首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed,including the initiation,development,and propagation of rainfall anomalies over the tropical Indian Ocean.The characteristics of ISO over the tropical Indian Ocean are profoundly different before and after the onset of the Indian summer monsoon.Positive precipitation anomalies before monsoon onset appear one phase earlier than those after monsoon onset.Before monsoon onset,precipitation anomalies associated with ISO first initiate in the western tropical Indian Ocean and then propagate eastward along the equator.After monsoon onset,convective anomalies propagate northward over the Indian summer monsoon region after an initial eastward propagation over the equatorial Indian Ocean.Surface wind convergence and air-sea interaction play critical roles in initiating each new cycle of ISO convection.  相似文献   

2.
基于再分析资料,对比分析了热带印度洋和太平洋地区大气季节内振荡(ISO)活动特征的异同。结果表明:印度洋和西太平洋地区ISO活动中心在4月和10月存在季节性跳跃,并且ISO在西太平洋地区活动中心位置南北跳跃的经向距离较印度洋偏大。ISO较强的活动中心也是ISO强度年较差较大的地区,并且各个活动中心ISO强度达到最强的时间存在明显的差异。ISO活动存在显著的年际和年代际变化,在20世纪80年代ISO的活动强度和变化趋势都存在一个明显的转折。夏季印度洋和西太平洋地区ISO都存在较强的北传,赤道地区印度洋ISO强度较强,而赤道以外地区西太平洋ISO强度较强;并且ISO在西太平洋地区北传的速度较印度洋偏慢。无论是冬季还是夏季,当ISO活跃于印度洋和西太平洋时,ISO的空间分布和垂直结构特征都有着明显的差异。  相似文献   

3.
林爱兰  LI Tim  王璐  李春晖 《大气科学》2021,45(3):633-650
采用观测分析和数值试验等方法,分析夏季南亚高压与热带季节内振荡(ISO)之间的关系,并对两者之间的相互作用进行量化诊断,探讨其物理过程.主要结果表明:南亚高压ISO与热带ISO活动关系密切,当热带ISO处于印度洋位相(第1、2、3位相),则南亚高压东脊点位置偏西,当ISO处于太平洋位相(第5、6、7位相),则南亚高压东...  相似文献   

4.
利用逐月台站观测降水、HadISST1.1海温和ERA5大气再分析资料,研究了前冬印度洋海盆一致模(Indian Ocean Basin,IOB)对华南春季降水(SCSR)与ENSO关系的影响,并分析了IOB通过调控ENSO环流异常进而影响SCSR的可能机制。结果表明:当前冬El Ni?o(La Ni?a)与IOB暖(冷)位相同时发生时,SCSR显著增多(减少);而当El Ni?o或La Ni?a单独发生而IOB处于中性时,SCSR并无明显多寡倾向。其原因在于,当El Ni?o与IOB暖相位并存时,前冬热带印度洋和赤道中东太平洋均为正海温异常(Sea-Surface Temperature Anomaly,SSTA),且印度洋SSTA强度可一直维持至春季。在对流层低层,春季赤道中东太平洋的正SSTA激发出异常西北太平洋反气旋(Western North Pacific Anticyclone,WNPAC)。而热带印度洋的正SSTA在副热带印度洋激发出赤道南北反对称环流,赤道以北的东风异常有利于异常WNPAC西伸;赤道以南的西风异常与来自赤道西太平洋的东风异常在东印度洋辐合上升,气流至西北太平洋下沉,形成经向垂直环流,有利于春季WNPAC维持。在对流层高层,印度洋的正SSTA在热带印度洋上空激发出位势高度正异常,随之形成的气压经向梯度加强了东亚高空副热带西风急流,进而在华南上空形成异常辐散环流。WNPAC的西伸和加强可为华南提供充足的水汽,同时高空辐散在华南引发水汽上升运动,共同导致SCSR正异常。而若El Ni?o发生时IOB处于中性状态,El Ni?o相关的SSTA衰减较快,春季WNPAC不显著,SCSR无明显多寡趋势。   相似文献   

5.
利用外逸长波辐射 (outgoing longwave radiation, OLR) 资料分析了热带对流季内振荡 (ISO) 强度的季节变化及年际异常特征, 重点研究其与海表温度的关系。结果表明:最强的OLR季内振荡主要位于高海表温度 (SST) 区, 即热带印度洋和热带西太平洋区域, 终年存在, 冬、春季最强, 振荡中心偏于夏半球。OLR季内振荡强度年际异常显著区域是热带中东太平洋区域、西北太平洋区域和西南太平洋区域, 它与SST年际异常存在局地正相关关系, 伴随环流的辐合辐散, 并与ENSO事件关系密切。另外, El Ni?o事件发生之前, 热带印度洋和热带西太平区域OLR季内振荡增强, 其中心随事件的发展逐渐东移, 事件发生后这两个区域ISO减弱, 这与OLR季内振荡强度年际异常显著的区域具有内在连贯性。海表温度是决定OLR季内振荡强度季节变化、年际异常的一个关键因子。  相似文献   

6.
徐志清  范可 《大气科学》2012,36(5):879-888
印度洋热力状况是影响全球气候变化和亚洲季风变异的一个重要的因素,但以往研究更多关注热带印度洋海温的变化,对南印度洋中高纬地区海温变化关注不够,由此限制了我们对印度洋的全面认识.本文研究了年际尺度上整个印度洋海温异常主导模态的特征及其对我国东部地区夏季降水的可能影响过程,以期望为气候变异研究及预测提供理论依据.研究结果表明:全印度洋海温异常年际变率的主导模态特征是在南印度洋副热带地区海温异常呈现西南—东北反向变化的偶极子模态,西极子位于马达加斯加以东南洋面,东极子位于澳大利亚以西洋面;同时,热带印度洋海温异常与东极子一致.当西极子为正的海温异常,东极子、热带印度洋为负异常时定义为正的印度洋海温异常年际变率模态;反之,则为负的印度洋海温异常年际变率模态.从冬至春,印度洋海温异常年际变率模态具有较好的季节持续性;与我国长江中游地区夏季降水显著负相关,而与我国华南地区夏季降水显著正相关.其可能的影响过程为:对于正的冬、春季印度洋海温异常年际变率模态事件,印度洋地区异常纬向风的经向大气遥相关使得热带印度洋盛行西风异常,导致春、夏季海洋性大陆对流减弱,使夏季西太平洋副热带高压强度偏弱、位置偏东偏北,造成华南地区夏季降水增多,长江中游地区降水减少;反之亦然.同时,印度洋海温异常年际变率模态可通过改变印度洋和孟加拉湾向长江中游地区的水汽输送而影响其夏季降水.  相似文献   

7.
Summary Pentad mean anomaly maps were used to study the climatology of tropical intraseasonal convection anomaly (TICA) as a dynamic system. One hundred and twenty-two events were identified and classified into three categories: eastward (77), independent northward (27), and westward (18) propagation. The eastward propagation is more active in boreal winter than in summer, while the independent northward propagation, which is not associated with equatorial eastward propagation, occurs in boreal summer from May to October.The eastward moving TICA exhibits three major paths: 1) eastward along the equator from Africa to the mid-Pacific, 2) first eastward along the equator, then either turning north-east to the northwest Pacific or turning southeast to the southwest Pacific at the maritime continent, and 3) the main anomaly moves eastward along the equator with split center(s) moving northward over the Indian and/or western Pacific Oceans. The equatorial Indian Ocean and the western Pacific intertropical convergence zone are preferred geographic locations for their development, while the maritime continent and central Pacific are regions of dissipation.Independent northward propagation is confined to the Indian and western Pacific monsoon regions. Its existence suggests that the mechanism responsible for meridional propagation may differ from that for eastward propagation.The dynamic effect of the equator and the thermodynamic effect of the underlying warm ocean water are basic factors in trapping TICA in the deep tropics, while the annual march of maximum SST (thermal equator) and the monsoon circulation have profound influences on the annual variation and meridional movement of TICA.With 12 FiguresContribution No. 89-11, Department of Meteorology, University of Hawaii.  相似文献   

8.
刘琳  于卫东  刁新源 《大气科学》2008,32(5):1083-1093
大气环流的变异是热带印度洋偶极子(IOD)事件研究中的一个重要问题。本文从风场旋度分量和散度分量角度出发,利用观测资料和大气环流模式,对IOD事件发生时热带印度洋海区上空的大气环流变化进行了分析,揭示出风场不同分量在IOD事件期间的变化特征。研究结果表明,热带印度洋大气环流系统在IOD事件期间,旋度分量和散度分量在垂直方向上呈现明显的一阶斜压形式,而在水平方向上呈现明显的对称分布特征。对低空(850 hPa)来说,无辐散流函数距平场在IOD事件正位相期间表现为关于赤道对称的一对反气旋式环流;无旋度分量在IOD事件正位相期间的响应表现为东印度洋辐散、西印度洋辐合;大气环流的两种分量场均可以在赤道印度洋地区产生距平意义下的纬向东风,正是这种形式的距平东风使得IOD事件依靠海气系统正反馈机制得以维持和发展。而高空(200 hPa)大气环流形式刚好与850 hPa相反。  相似文献   

9.
夏季印度洋海盆模与MC区域降水异常联系的进一步分析   总被引:1,自引:0,他引:1  
汪婉婷  管兆勇  许琪  王悦 《气象科学》2017,37(6):709-717
利用英国哈德莱中心的逐月海表温度资料及NCEP/NCAR月平均再分析资料等,通过在印度洋海盆模IOBM指数(IIOB)中扣除长期趋势和两类ENSO的同期信号后,得到了修正的IOBM指数(Im IOB),并由此分析了IOBM的变化及与海洋性大陆区域降水异常的联系。结果表明:印度洋IOBM为暖位相时,不同季节的印度洋地区均呈现异常偏暖,但大气是上升还是下沉运动则在印度洋不同季节和不同区域存在很大变化。就夏季而言,印度洋大部分地区存在上升运动,这与海温异常偏暖有关。在北半球夏季,指数Im IOB存在3~5 a的周期变化。当IOBM处于正位相时,印度洋至我国东海地区大范围海温偏暖。MC(Maritime Continent,海洋性大陆)区域西部降水正异常,而MC区域东北部降水为负异常。造成这种降水分布的原因是:当指数为正时,在MC区域的西部对流层低层辐合、高层辐散,上升运动增强,且水汽辐合,而MC区域的东北部对流层低层辐散、高层辐合,上升运动不明显,水汽辐散,不易形成降水。而在对流层低层与西太平洋辐散中心对应,南北半球出现关于赤道对称的反气旋对,赤道印度洋上的异常加热激发东传的Kelvin波,加强东风异常,同时加强了KMC(海洋性大陆的核心区域)之外南北半球热带地区的这对Rossby波型。以上这些结果有利于深刻理解MC降水异常成因及热带海陆气相互作用过程。  相似文献   

10.
This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979–2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S–5°N and descending over 15°–25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.  相似文献   

11.
江淮流域梅雨期降水的空间非均匀分布与前期海温的关系   总被引:1,自引:1,他引:0  
利用中国气象局提供的1978-2007年全国753站逐日降水资料、NECP/NCAR提供的逐日再分析资料和NOAA提供的第2套扩展重建海温资料,从区域整体角度确定了近30 a(1978-2007年)江淮流域梅雨期.采用EOF(empirical orthogonal function,经验正交函数)分析,讨论了江淮流域梅雨期降水空间非均匀分布特征,着重研究了影响江淮梅雨空间非均匀分布的前期海温关键区及关键时段.结果表明:全区一致梅雨旱涝与前期冬季北太平洋鄂霍次克海附近的海温异常有密切的联系.当前期冬季该海域海温偏高时,冬季风偏弱,对应后期梅雨一致偏涝,反之则偏旱.5月南海至台湾和菲律宾以东附近海温偏低,江淮流域梅雨量偏多,反之则偏少.梅雨的南北反相分布与前期秋冬季中印度洋的海温有非常密切的关系,当前一年10月至当年1月中印度洋海温偏高时,梅雨期850 hPa江淮之间易形成切变线,有利于梅雨区“南旱北涝”,反之则“南涝北旱”.梅雨的东西反相分布与前期秋、冬季热带中东太平洋的海温关系密切,ENSO事件有可能通过影响西太平洋副热带高压的东西位置,从而引起东亚大气环流异常,导致梅雨东西分布反相.前期秋季和冬季热带中东太平洋海温偏高年(对应ENSO暖事件),西太副高位置偏西,有利于梅雨区“东旱西涝”,反之则“东涝西旱”.  相似文献   

12.
The present study investigates the role of Kelvin wave propagations along the equatorial Indian Ocean during the 2006–2008 Indian Ocean Dipole (IOD). The 2006 IOD lasted for seven months, developing in May and reaching its peak in December, while the 2007 and 2008 IODs were short-lived events, beginning in early May and ending abruptly in September, with much weaker amplitudes. Associated with the above IODs, the impulses of the sea surface height (SSH) anomalies reflect the forcing from an intraseasonal time scale, which was important to the evolution of IODs in 2007 and 2008. At the thermocline depth, dominated by the propagation of Kelvin waves, the warming/cooling temperature signals could reach the surface at a particular time. When the force is strong and the local thermocline condition is favorable, the incoming Kelvin waves dramatically impact the sea surface temperature (SST) in the eastern equatorial Indian Ocean. In July 2007 and late July 2008, the downwelling Kelvin waves, triggered by the Madden-Julian Oscillation (MJO) in the eastern and central equatorial Indian Ocean, suppressed the thermocline in the Sumatra and the Java coast and terminated the IOD, which made those events short-lived and no longer persist into the boreal fall season as the canonical IOD does.  相似文献   

13.
吴国雄  尉艺  刘辉 《气象学报》2000,58(6):641-652
通过数值模拟和理论分析 ,文中指出在强东亚季风期间不仅在欧亚大陆和北印度洋出现强大的反气旋环流异常 ,而且通过海气相互作用在北太平洋西部和西北部形成异常气旋式流场 ;在其东南部产生异常反气旋式流场。在这种流场异常的驱动下赤道西太平洋西风加强 ,海面升高 ,海表温度上升 ,赤道中东印度洋和东太平洋东风加强 ,海面降低 ,海表温度下降。证明由于海表温度异常及海表温度变化趋势存在积分关系 ,因此持续的强东亚冬季风所强迫的沿赤道海表温度变化趋势的上述分布的强讯号可以在海洋中存在近一年之久 ,为尔后赤道太平洋 ENSO事件的可能发展提供初始条件 ,也为跨季度气候预测提供前期讯号  相似文献   

14.
本文利用30~60天带通滤波资料, 考察了不同季节印度洋—西太平洋区域对流活动季节内尺度变率的主要模态, 发现在不同季节赤道东印度洋(5°S~10°N, 70°E~100°E)和西北太平洋(5°N~20°N, 110°E~160°E)对流活动均存在反相变化的关系, 将之称为季节内尺度的印度洋—西太平洋对流涛动(Indo-West Pacific Convection Oscillation), 简称IPCO。对IPCO两极子区域对流活动进行超前滞后相关分析, 发现IPCO事件形成—发展—消亡的生命周期是由对流活动季节内振荡及其传播造成的。对流扰动首先在赤道中西印度洋形成, 随后逐渐向东发展变强, 在其继续变强的过程中将分两支传播:一支由赤道印度洋向北传播, 至印度半岛南部后逐渐减弱消失;另一支沿赤道继续东传, 在海洋大陆受到抑制, 快速越过海洋大陆到达赤道西太平洋后又开始发展变强, 随后北传至西北太平洋区域逐渐减弱, 最终至我国长江流域中下游到日本区域消失。将这一过程划分为8个位相, 详细分析了不同位相对应的环流场和降水场特征, 最后给出了IPCO事件演化示意图。  相似文献   

15.
利用1979~2015年NCEP/NCAR发布的月平均全球再分析资料,分析了热带印度洋-西太平洋水汽输送异常对中国东部夏季降水的影响及其形成机理。研究结果表明:热带印度洋-西太平洋地区(10°S~30°N,60°~140°E)夏季异常水汽输送主要包括两个模态,他们可以解释总的水汽输送异常34%的方差。其中,第一模态(EOF1)表现为异常水汽沿反气旋从热带西太平洋经过南海及孟加拉湾输送到中国东部上空,对应南海、孟加拉湾水汽路径输送均偏多,此时西太平洋副热带高压显著偏强,异常水汽在长江中下游地区辐合并伴随显著上升运动,有利于长江中下游降水偏多;第二模态(EOF2)表现为异常水汽从热带印度洋沿阿拉伯海、印度半岛、中南半岛等呈反气旋式输送,华南上空相应出现气旋式水汽输送异常,并对应异常水汽辐合和上升运动,有利于华南降水偏多。就可能的外部成因而言,EOF1与ENSO关系密切,表现为前冬热带中东太平洋显著偏暖,夏季同期热带北印度洋、南海上空显著偏暖,造成西太平洋副热带高压显著偏强,异常水汽主要来源于热带西太平洋和南海;EOF2与同期热带印度洋偶极子(TIOD)异常有关,TIOD为正位相时热带印度洋上空出现异常东风,华南上空出现异常气旋并伴随水汽异常辐合,异常水汽主要来源于热带南印度洋。  相似文献   

16.
利用ECHAM5全球大气环流模式研究了印度洋海温异常年际变率模态从冬至夏的演变对我国东部地区夏季降水影响的机制。观测资料研究表明:对于正的印度洋海温异常年际变率模态,春、夏季热带印度洋和澳大利亚以西洋面(东极子)均为水汽的异常源区,向马达加斯加以东南洋面(西极子)及印度洋邻近大陆提供水汽。夏季,印度洋地区南极涛动、马斯克林高压加强;而印度季风低压和南亚高压均减弱,对应于印度夏季风减弱。夏季印度洋地区正压性的纬向风异常经向遥相关使热带印度洋地区出现西风异常,导致海洋性大陆地区对流活动减弱,而菲律宾海地区对流活动加强,进而导致西太平洋副热带高压偏弱、位置偏东北。对于负的印度洋海温异常年际变率模态,则反之。模式结果基本支持了已有的观测资料诊断结果。  相似文献   

17.
利用多种大气和海洋再分析资料,采用合成分析及2.5层简化海洋模型数值模拟等方法,研究了1951—2012年期间,与东部和中部型El Ni?o事件相伴随的热带印度洋海温偶极子(Indian Ocean Dipole,IOD)出现时,热带印度洋海温异常增暖及其上空海气耦合特征的物理机制。结果表明:夏秋季节,伴随东部型El Ni?o而发生的IOD事件(EP-IOD)和伴随中部型El Ni?o而发生的IOD事件(CP-IOD)中,热带印度洋海温正异常的强度与空间分布具有很大差异。对于EP-IOD事件,夏季,海温正异常中心最先出现在热带西北印度洋;随后秋季,海温正异常向东南发展并扩大至热带中南印度洋,强度较强。对于CP-IOD事件,夏季和秋季,海温正异常中心都位于热带中南印度洋,呈东西向带状分布,但海温正异常强度较EP-IOD事件中弱。进一步分析表明,在EP-IOD事件中,夏季,热带西北印度洋海区西南季风偏弱,通过影响夹卷混合过程导致热带西北印度洋海温上升;秋季,热带西北印度洋上空的异常偏东风导致垂向夹卷混合的正异常,对热带西北印度洋增暖的维持起到重要作用;热带中南印度洋的增暖主要受赤道东南印度洋西传的暖性Rossby波影响。而在CP-IOD事件中,夏秋两季,热带中南印度洋海区出现显著的西北风异常,其上空风速的负异常是增温的主要原因;同时赤道东南印度洋西传的暖性Rossby波对热带中南印度洋的增暖也起到重要作用。   相似文献   

18.
热带对流和环流季内振荡强度与海表温度关系对比研究   总被引:2,自引:1,他引:1  
利用外逸长波辐射(OLR)、风场和海表温度(SST)资料, 研究了热带大气季节内振荡(ISO)强度的季节变化特征, 发现热带印度洋和热带西太平洋区域是OLR和风场季内振荡最主要的共同活跃区。对比分析了OLR和风场季内振荡强度与海表温度异常之间的年际异常关系, 发现OLR季内振荡强度异常与海表温度异常之间存在显著局地正相关关系, 即在热带中东太平洋区域、热带西北太平洋区域和热带西南太平洋区域, 当海表温度正(负)异常时, OLR季内振荡增强(减弱),特别在冬春季节这一关系更清楚。除个别区域外, 风场季内振荡强度异常与海表温度异常不存在类似OLR的局地关系。OLR和风场季内振荡强度异常与海表温度异常之间局地和非局地关系的差异, 体现了两种要素特性的本质差异。但两种要素季内振荡强度在El Niño事件发展过程中的变化基本一致, 即在气候场中季内振荡活跃的区域, 事件发生之前季内振荡会增强, 并逐渐向东传播, 事件发生之后这些区域振荡减弱。  相似文献   

19.
One of the fundamental questions concerning the nature and prediction of the oceanic states in the equatorial eastern Pacific is how the turnabout from a cold water state (La Ni?na) to a warm water state (El Ni?no) takes place, and vice versa. Recent studies show that this turnabout is directly linked to the interannual thermocline variations in the tropical Pacific Ocean basin. An index, as an indicator and precursor to describe interannual thermocline variations and the turnabout of oceanic states in our previous paper (Qian and Hu, 2005), is also used in this study. The index, which shows the maximum subsurface temperature anomaly (MSTA), is derived from the monthly 21-year (1980–2000) expendable XBT dataset in the present study. Results show that the MSTA can be used as a precursor for the occurrences of El Ni?no (or La Ni?na) events. The subsequent analyses of the MSTA propagations in the tropical Pacific suggest a one-year potential predictability for El Ni?no and La Ni?na events by identifying ocean temperature anomalies in the thermocline of the western Pacific Ocean. It also suggests that a closed route cycle with the strongest signal propagation is identified only in the tropical North Pacific Ocean. A positive (or negative) MSTA signal may travel from the western equatorial Pacific to the eastern equatorial Pacific with the strongest signal along the equator. This signal turns northward along the tropical eastern boundary of the basin and then moves westward along the north side of off-equator around 16N. Finally, the signal returns toward the equator along the western boundary of the basin. The turnabout time from an El Ni?no event to a La Ni?na event in the eastern equatorial Pacific depends critically on the speed of the signal traveling along the closed route, and it usually needs about 4 years. This finding may help to predict the occurrence of the El Ni?no or La Ni?na event at least one year in advance.  相似文献   

20.
The impact of Indian Ocean Dipole (IOD) mode events on austral surface air temperature (SAT) variability was studied both by statistical analysis of observed/assimilated data and experiments with a mechanistic baroclinic atmospheric model.During the period of analysis (January 1958–December 1999), IOD events had the strongest impact on SAT anomalies during austral spring and hence, the analysis was focussed on this season. IOD events induced large scale, intercontinental correlations of SAT anomalies amongst Australia, Africa and South America. Surface temperature consistently rose (fell) abnormally and coherently in the subtropical regions of these continents during positive (negative) IOD events. Variability during non-IOD years was considerably weaker than during IOD years over these regions.Analysis of stream function anomalies at the 200 hPa level (source: NCEP/NCAR reanalysis) revealed a Rossby-wave train extending from the eastern Indian Ocean into the subtropical regions of the Pacific and Atlantic oceans. Further, the diagnosed Rossby-wave activity flux emanated from the eastern Indian Ocean and propagated along the subtropical and subpolar jet streams qualitatively in agreement with linear wave dynamics. Experiments with idealized forcing in a primitive equation mechanistic atmospheric model suggested that tropical convective anomalies in the Indian Ocean during IOD events likely affects the austral subtropics through stationary Rossby-wave propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号