首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Deming Zhao 《Climate Dynamics》2013,40(7-8):1767-1787
Regional climate models (RCMs) can provide much more precise information on surface characteristics and mesoscale circulation than general circulation models. This potential for obtaining more detailed model results has motivated to a significant focus on RCMs development in East Asia. The Regional Integrated Environment Modeling System, version 2.0 (RIEMS2.0) has been developed from an earlier RCM, RIEMS1.0, at the Key Laboratory of Regional Climate-Environment for East Asia and Nanjing University. To test the ability of RIEMS2.0 to simulate long-term climate and climate changes in East Asia and to provide a basis for further development and applications, we compare simulated precipitation from 1979 to 2008 (simulation duration from 1 January 1978 to 31 December 2008) to observed meteorological data. The results show that RIEMS2.0 reproduces the spatial distribution of precipitation in East Asia but that the simulation overestimates precipitation. The simulated 30-year precipitation average is 26 % greater than the observed precipitation. Simulated upper and root soil water correlate well with remote sensing derived soil moisture. Annual and interannual variation in the average precipitation and their anomalies are both well reproduced by the model. A further analysis of three subregions representing different latitude ranges shows that there is good correlation and consistency between the simulated results and the observed data. Annual variation, interannual variation of average precipitation, and the anomalies in the three sub-regions are also well captured by the model. The model’s performance on atmospheric circulation and moisture transport simulations is discussed to explore the bias between the simulation and observations. In summary, RIEMS2.0 shows stability and does well in both simulating long-term climate and climate changes in East Asia and in describing subregional characteristics.  相似文献   

2.
Regional Integrated Environment Modeling System Version 2.0 (RIEMS2.0) is now being developed by the Key Laboratory of Regional Climate-Environment for Temperate East Asia, Chinese Academy of Sciences. In order to test the sensitivity of the RIEMS2.0 model domain to simulate long-term climate and its change, and provide a basis for the further development and application of the model, the authors compared results between simulated and observed precipitation and surface-airtemperature using two model domains under different cumulus parameterization schemes. The model was driven by NCEP/NCAR re-analysis data with a simulation duration ranging from 1 January 1979 to 31 December 2007. There were no significant differences found in the spatial distributions of the simulated precipitation and surface-air-temperature, or interannual variations between the two model domains. There were, however, differences observed between the two model domain simulations of local sub-regions. The smaller model domain more accurately simulated precipitation, especially in summer (June, July, and August), and decreased the bias of surface-airtemperature, especially in winter (December, January, and February). The weak summer and winter monsoons simulated by the smaller model domain was a result of boundary forcings and may partially account for the improvements of this model.  相似文献   

3.
The Regional Integrated Environmental Model System(RIEMS 2.0) with NCEP Reanalysis II is utilized to simulate the severe freezing rain and snow storm event over southern China in January 2008,which caused severe damage in the region.The relationships between the freezing rain process and the large-scale circulation,in terms of the westerly and low-level jets,water vapor transportation,and northerly wind area/intensity indices,were analyzed to understand the mechanisms of the freezing rain occurrence.The results indicate the following:(1) RIEMS 2.0 reproduced the pattern of precipitation in January 2008 well,especially for the temporal evolution of daily precipitation averaged over the Yangtze River valley and southern China;(2) RIEMS 2.0 reproduced the persistent trough in the South Branch of the westerlies,of which the southwesterly currents transported abundant moisture into southern China;(3) RIEMS 2.0 reasonably reproduced the pattern of frequencies of light and moderate rain,although it overestimated the frequency of rain in southern China.This study shows that RIEMS 2.0 can be feasibly applied to study extreme weather and climate events in East Asia.  相似文献   

4.
The Regional Integrated Environmental Model System(RIEMS 2.0) coupled with a chemistry-aerosol model and the Princeton Ocean Model(POM) is employed to simulate regional oceanic impact on atmospheric circulation and the direct radiative effect(DRE) of aerosol over East Asia.The aerosols considered in this study include both major anthropogenic aerosols(e.g.,sulfate,black carbon,and organic carbon) and natural aerosols(e.g.,soil dust and sea salt) .The RIEMS 2.0 is driven by NCEP/NCAR reanalysis II,and the simulated period is from 1 January to 31 December 2006.The results show the following:(1) The simulated annual mean sea-level pressure by RIEMS 2.0 with POM is lower than without POM over the mainland and higher without POM over the ocean.(2) In summer,the subtropical high simulated by RIEMS 2.0 with POM is stronger and extends further westward,and the continental low is stronger than without POM in summer.(3) The aerosol optical depth(AOD) simulated by RIEMS 2.0 with POM is larger in the middle and lower reaches of the Yangtze River than without POM.(4) The direct radiative effect with POM is stronger than that without POM in the middle and lower reaches of the Yangtze River and parts of southern China. Therefore,the authors should take account of the impact of the regional ocean model on studying the direct climate effect of aerosols in long term simulation.  相似文献   

5.
不同区域气候模式对中国地区温度和降水的长期模拟比较   总被引:19,自引:9,他引:19  
冯锦明  符淙斌 《大气科学》2007,31(5):805-814
利用亚洲区域模式比较计划RMIP第二阶段五个区域模式和一个变网格全球模式,对中国地区1988年12月~1998年11月十年模拟的平均温度和降水结果,分析比较了不同区域气候模式对中国地区温度和降水的模拟能力。研究结果表明:几乎所有模式都能模拟出中国地区多年平均温度和降水的基本空间分布形态,但模式模拟的温度普遍偏低,在大部分区域,大多数模式模拟的降水偏多,而且不同模式之间存在较大差别。模式能较好地反映出中国地区温度的年际变化,对夏季降水的年际变化模拟较差,对冬季模拟较好。  相似文献   

6.
利用RIEMS-LRM对黄河河川径流的模拟研究   总被引:11,自引:0,他引:11  
利用区域系统环境集成模式(RIEMS)和一个offline的大尺度汇流模型(LRM)对黄河的河川径流做了模拟。中国科学院大气物理所东亚中心从1991年开始建立和发展RIEMS,并验证RIEMS对东亚区域气候有较好的模拟能力。LRM是以线性时基不变假定为基础并能够计算水的水平传输的数学模型。RIEMS—LRM可以用来模拟和预测大尺度河流的河川径流。RIEMS—LRM在黄河上游河段的应用证实其有能力对大尺度河流的河川径流进行模拟。此外,作还分析了模拟误差产生的原因。  相似文献   

7.
A model intercomparison in terms of surface air temperature annual cycle ampitude-phase characteristics(SAT AC APC)is performed. The models included in the intercomparison belong to two groups:five atmospheric models with prescribed sea surface temperature and sea ice cover and four coupled models forced by the atmospheric abundances of anthropogenic consituents (in total six coupled model simulations). Over land, the models, simulating higher than observed time averaged SAT,also tend to simulate smaller than observed amplitude of its annual and semiannual harmonics and (outside the Tropics laterthan-observed spring and autumn moments. The models with larger(smaller) time averaged amplitudes of annual and semiannual harmonics also tend to simulate larger(smaller)interannual standard deviations. Over the oceans, the coupled models with larger interannual standard deviations of annual mean SAT tend to simulate larger interannual standard deviations of both annual and semiannual SAT harmonics amplitudes. Most model errors are located in the belts 60°-70°N and 60°-70°S and over Antarctica. These errors are larger for those coupled models which do not employ dynamical modules for sea ice.No systematic differences are found in the simulated time averaged fields of the surface air temperature annual cycle characteristics for atmospheric models on one hand and for the coupled models on the other. But the coupled models generally simulate interannual variability of SAT AC APC better than the atmospheric models (which tend to underestimate it). For the coupled models, the results are not very sensitive to the choice of the particular scenario of anthropogenic forcing.There is a strong linear positive relationship between the model simulated time averaged semiannual SAT harmonics amplitude and interannual standard deviation of annual mean SAT.It is stronger over the tropical oceans and is weaker in the extratropics. In the tropical oceanic areas, it is stronger for the coupled than for the atmospheric models.  相似文献   

8.
The four-dimensional empirical orthogonal function (4D-EOF), which in reality is a simple combination of three-dimensional EOF (3D-EOF) and extended EOF (EEOF), is put forward in this paper to test the ability of numerical model to simulate climate and its change. The 4D-E0F analysis is able to reveal not only the horizontal characteristic pattern of analyzed variable, and its corresponding annual and inter-annual variations, but also the vertical structural characteristics. The method suggested is then used to analyze the monthly mean 100-, 500-, 70G-, and 1000-hPa geopotential height fields (4941 grids and grid spacing 60 km) and their anomaly fields in 1989-1998 simulated by the MM5V3 from the RMIP (Regional Climate Model Inter-comparison Project for East Asia)-II, as well as their counterparts (used as the observed fields) from the NCEP/NCAR re-analysis dataset in the same period. The ability of MM5V3 in simulating East Asian climate and its change is tested by comparing the 4D-EOF analysis results of the simulated and observed datasets. The comparative analyzed results show that the horizontal pattern of the first eigenvector of the observed monthly mean geopotential height fields and its vertical equivalent barotropic feature were well simulated; the simulations of the first two eigenvectors of the observed monthly mean geopotential height anomaly fields were also successful for their horizontal abnormal distributions and significant equivalent barotropic features in the vertical were well reproduced; and furthermore, the observed characteristics, such as the variation with height, the annual and inter-annual variations of the monthly mean geopotential height/anomaly fields were also well reflected in the simulation. Therefore, the 4D-EOF is able to comprehensively test numerical model's ability of simulating the climate and its change, and the simulation ability of MM5V3 for the climate and its change in East Asia in the 1990s was satisfactory.  相似文献   

9.
In this paper,experiment results about East Asia climate from five CGCMs are described.Theability of the models to simulate present climate and the simulated response to increased carbon dioxideare both covered.The results indicate that all models show substantial changes in climate whencarbon dioxide concentrations are doubled.In particular,the strong surface warming at high latitudesin winter and the significant increase of summer precipitation in the monsoon area are produced by allmodels.Regional evaluation results show that these five CGCMs are particularly good in simulatingspatial distribution of present climate.The main characteristics of the seasonal mean H500,SAT,MSLP field can be simulated by most CGCMs.But there are significant systematic errors in SAT,MSLP,HS00 fields in most models.On the whole,DKRZ OPYC is the best in simulating the presentclimate in East Asia.  相似文献   

10.
A continuous 10-year simulation in Asia for the period of 1 July 1988 to 31 December 1998 was conducted using the Regional Integrated Environmental Model System (RIEMS) with NCEP Reanalysis II data as the driving fields. The model processes include surface physics state package (BATS 1e), a Holtslag explicit planetary boundary layer formulation, a Grell cumulus parameterization, and a modified radiation package (CCM3). Model-produced surface temperature and precipitation are compared with observations from 1001 meteorology stations distributed over Asia and with the 0.5 × 0.5 CRU gridded dataset. The analysis results show that: (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature and precipitation; (2) When regionally averaged, the seasonal mean temperature biases are within 1–2C. For precipitation, the model tends to give better simulation in winter than in summer, and seasonal precipitation biases are mostly in the range of ?12%–50%; (3) Spatial correlation coefficients between observed and simulated seasonal precipitation are higher in north of the Yangtze River than in the south and higher in winter than in summer; (4) RIEMS can well reproduce the spatial pattern of seasonal mean sea level pressure. In winter, the model-simulated Siberian high is stronger than the observed. In summer, the simulated subtropical high is shifted northwestwards; (5) The temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced.  相似文献   

11.
In this paper,experiment results about East Asia climate from five CGCMs are described.The ability of the models to simulate present climate and the simulated response to increased carbon dioxide are both covered.The results indicate that all models show substantial changes in climate when carbon dioxide concentrations are doubled.In particular,the strong surface warming at high latitudes in winter and the significant increase of summer precipitation in the monsoon area are produced by all models.Regional evaluation results show that these five CGCMs are particularly good in simulating spatial distribution of present climate.The main characteristics of the seasonal mean H500,SAT,MSLP field can be simulated by most CGCMs.But there are significant systematic errors in SAT,MSLP,HS00 fields in most models.On the whole,DKRZ OPYC is the best in simulating the present climate in East Asia.  相似文献   

12.
文章提出了一个四维经验正交函数(4D-EOF)方法,原理是三维经验正交函数(3D-EOF)与扩展经验正交函数(EEOF)简单的组合,此方法不仅提供空间水平分布特征场及其对应的月际变化特征和年际变化特征,而且还提供空间垂直结构特征。利用这个新方法分析东亚季风国际区域模式比较计划(RMIP)MM5V3模拟的1989—1998年10a积分结果———包括中国大部分区域(4941个格点,格距60km)月平均100,500,700,1000hPa4个位势高度场(模拟场)及其距平场;同时分析对应的NCAR/NCEP再分析资料(观测场),进而对比两者检验模式模拟东亚季风气候及其变化能力。对比分析结果表明:对于月平均高度场的第一特征向量场,模式能比较准确地模拟出平均气候场的分布及其垂直相当正压性的结构特征;对于月平均高度距平场第一、二特征向量场,模式对于距平场的模拟也较成功,垂直方向有明显的相当正压性特征;月平均高度场及其距平场相应的月际变化和年际变化特征也在模拟中得到较好的反映。本研究表明:4D-EOF具有综合检验数值模式模拟气候及其变化的能力,而MM5V3模拟20世纪90年代东亚气候及其变化能力是令人满意的。  相似文献   

13.
曹富强  丹利  马柱国 《大气科学》2014,38(2):322-336
将大气—植被相互作用模式AVIM(Atmosphere-Vegetation Interaction Model)与区域环境系统集成模式 RIEMS2.0(Regional Integrated Environment Modeling System Version 2.0)耦合,利用耦合后的AVIM-RIEMS2.0模式在东亚区域选定典型年份进行积分试验,通过模拟结果与观测资料对比分析,从整体上评估耦合模式对东亚区域的模拟能力。结果表明:模式能够较好地模拟850 hPa风场、500 hPa位势高度、气温、降水以及地表热通量空间分布型和季节变化。双向耦合具有动态植被过程的AVIM模式后,RIEMS2.0模拟能力有一定程度的提高。850 hPa风场在冬季的中国东北、华北地区以及夏季的中国东部地区,模拟偏差都减小;500 hPa高度场模拟在中国北方地区改进明显,而在中国南方地区的夏季并没表现出明显的改进趋势。耦合模式改进了RIEMS2.0模式冬季气温模拟偏低而夏季偏高的现象。从区域平均看,耦合模式改善了降水模拟偏多的现象,并使得潜热通量的模拟效果有明显的改进,对感热通量模拟在大部分地区也有改进。总的来看,AVIM-RIEMS2.0耦合模式对中国北方地区模拟改进较为明显,而对中国南方地区,特别是华南地区没有明显的改进。  相似文献   

14.
In this study,the ability of dynamical downscaling for reduction of artificial climate trends in global reanalysis is tested in China.Dynamical downscaling is performed using a 60-km horizontal resolution Regional Integrated Environmental Model System (RIEMS) forced by the NCEP-Department of Energy (DOE) reanalysis II (NCEP-2).The results show that this regional climate model (RCM) can not only produce dynamically consistent fine scale fields of atmosphere and land surface in the regional domain,but it also has the ability to minimize artificial climate trends existing in the global reanalysis to a certain extent.As compared to the observed 2-meter temperature anomaly averaged across China,our model can simulate the observed inter-annual variation and variability as well as reduce artificial climate trends in the reanalysis by approximately 0.10 C decade 1 from 1980 to 2007.The RIEMS can effectively reduce artificial trends in global reanalysis for areas in western China,especially for regions with high altitude mountains and deserts,as well as introduce some new spurious changes in other local regions.The model simulations overestimated observed winter trends for most areas in eastern China with the exception of the Tibetan Plateau,and it greatly overestimated observed summer trends in the Sichuan Basin located in southwest China.This implies that the dynamical downscaling of RCM for long-term trends has certain seasonal and regional dependencies due to imperfect physical processes and parameterizations.  相似文献   

15.
区域海气耦合模式模拟的2003年东亚夏季风季节内振荡   总被引:1,自引:0,他引:1  
评估了一个区域海气耦合模式(由区域环境系统集成模式RIEMS和普林斯顿海洋模式POM组成)对2003年东亚夏季风季节内振荡(ISO)的模拟性能。通过与观测海温驱动单独大气模式结果的比较,分析了海气耦合过程对东亚夏季大气ISO模拟性能的影响。结果表明:耦合模式能够模拟出2003年中国东部地区夏季降水的气候态分布,模拟的中国东部尤其是江淮地区大气ISO活动较单独大气模式更为显著。同时,耦合模式能够较好地再现大气ISO经向上北传的传播特征,模拟的江淮流域降水处于活跃和中断期时西北太平洋地区低频降水和环流异常在强度和空间分布上较单独大气模式都更为合理。相比于单独大气模式,耦合模式对大气ISO模拟的改善,一方面与其对气候态西北太平洋副热带高压和相关对流层底层风场模拟的改善有关,另一方面与其包含海气相互作用,因而对低频降水与海温和水汽辐合位相关系模拟的改善有关。  相似文献   

16.
Multiyear (1983?C2006) hindcast simulation of summer monsoon over South Asia has been carried out using the regional climate model of the Beijing Climate Centre (BCC_RegCM1.0). The regional climate model (hereafter BCC RCM) is nested into the global climate model of the Beijing Climate Centre BCC_CGCM1.0 (here after CGCM). The regional climate model is initialized on 01 May and integrated up to the end of the September for 24?years. Compared to the driving CGCM the BCC RCM reproduces reasonably well the intensity and magnitude of the large-scale features associated with the South Asia summer monsoon such as the upper level anticyclone at 200?hPa, the mid-tropospheric warming over the Tibetan plateau, the surface heat low and the 850?hPa moisture transport from ocean to the land. Both models, i.e., BCC RCM and the driving CGCM overestimates (underestimates) the 850?hPa southwesterly flow over the northern (southern) Arabian Sea. Moreover, both models overestimate the seasonal mean precipitation over much of the South Asia region compared to the observations. However, the precipitation biases are significantly reduced in the BCC RCM simulations. Furthermore, both models simulate reasonably the interannual variability of the summer monsoon over India. The precipitation index simulated by BCC RCM shows significant correlation (0.62) with the observed one. The BCC RCM simulates reasonably well the spatial and temporal variation of the precipitation and surface air temperature compared to the driving CGCM. Further, the temperature biases are significantly reduced (1?C4°C) in the BCC RCM simulations. The simulated vertical structure of the atmosphere show biases above the four sub-regions, however, these biases are significantly reduced in the BCC RCM simulations compared to the driving CGCM. Compared to the driving CGCM, the evolution processes of the onset of summer monsoon, e.g., the meridional temperature gradient and the vertical wind shear are well simulated by the BCC RCM. The 24-year simulations also show that with a little exception the BCC RCM is capable to reproduce the monsoon active and break phases and the intraseasonal precipitation variation over the Indian subcontinent.  相似文献   

17.
Land–sea surface air temperature (SAT) contrast, an index of tropospheric thermodynamic structure and dynamical circulation, has shown a significant increase in recent decades over East Asia during the boreal summer. In Part I of this two-part paper, observational data and the results of transient warming experiments conducted using coupled atmosphere–ocean general circulation models (GCMs) are analyzed to examine changes in land–sea thermal contrast and the associated atmospheric circulation over East Asia from the past to the future. The interannual variability of the land–sea SAT contrast over the Far East for 1950–2012 was found to be tightly coupled with a characteristic tripolar pattern of tropospheric circulation over East Asia, which manifests as anticyclonic anomalies over the Okhotsk Sea and around the Philippines, and a cyclonic anomaly over Japan during a positive phase, and vice versa. In response to CO2 increase, the cold northeasterly winds off the east coast of northern Japan and the East Asian rainband were strengthened with the circulation pattern well projected on the observed interannual variability. These results are commonly found in GCMs regardless of future forcing scenarios, indicating the robustness of the East Asian climate response to global warming. The physical mechanisms responsible for the increase of the land–sea contrast are examined in Part II.  相似文献   

18.
The South Asian High (SAH) and precipitation over East Asia simulated by 11 coupled GCMs associated with the forthcoming Intergovernmental Panel on Climate Change’s (IPCC) 4th Assessment Report are evaluated. The seasonal behavior of the SAH is presented for each model. Analyses of the results show that all models are able to reproduce the seasonal cycle of the SAH. Locations of the SAH center are also basically reproduced by these models. All models underestimate the intensity and the extension of coverage in summer. The anomalous SAH can be divided into east and west modes according to its longitudinal position in summer on the interannual timescale, and the composite anomalies of the observed precipitation for these two modes tend to have opposite signs over East Asia. However, only several coupled GCMs can simulate the relationship between rainfall and SAH similar to the observed one, which may be associated with the bias in simulation of the subtropical anticyclone over the West Pacific (SAWP) at 500 hPa. In fact, it is found that any coupled GCM, that can reproduce the reasonable summer mean state of SAWP and the southward (northward) withdrawal (extension) for the east (west) mode of SAH as compared to the observed, will also simulate similar rainfall anomaly patterns for the east and west SAH modes over East Asia. Further analysis indicates that the observed variations in the SAH, SAWP and rainfall are closely related to the sea surface temperature (SST) over the equatorial tropical Pacific. Particularly, some models cannot simulate the SAWP extending northward in the west mode and withdrawing southward in the east mode, which may be related to weak major El Ni?no or La Ni?na events. The abilities of the coupled GCMs to simulate the SAWP and ENSO events are associated partly with their ability to reproduce the observed relationship between SAH and the rainfall anomaly over East Asia.  相似文献   

19.
This study was targeted at evaluating the performance of six Regional Climate Models (RCMs) used in Coordinated Regional Climate Downscaling Experiment (CORDEX). The evaluation is on the bases of how well the RCMs simulate the seasonal mean climatology, interannual variability and annual cycles of rainfall, maximum and minimum temperature over two catchments in western Ethiopia during the period 1990–2008. Observed data obtained from the Ethiopian National Meteorological Agency was used for performance evaluation of the RCMs outputs. All Regional Climate Models (RCMs) have simulated seasonal mean annual cycles of precipitation with a significant bias shown on individual models; however, the ensemble mean exhibited better the magnitude and seasonal rainfall. Despite the highest biases of RCMs in the wet season, the annual cycle showed the prominent features of precipitation in the two catchments. In many aspects, CRCM5 and RACMO22 T simulate rainfall over most stations better than the other models. The highest biases are associated with the highest error in simulating maximum and minimum temperature with the highest biases in high elevation areas. The rainfall interannual variability is less evident in Finchaa with short rainy season experiencing a larger degree of interannual variability. The differences in performance of the Regional Climate Models in the two catchments show that all the available models are not equally good for particular locations and topographies. In this regard, the right regional climate models have to be used for any climate change impact study for local-scale climate projections.  相似文献   

20.
The amplitude-phase characteristics(APC)of surface air temperature(SAT)annual cycle(AC)in the Northern Hemisphere are analyzed.From meteorological observations for the 20th century and meteorological reanalyses for its second half,it is found that over land negative correlation of SAT ACamplitude with annual mean SAT dominates.Nevertheless,some exceptions exist.The positive correlationbetween these two variables is found over the two desert regions:in northern Africa and in Central America.Areas of positive correlations are also found for the northern Pacific and for the tropical Indian and PacificOceans.Southward of the characteristic annual mean snow-ice boundary (SIB) position,the shape ofthe SAT AC becomes more sinusoidal under climate warming.In contrast,northward of it,this shapebecomes less sinusoidal.The latter iS also found for the above-mentioned two desert regions.In theFar East(southward of about 50°N),the SAT AC shifts as a whole:here its spring and autumn phasesoccur earlier if the annual  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号