a modified numerical calculation method based on the thick shell theory is established to determine the collapse pressure of thick-walled pipes. Verification experiments are conducted on ten pipe specimens in hyperbaric chambers. The good agreement between experimental results and numerical predictions shows the validity and reliability of the new numerical calculation method. Combining DNV specification, the characteristic collapse pressure is also calculated for comparison. The difference between experimental results and DNV calculations illustrates the latter one is much conservative in predicting collapse pressure for thick-walled pipes. Sensitivity analysis on manufacturing imperfections and material properties is investigated for pipes with different D/t ratios. Thick-walled pipes are easier to be affected by initial ovality, residual stress and hardening factor. Based on the stress distribution at the moment of collapse, a novel discovery is found that the collapse pressure of thick-walled pipes is dominated by material plastic behavior.  相似文献   

15.
深海蕴藏着丰富的多金属结核资源,受海水深度等限制,结核采集目前仍存在巨大挑战。水力式采矿具有结构简单、可靠性高的优势,是目前最具发展前景的采集方式之一。水力式采矿通过水流动力进行结核采集,喷射形成的复杂流场结构直接影响海床上结核颗粒剥离、起动、采集效率和海洋环境扰动强度,采集器离地高度、喷嘴射流角度和速度等具有较大优化空间。基于计算流体力学数值模拟研究了集矿头附近三维水流结构,分析了喷嘴射流速度和结核粒径对局部流场、床面剪切力以及结核采集能效的影响。结果表明:集矿头周围流场存在典型分区结构,包括淹没射流区、冲击区、壁面射流区、汇合区和上升区;随着喷射流速增大,最大床面剪切力近似线性增长,结核有效起动面积指数增长;随着结核粒径增大,有效起动面积减小,结核采集能效降低;综合考虑结核采集强度和采集能效,建议采集器喷射流速取8~9 m/s。  相似文献   

16.
大直径钢管桩土塞效应的判断和沉桩过程分析   总被引:5,自引:0,他引:5  
港口工程和海洋工程中出现了越来越多的大直径超长钢管桩。由于这种桩直径较大,土塞的形成对桩的可打入性和承载力有较大的影响。鉴于此,根据大直径和超大直径钢管桩土塞性状的特殊性,考虑了桩直径对侧壁摩阻力、端阻力的影响,引入了尺寸效应系数,重新建立了土塞微分体的静力平衡方程,提出了采用改进的静力平衡法进行土塞效应判断,同时采用波动方程法近似模拟土塞与桩管内壁的相互作用,建立了简化的土塞与桩壁相互作用模型,并用该方法进行实际工程的打桩分析,分析结果表明该方法对土塞效应的判断、打桩过程的预测等与工程实测数据吻合较好。  相似文献   

17.
The aim of the current paper is to investigate hydrodynamic characteristics of the artificial upwelling induced by ocean currents. Experiments were performed in a flume at different density difference heads, horizontal current velocities and upwelling pipe diameters. A three-dimensional computational fluid dynamics (CFD) model was employed on wider range of parameters for further analysis. The performance of the numerical model has been confirmed by the experimental findings. The present results show that the volume flow rate of current-induced artificial upwelling is influenced by geometrical parameters and inclination angle of the pipe, the horizontal current velocity and vertical distribution of water density. In ideal two-layer density stratified water, the critical current velocity to generate upwelling linearly increases with the increase of the density difference, and the maximum rising height for upwelling is inversely proportional to the density difference. Feasibility analysis was taken by using current and density profiles of the East China Sea near Dongji Islands, which provides an useful reference for engineering practice.  相似文献   

18.
Pipelines are the main element in transporting hydrocarbons from their extraction sites to on-shore or floating facilities, with preference now given to pipelines laid directly on the seabed due to their fast and economic installation. However, these pipelines are exposed and must be stable under all environmental conditions, and therefore, their design for on-bottom stability is of critical importance. Although accurate prediction of the pipe–soil interaction behaviour under hydrodynamic loads from waves and currents is of major concern, limited physical testing of pipes subjected to these cyclic loading conditions has occurred. Tests have concentrated on simpler load combinations in order to develop pipe–soil friction factors or the key parameters in plasticity models that described pipe–soil behaviour. In this paper, results from geotechnical centrifuge experiments of a model pipe on calcareous sand soil collected from offshore on the North West Shelf of Australia are presented. A sophisticated load control scheme allowed complex paths characteristic of hydrodynamic loads to be applied during the testing. Furthermore, pipe testing could be extended to relatively large horizontal movements of up to 5 pipe diameter. The results of the centrifuge testing programme provide improved understanding of the pipe–soil interaction under complex hydrodynamic load paths. They have also been used to assess a state-of-the-art plasticity model describing pipe–soil interaction on calcareous sands.  相似文献   

19.
武行  赵海盛  李昕 《海洋工程》2021,39(3):72-82
在深海环境中,海底管线不仅承受较高外压,还会因为海水及运输介质的常年侵蚀而形成腐蚀缺陷,而腐蚀缺陷往往会导致管道的外压承载力下降。基于壳体稳定性理论,建立了含有非对称局部壁厚减薄管道在外压作用下的屈曲压力理论公式。公式具有广泛的适用性,当内、外局部壁厚减薄深度相等时,可用于计算含有对称局部壁厚减薄管道屈曲压力,而当内部或外部缺陷深度为零时,便可用于计算只含外部或者内部腐蚀缺陷的管道屈曲压力。通过有限元分析验证了该公式的正确性,结果表明公式可以准确预测不同缺陷位置及尺寸时管道的屈曲压力。详细研究了局部壁厚减薄缺陷位置、长度和深度等参数对屈曲压力的影响。研究表明,局部腐蚀对管道的屈曲压力产生重要影响,尤其当腐蚀角度和深度较大时,在腐蚀形成初期就会造成管道的承载力急剧下降,并且管道的屈曲压力与缺陷的径向位置有关,腐蚀缺陷位于管道外侧时的屈曲压力明显大于其位于管道内侧时的屈曲压力。  相似文献   

20.
鲍健  陈正寿 《海洋工程》2022,40(2):78-87
管内流动会影响输流管的振动响应,目前关于输流弹性管涡激振动方面的研究较少。基于计算流体力学(CFD)方法,开展内外流对细长输流弹性管振动特性影响的研究。首先在不考虑内流的情况下将弹性管涡激振动数值预报结果与模型试验数据进行对比,验证了数值方法的可靠性。再者考虑内外流耦合作用情况下,对不同内流流速下细长输流弹性管振动位移时—空分布、顺流向最大平均偏移、振动轨迹、内部横向涡的形成与分布等进行了对比分析。结果发现,与外流流速相比,内流流速的增加虽然难以改变弹性管的主振模态,但对沿管体的振动强度影响显著。顺流向最大偏移处管体运动轨迹发生明显的变形和跳跃。在剪切外流和均匀内流对弹性管的联合作用下,沿管跨方向模态间能量转换频繁,伴随着间歇性出现或消失的沿弹性管传播的行波组分,这主要归因于复杂的双重流固耦合系统(外流—管体,内流—管体)。在内流以附加质量力、离心力和科氏力形式的激励下,弹性管内二次流现象明显。在振动过程中,内部横向涡沿管壁生成、脱落并逐渐散布于整个横截面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号