首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Observation of major bands seen in infrared spectra of 26 phyllosilicates (23 of which were produced in the laboratory) are reported for wave numbers from 50 to 280 cm?1. Substitutions in the various structural sites (interlayer, tetrahedral and octahedral) permit one to identify the ions which contribute to the vibrations which give rise to bands in the infrared spectra. No attempt is made to assign vibrational modes or specific vibrational types. Using the following ion substitutions, OH-OD; Na-K-Sr-Mg-Ca; Si-Ge; Al-Ga; Mg-Co-Ni-Fe, it is apparent that in the 7 Å chlorite (amesite and chrysotile), kaolinite, pyrophyllite, aluminous dioctahedral mica, aluminous smectites and trioctahedral micas it is not possible to attribute any low frequency bands as being dominated by interlayer ion stretch vibrations (alkali ions). The cations which participate in the vibrators responsible for the dominant modes observed then seem to be Si and Al. This does not exclude the existence of interlayer ion stretch modes in these spectral regions, however they could not be identified. In the materials studied only a few bands can be attributed to hydroxyl-related vibrations and little influence is seen for octahedrally coordinated ions in dioctahedral minerals. It is important to note that the lowest frequency bands (80–140 cm?1) are apparently dominated by vibrations in the network and especially to the Si-O part of the structure. Low frequency bands are however most apparent in charged layer structures, i.e. micas and smectites.  相似文献   

2.
A detailed evaluation of the assignments given to the infrared (IR) vibrations in the lattice stretching region is presented here based on observations of the effects of various chemical substitutions in synthetic analogues of phlogopite, KMg3(AlSi3)O10(OH)2. As in previous studies, this study has confirmed that the 995, 960, and 460 cm?1 vibrations are influenced by Si, the 822 and 760 cm?1 vibrations by Al, the 915 and 725 cm?1 vibrations by Al and Si, and the 592 cm?1 vibration by OH. Contrary to previous studies, it is shown here that the 690, 495, and 375 cm?1 vibrations are strongly linked with Mg and not just Si. The 655 cm?1 band in phlogopite is attributed to an in-plane Al-O vibration rather than an Al-O-Si vibration. As a check on the band assignments made here, IR spectra were obtained for synthetic clintonite, CaMg2Al(Al3Si)O10(OH)2, as well as its chemical analogues and compared with the IR spectrum of phlogopite. The band intensities for the Si-O, Al-O, and Si-O-Mg vibrations changed in accord with the composition of clintonite. The most intense band in clintonite at 660 cm?1 appears to be associated only with Al and is assigned here to a tetrahedral Al-O-Al vibration which must be present, if not dominant, in this mineral. The near coincidence of an in-plane Al-O vibration at 655 cm?1 (phlogopite) and an in-plane Al-O-Al vibration at 660 cm?1 (clintonite) makes the identification of tetrahedral Al-Si order-disorder in trioctahedral layered silicates by IR spectroscopy very difficult. The ratio of the 822/995 cm?1 bands may, however, prove to be very useful for discerning the amount of tetrahedrally coordinated Al in these types of minerals.  相似文献   

3.
Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO 4 4? cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.  相似文献   

4.
We have obtained infrared and Raman spectra for garnets synthesized at high (static) pressures and temperatures along the join Mg3Al2Si3O12 (pyrope) — Mg4Si4O12 (magnesium majorite). The vibrational spectra of Mg-majorite show a large number of additional weak peaks compared with the spectra of cubic pyrope garnet, consistent with tetragonal symmetry for the MgSiO3 garnet phase. The Raman bands for this phase show no evidence for line broadening, suggesting that Mg and Si are ordered on octahedral sites in the garnet. The bands for the intermediate garnet compositions are significantly broadened compared with the end-members pyrope and Mg-majorite, indicating cation disorder in the intermediate phases. Solid state 27Al NMR spectroscopy for pyrope and two intermediate compositions show that Al is present only on octahedral sites, so the cation disorder is most likely confined to Mg-Al-Si mixing on the octahedral sites. We have also obtained a Raman spectrum for a natural, shock-produced (Fe,Mg) majorite garnet. The sharp Raman peaks suggest little or no cation disorder in this sample.  相似文献   

5.
Orthopyroxene has two tetrahedral sites, designated A and B, and two octahedral sites, M1 and M2. Crystallographic studies of synthetic and natural orthopyroxenes (opx) suggest that the tetrahedral Al is ordered nearly completely in the B site, but the octahedral Al disorders between M1 and M2 sites with a preference for M1. If the aluminum avoidance principle is obeyed, then the tetrahedral Si-Al ordering limits the Al substitution in opx to 25 mol%, thus leading to an end-member stoichiometry of Mg3Al2Si3O12 instead of MgAl2SiO6.The enthalpy of formation of these two components has been deduced from the available phase equilibrium data. The thermodynamic properties of the opx solid solution approximates ideal solution behavior more closely when treated in terms of the components Mg4Si4O12(QEn)-Mg3Al2Si3O12(Py) than when expressed in terms of the components Mg2Si2O6-MgAl2SiO6. A model has been developed for the octahedral disordering of Al as function of temperature and composition. These data enable calculation of the configurational entropy and molar entropy of Al-opx; distinction has been made between the cases of completely random mixing of Al and Si in the tetrahedral B site, and of random mixing without violation of the aluminum avoidance principle. The second model yields entropy of the Mg3Al2Si3O12 end member which agrees almost exactly with the value derived from phase equilibrium data. The partial molal entropies of the Orthopyroxene components QEn and Py can be derived from these data; their implications with respect to the P-T slopes of Al2O3 isopleths for the equilibrium of Orthopyroxene with forsterite and spinel/garnet have been discussed.  相似文献   

6.
The vibrational frequencies of a series of splatquenched, olivine glasses spanning the compositional range from Mg2SiO4 to Mn2SiO4 have been determined using both infrared and Raman spectroscopies. The spectra of all glasses show evidence of tetrahedral coordination of silicon (possibly with some slight distortions), and largely octahedral coordination of magnesium. Spectra of Mn-rich glasses indicate that there is some manganese in 4 or 5-fold coordination. The frequencies observed for the fundamental vibrations of the silica tetrahedra are similar to those previously observed for SiO4 groups in both crystalline and glassy orthosilicates. Additionally, there is evidence for a small amount of silicate polymerization in all glasses characterized: vibrations attributable to Si2O7 groups are visible in both infrared and Raman spectra.  相似文献   

7.
 Amphiboles were synthesized from bulk compositions prepared along the join Ca1.8Mg5.2Si8O22(OH)2–Ca1.8Mg3Ga4Si6O22(OH)2 hydrothermally at 750–850 °C and 1.0–1.8 GPa, and along the join Ca2Mg5Si8O22F2–Ca2Mg3Ga4Si6O22F2, anhydrously at 1000 °C and 0.7 GPa to document how closely the tschermak-type substitution is obeyed in these analogues of aluminous amphiboles. Electron-microprobe analyses and Rietveld X-ray diffraction structure refinements were performed to determine cation site occupancies. The extent of Ga substitution was found to be limited in both joins, but with the fluorine series having about twice the Ga content (0.6 atoms per formula unit, apfu) of the hydroxyl-series amphiboles (0.3 apfu). The tschermak-type substitution was followed very closely in the hydroxyl series with essentially equal partitioning of Ga between tetrahedral and octahedral sites. The fluorine-series amphiboles deviated significantly from the tschermak-type substitution and, instead, appeared to follow a substitution that is close to a Ca-pargasite substitution of the type: [6]Ga3++2[4]Ga3++1/2[A] Ca2+ = [6]Mg2++2[4]Si4++1/2[A]□. Infrared spectroscopy revealed an inverse correlation between the intensity of the OH-stretching bands and the Ga content for the hydroxyl- and fluorine-series amphiboles. The direct correlation between the Ga and F content and inverse relationship between the Ga and OH content may be a general phenomenon present in other minerals and suggests, for example, that high F contents in titanite are controlled by the Al content of the host rock and that there may be similar direct Al–F correlations in tschermakitic amphiboles. Evidence for the possibility that Al (Ga) might substitute onto only a subset of the tetrahedral sites in tschermakitic amphiboles was sought but not observed in this study. Received: 5 March 2001 / Accepted: 31 July 2001  相似文献   

8.
Silicon-29 “magic angle spinning” nuclear magnetic resonance (NMR) spectroscopy has been used to study the changes in local Si environment during Al, Si ordering in synthetic cordierite, Mg2Al4Si5O18. In the most disordered form, crystallized from a glass, eight distinct tetrahedral sites for silicon can be identified and assigned, while there are only two distinguishable Si sites in the well-annealed ordered form. This allows the changes in the Si site environments to be determined as a function of annealing time for the transformation from the disordered to the ordered form. The first crystallized state has a considerable degree of partitioning between T1 and T2 sites with the following site occupancies: T1 ? Al:Si=0.80:0.20, T2?Al:Si=0.27:0.73 The changes in Si environment are approximately linear with log time. The measured values of 29Si isotropic chemical shift do not fit well to previously determined correlations of shift with various structural parameters.  相似文献   

9.
Potassic cordierites with the chemical composition K x Mg2Al4+x Si5xO18 (x = 0.00, 0.10, 0.20, and 0.25) were synthesized by annealing glasses at 1290° C for different lengths of time. The procedure resulted in cordierites with different states of Al,Si-order for the tetrahedral sites in the structure. The dependence between the potassium-content and the state of order on one side and between annealing time and the state of order on the other side was then studied using 29Si MAS nuclear magnetic resonance (NMR) spectroscopy. The spectra show that the state of order is a continuous function of annealing time for all compositions considered, but the rate of ordering decreases with increasing K-content. Since the substitution K+Al Si leads to higher Al/Si-ratios; the lower rate of ordering is discussed as a consequence of changed statistics for Al, Si site exchanges. The Al atoms replacing silicon in the structure to balance the charge of potassium cations are not located close to the potassium ion but at a maximum distance from it. This is shown to be a consequence of an improvement in coordination of all oxygen atoms in the cordierite framework.  相似文献   

10.
The 29-Si NMR spectra of natural and synthetic leucites (KAlSi2O6) are found to contain a number of resonances which are interpreted in terms of the known structure of low-temperature (tetragonal) leucite. Computer simulation of the spectra suggests that the most distorted tetrahedral lattice site T 1 contains a higher proportion of Al than the other two tetrahedral sites. The occurrence of some ordering of the tetrahedral Si and Al in leucite is confirmed by Mossbauer studies of synthetic iron-containing leucites, including the fully ferric end-member KFeSi2O6, in which the three tetrahedral sites can be distinguished. On replacement of about half this Fe by Al, the most distorted of these sites is lost from the spectrum, reflecting the preference of Al for this site. A linear relationship is found between the unit cell dimensions of all these leucites and their iron content.  相似文献   

11.
The chemical composition and the crystal structure of pezzottaite [ideal composition Cs(Be2Li)Al2Si6O18; space group: ${\it{R}} \overline{\text{3}} $ c, a?=?15.9615(6) ?, c?=?27.8568(9) ?] from the type locality in Ambatovita (central Madagascar) were investigated by electron microprobe analysis in wavelength dispersive mode, thermo-gravimetric analysis, Fourier-transform infrared spectroscopy, single-crystal X-ray (at 298?K) and neutron (at 2.3?K) diffraction. The average chemical formula of the sample of pezzottaite resulted Cs1,Cs2(Cs0.565Rb0.027K0.017)Σ0.600 Na1,Na2(Na0.101Ca0.024)Σ0.125Be2.078Li0.922 Al1,Al2(Mg0.002Mn0.002Fe0.003Al1.978)Σ1.985 Si1,Si2,Si3(Al0.056Si5.944)Σ6O18·0.27H2O. The (unpolarized) IR spectrum over the region 3,800–600?cm?1 was collected and a comparison with the absorption bands found in beryl carried out. In particular, two-weak absorption bands ascribable to the fundamental H2O stretching vibrations (i.e. 3,591 and 3,545?cm?1) were observed, despite the mineral being nominally anhydrous. The X-ray and neutron structure refinements showed: (a) a non-significant presence of aluminium, beryllium or lithium at the Si1, Si2 and Si3 sites, (b) the absence (at a significant level) of lithium at the octahedral Al1, Al2 and Al3 sites and (c) a partial lithium/beryllium disordering between tetrahedral Be and Li sites.  相似文献   

12.
Geometrical changes induced by cation substitutions {Si4+/Al3+}[Mg2+/Al3+], {2Si4+/2Al3+} [2Mg2+/2Al3+], {Si4+/Fe3+} [Mg2+/Al3+] or [Mg2+/Fe3+], where {} and [] indicate tetrahedral and octahedral sheet in lizardite 1T, are studied by ab-initio quantum chemistry calculations. The majority of the models are based on the chemical compositions reported for various lizardite polytypes with the amount of Al in the tetrahedral sheets reported to vary from 3.5% to 8% in the 1T and 2H 1, up to ~30% in the 2H 2 polytype. Si4+ by Fe3+ substitution in the tetrahedral sheet with an Al3+ (Fe3+) in the role of a charge compensating cation in the octahedral sheet is also examined. The cation substitutions result in the geometrical changes in the tetrahedral sheets, while the octahedral sheets remain almost untouched. Substituted tetrahedra are tilted and their basal oxygens pushed down from the plane of basal oxygens. Ditrigonal deformation of tetrahedral sheets depends on the substituting cation and the degree of substitution.  相似文献   

13.

CNDO/2 MO calculations on H12Si5O16 clusters modeling silicate tetrahedral linkage in the silica polymorphs show total energy minima at bent SiOSi angles and a correlation between the Si-O bond lengths, d(Si-O), used in the calculation and the minimum energy value of the SiOSi angle. Calculations on hydrogen saturated Si5O16 clusters isolated from the structures of low quartz, low cristobalite and coesite which were adjusted by DLS methods so that all d(Si-O) equal 1.61 Å and all L OSiO equal 109.47° yield Mulliken bond overlap populations, n(Si-O), and Si-O two-center energies, E(Si-O), which correlate with observed bond lengths; shorter bonds involve larger n(Si-O) values and more negative E(Si-O) values.

  相似文献   

14.
Normal coordinate calculations have been carried out on partially polymerized simple silicate crystals, including Li and Na di- and metasilicates, Li and Gd pyrosilicates, thortveitite and rankinite. In the antisymmetric Si-O stretching modes which are active at 800–1200 cm?1 in infrared spectra, Si-Obr vibrations occur at higher frequencies than Si-Onb vibrations if the bonds have equivalent strengths. However, this relationship is usually reversed when bridging oxygens are overbonded and non-bridging oxygens are underbonded in terms of Pauling bond strengths, a situation which is generally more common in crystals. An observed bimodality of the high-frequency envelope in infrared spectra of glasses in the alkali oxide-silica systems may be somewhat fortuitous, with the high frequency component (ca. 1100 cm?1) representing underbonded non-bridging oxygens and saturated bridging oxygens, and the lower-frequency component (ca. 1000 cm?1) mainly oversaturated bridging oxygens. Significant differences between crystals and glasses in the number and location of the main high-frequency infrared peaks suggest that there are short-range bonding rearrangements in the glasses, and that crystallite models are not applicable. Mid-frequency (600–800 cm?1) infrared modes in silicates more polymerized than the pyrosilicate (Si2O7) appear to be mostly antisymmetric modes in which Si rattles against bridging oxygens, rather than symmetric stretching modes.  相似文献   

15.
Multiphase solid inclusions in minerals formed at ultra-high-pressure (UHP) provide evidence for the presence of fluids during deep subduction. This study focuses on barian mica, which is a common phase in multiphase solid inclusions enclosed in garnet from mantle-derived UHP garnet peridotites in the Saxothuringian basement of the northern Bohemian Massif. The documented compositional variability and substitution trends provide constraints on crystallization medium of the barian mica and allow making inferences on its source. Barian mica in the multiphase solid inclusions belongs to trioctahedral micas and represents a solid solution of phlogopite KMg3(Si3Al)O10(OH)2, kinoshitalite BaMg3(Al2Si2)O10(OH)2 and ferrokinoshitalite BaFe3(Al2Si2)O10(OH)2. In addition to Ba (0.24–0.67 apfu), mica is significantly enriched in Mg (XMg ~ 0.85 to 0.95), Cr (0.03–0.43 apfu) and Cl (0.04–0.34 apfu). The substitution vector involving Ba in the I-site which describes the observed chemical variability can be expressed as BaFeIVAlClK?1Mg?1Si?1(OH)?1. A minor amount of Cr and VIAl enters octahedral sites following a substitution vector VI(Cr,Al)2VI(Mg,Fe)?3 towards chromphyllite and muscovite. As demonstrated by variable Ba and Cl contents positively correlating with Fe, barian mica composition is partly controlled by its crystal structure. Textural evidence shows that barian mica, together with other minerals in multiphase solid inclusions, crystallized from fluids trapped during garnet growth. The unusual chemical composition of mica reflects the mixing of two distinct sources: (1) an internal source, i.e. the host peridotite and its garnet, providing Mg, Fe, Al, Cr, and (2) an external source, represented by crustal-derived subduction-zone fluids supplying Ba, K and Cl. At UHP–UHT conditions recorded by the associated diamond-bearing metasediments (c. 1100 °C and 4.5 GPa) located above the second critical point in the pelitic system, the produced subduction-zone fluids transporting the elements into the overlying mantle wedge had a solute-rich composition with properties of a hydrous melt. The occurrence of barian mica with a specific chemistry in barium-poor mantle rocks demonstrates the importance of its thorough chemical characterization.  相似文献   

16.
Sapphirine II     
The crystal structure of aP21/a polymorph of sapphirine (a=11.286(3),b=14.438(2),c=9.957(2) Å, β=125.4(2) °) of composition [Mg3.7Fe 0.1 2+ Al4.1- Fe 0.1 3+ ]IV[Si1.8Al4.2]IVO20 was refined using structure factors determined by both neutron and x-ray diffraction methods to conventionalR factors of 0.067 and 0.031. respectively, forF obs>2σ. The results of the two refinements agree reasonably well, but a half-normal probability plot (Abrahams, 1974) comparing the two data sets indicates that the pooled standard deviations of the atomic coordinates have been underestimated by a factor of two. The structure of sapphirine, solved initially by Moore (1969), consists of cubic closest packed oxygens with octahedral and predominantly tetrahedral layers alternately stacked along [100]. The layer in which 70% of the octahedral sites are occupied has an Mg-Al distribution characterized by Mg-rich octahedra sharing edges mainly with Al-rich octahedra. Mean octahedral bond lengths correlate well with Al occupancy determined by neutron site refinement if the relative number of shared octahedral edges is taken into account (see Table 1). The predominantly tetrahedral layer has 10% of the octahedral sites occupied by Al and 30% of the tetrahedral sites occupied by Al-Si in the ratio 2.33∶1. There are single chains of Al-Si tetrahedra parallel toz with corner-sharing wing tetrahedra (T5 andT6) on either side in the (100) plane. The meanT-O distance is highly correlated with Al occupancy, XAl, as determined from the neutron site refinement: $$\langle T - O\rangle = 1.656 + 0.105X_{Al} (r^2 = 0.995).$$ Details of the neutron refinement are summarized below.  相似文献   

17.
Equations for the configurational entropy and homogeneous equilibria in Ca2MgSi2O7-Ca2SiAl2O7 melilites are derived for a site constraint that does not permit Mg on the smaller T2 tetrahedral sites. This constraint leads to one ordering parameter and one composition parameter. The maximum configurational entropy for perfectly ordered crystalline solutions is 3.795 cal K–1 mol–1, corresponding to the structural formula Ca2(Mg0.33Al0.67) (Si0.67Al0.33)2O7 and not the equimolar composition Ca2(Mg0.5Al0.5)(Si0.75Al0.25)2O7. Similarly, the configuration Ca2(Si0.33Al0.67)(Si0.33Al0.67)2O7 has the maximum entropy for the gehlenite end-member composition. The tabulated entropy of end-member gehlenite at 298.15 K must be corrected by at least 2Rln2, which corresponds to a substantial correction to its Gibbs energy at high temperature. The same corrections are applicable to other minerals having two crystallographically distinct sites in a 21 ratio and where the same configurational entropy equation applies: MgFe2O4 (magnesioferrite), NiFe2O4 (trevorite), TiFe2O4 (ulvospinel), TiMg2O4, TiZn2O4, CuFe2O4, and TiFe2O5 (pseudobrookite) inasmuch as these substances prefer the same inverse ordered state as gehlenite at low temperatures. The effects of the ideal enthalpy and entropy on temperatures of homogeneous equilibria in gehlenite and MgTi2O5 are evaluated. Geological-thermometer phase diagrams of the long-range ordering parameter plotted against temperature have a sigmoidal shape for these minerals owing to the fact that this type of disordering is non-convergent.  相似文献   

18.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

19.
The solubility and incorporation mechanisms of hydrogen in synthetic stishovite as a function of Al2O3 content have been investigated. Mechanisms for H incorporation in stishovite are more complex than previously thought. Most H in stishovite is incorporated via the Smyth et al. (Am Mineral 80:454–456, 1995) model, where H docks close to one of the shared O–O edges, giving rise to an OH stretching band in infrared (IR) spectra at 3,111–3,117 cm−1. However, careful examination of IR spectra from Al-stishovite reveals the presence of an additional OH band at 3,157–3,170 cm−1. All H is present on one site, with interstitial H both coupled to Al3+ substitutional defects on adjacent octahedral (Si4+) sites, and decoupled from other defects, giving rise to two distinct absorption bands. Trends in IR data as a function of composition are consistent with a change in Al incorporation mechanism in stishovite, with Al3+ substitution for Si4+ charge-balanced by oxygen vacancies at low bulk Al2O3 contents, and coupled substitution of Al3+ onto octahedral (Si4+) and interstitial sites at high bulk Al2O3 contents. Trends in OH stretching frequencies as a function of Al2O3 content suggest that any such change in Al incorporation mechanism could alter the effect that Al incorporation has on the compressibility of stishovite, as noted by Ono et al. (Am Mineral 87:1486–1489, 2002).  相似文献   

20.
The local structure around Co, Zn and Sr atoms in incommensurately modulated, melilite-type X2T1 T 2 2 O7 (X=Ca and Sr, T1=Mg, Co and Zn, T2=Si) solid-solutions has been investigated by EXAFS analyses. The modulated structure was confirmed in Ca2-xSrxCoSi2O7 solid-solutions with X=0.0 to 0.6 and for both Ca2Mg1-YCoYSi2O7 and Ca2Mg1-YZnYSi2O7 solid-solutions over the whole compositional range at room temperature. The actual bond-distances determined by the EXAFS method for the T1 site (Co-, Zn-O) in the modulated structure are longer than the mean bond-distances obtained from the X-ray diffraction method. This is attributable to the libration of the T1 tetrahedra. In the Ca1-XSrXCoSi2O7 solid-solution both the Sr-O and Co-O distances by the EXAFS method for the X-site increase from Ca end-member to Sr end-member. These increases are respectively 0.8% and 0.6%. This means the local expansions of the tetrahedral sheets and of the XO polyhedra are well matched. In the modulated Ca2Co1-YMgYSi2O7 and Ca2Zn1-YMgYSi2O7 solid-solutions, the actual Co-O and Zn-O distances for the T1-sites are nearly constant in the whole compositional range. The compositional variations of the local structure around the cations in the solid-solution are different for the X and T1 sites. It is concluded that the local geometric restriction for the size of substituted cation in X site is larger than that in T1 site. The dimension of the tetrahedral sheet puts restriction on the size of the cations situated at the interlayer X sites. In other words, the different behavior of the local geometric restriction between the X and T1 sites is an important feature of the melilite structure and is also related to the modulated structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号