首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-pressure structural study of muscovite   总被引:1,自引:0,他引:1  
The compressibility and structural variations of two 2M1 muscovites having compositions (Na0.07K0.90 Ba0.010.02)(Al1.84Ti0.04Fe0.07Mg0.04)(Si3.02Al0.98) O10 (OH)2 (7 mole % paragonite) and (Na0.37K0.600.03)(Al1.84Ti0.02 Fe0.10Mg0.06)(Si3.03Al0.97) O10(OH)2 (37 mole % paragonite) were determined at pressures between 1 bar and 35 kbar, by single-crystal X-ray diffraction using a Merrill-Bassett diamond anvil cell. Isothermal bulk moduli, setting K′ = 4, were 490 and 540 (± 30) kbar for the Na-poor and Na-rich samples respectively. Both samples show highly anisotropic compressibility patterns, with β a ∶β b ∶β c = 1∶1.15∶3.95 for the Na-poor sample and β a ∶β b ∶β c = 1∶1.19∶3.46 for the Na-rich one. HP structural refinements showed that the different compressibility was largely due to the partial substitution of Na for K in the interlayer region. Moreover, the different compressibility of the tetrahedral and octahedral layers, observed in both micas, increased the a rotation of the tetrahedral layer by about 2° in 28 kbar, as also indicated by the evolution of interlayer cation bond lengths. This increases the repulsion of oxygens of the basal layers and between the high-charged cations of the tetrahedral layer. As a consequence, phengitic substitution, reducing α rotation, would increase the baric stability of mica. Comparison between the HP structures of muscovite and phlogopite indicated the lower compressibility of the latter, mainly due to the greater compressibility of the dioctahedral layer with respect to that of the trioctahedral layer. The HT and HP behaviour of di- and trioctahedral micas showed an anisotropy in the compressional pattern which was markedly greater than that observed in the dilatation pattern. This unexpected result was explained by the different evolution with P and T of alkaliO bond lengths. By combining HP and HT data, a tentative equation of state of muscovite is proposed.  相似文献   

2.
 中国东部花岗岩类141个Mg-Fe云母的化学成分将近90%的变化属于八面体层内的类质同象置换,置换矢量Mg 1Fe+2和Fe-3+2(R+3)-2组成了天然黑云母平面,大约80%的变化应当解释为基本置换8Mg 1Fe+2+Fe-3+2(R+3)2.这些是Mg-Fe云母在广泛的自然条件下表现出来的最主要的晶体化学关系。文中还提出了置换矢量的长度、分量和以及电价和三个参数,用以识别矿物化学成分变化的类质同象置换特征。  相似文献   

3.
Quantum mechanical calculations based on the density functional theory (DFT) are used to study the crystal structures of dioctahedral 2:1 phyllosilicates. The isomorphous cation substitution is investigated by exploring different substitutions of octahedral Al3+ by Mg2+ or Fe3+, tetrahedral substitution of Si4+ by Al3+, and different interlayer cations (IC) (Na+, K+, Ca2+, and Mg2+). Samples with different kinds of layer charges are studied: only tetrahedrally charged, only octahedrally charged, or mixed octahedral/tetrahedral charged. The effect of the relative arrangements of these substitutions on the lattice parameters and total energy is studied. The experimental observation of segregation tendency of Fe3+ and dispersion tendency of Mg2+ in the octahedral sheet is reproduced and explained with reference to the relative energies of the octahedral cation arrangements. These energies are higher than those due to the IC/tetrahedral and IC/octahedral relative arrangements. The tetrahedral and octahedral substitutions that generate charged layers also tend to be dispersed. The octahedral cation exchange potentials change with the IC-charge/ionic radius value.  相似文献   

4.
Geometrical changes induced by cation substitutions {Si4+/Al3+}[Mg2+/Al3+], {2Si4+/2Al3+} [2Mg2+/2Al3+], {Si4+/Fe3+} [Mg2+/Al3+] or [Mg2+/Fe3+], where {} and [] indicate tetrahedral and octahedral sheet in lizardite 1T, are studied by ab-initio quantum chemistry calculations. The majority of the models are based on the chemical compositions reported for various lizardite polytypes with the amount of Al in the tetrahedral sheets reported to vary from 3.5% to 8% in the 1T and 2H 1, up to ~30% in the 2H 2 polytype. Si4+ by Fe3+ substitution in the tetrahedral sheet with an Al3+ (Fe3+) in the role of a charge compensating cation in the octahedral sheet is also examined. The cation substitutions result in the geometrical changes in the tetrahedral sheets, while the octahedral sheets remain almost untouched. Substituted tetrahedra are tilted and their basal oxygens pushed down from the plane of basal oxygens. Ditrigonal deformation of tetrahedral sheets depends on the substituting cation and the degree of substitution.  相似文献   

5.
The solubility of Tio2 in phlogopites has been experimentally determined in the system K2Mg6Al2Si6O20(OH)4-K2Mg4TiAl2Si6O20(OH)4-K2Mg5TiAl4Si4O20(OH)4 between 825–1300°C and 10–30 kbar under vapour absent conditions. Starting compositions lie along the join K2Mg6Al2Si6O20(OH)4-K2Mg4.5TiAl3Si5O20(OH)4 which represents a combination of the Mg[VI]2Si[IV] = Ti[VI]2Al[VI] and 2Mg[VI] = Ti[VI][VI] substitution mechanisms for Ti in phlogopites. The results of the experiments indicate a systematic increase in solubility of Ti with increasing temperature and decreasing pressure for given bulk Tio2 content. Under isobaric conditions high temperature Ti-saturated phlogopite breaks down to Ti-deficient phlogopite + rutile + vapour. Mass balance calculations suggest that the vapour phase may contain K2O dissolved in H2O and that the reaction is controlled by the vapour phase. Analyses of phlogopites coexisting with rutile and vapour can be represented in terms of the end-member components phlogopite [K2Mg6Al2Si6O20(OH)4], eastonite [K2Mg5Al4Si5O20(OH)4], an octahedral site deficient Ti-phlogopite (Ti-OSD) of composition K2(Mg4Ti□)Al2Si6)O20(OH)4, and Ti-eastonite [K2Mg5TiAl4Si4O20(OH)4]. With decreasing amounts of Ti in these phlogopites there is a decrease in the Ti-eastonite component and increase in the eastonite component.The general equation for the breakdown of Ti-phlogopite solid solution to Ti-free phlogopite + rutile + vapour is: 14 Ti-eastonite + 7 Ti-OSD ? 16 eastonite + 3 phlogopite + 21 rutile + 4 H2O + 2 K2O. Lack of knowledge of H2O and K2O activities in the vapour phase does not permit evaluation of thermodynamic constants for this reaction. The Ti solubility in phlogopites and hence its potential as a geothermobarometer under lower crustal to upper mantle conditions is likely controlled by common mantle minerals such as forsterite.  相似文献   

6.
The effect of the Si/Al distribution in the tetrahedral sheets of the vermiculite mineral has been investigated employing density functional theory. The structures of six models for vermiculite with the structural formula (Mg4)(Mg12)(Si8Al8)O40(OH)8·24(H2O) per unit cell were fully optimized. The models differ by the T···Mg2+···T coordination of the interlayer Mg2+ cations by two central cations from the adjacent tetrahedral sheets of the 2:1 vermiculite layers (T,T=Si,Al). We observed the formation of very strong hydrogen bonds between water molecules solvating the interlayer Mg2+ cations and the surface basal oxygen atoms of the 2:1 layers. The directionality of hydrogen bonds is the major factor determining the layer stacking in the vermiculite structure. Results showed that the most stable model is that where only silicon atoms in the tetrahedral sheets coordinate all interlayer Mg2+ cations.  相似文献   

7.
Chemical and mineralogical analyses of the clay fraction of eleven soils containing a large amount of vermiculite clay and representing a wide range of parent materials revealed that two types of vermiculite clays exist: (1) An aluminous type in which Al3+ substitutes for Si4+ in tetrahedral positions in the same order of magnitude as in the coarse grained vermiculites and micas, and with Al3+ as the dominant octahedral ion. (2) A silicious type in which only Si4+ occupies the tetrahedral positions, and with Fe3+ and Mg2+ as the dominant octahedral ions. The aluminous vermiculite clay was found to occur in soils derived from acid igneous rocks and is usally associated with mica, whereas the silicious type was found to occur in soils derived from basic igneous rocks which do not contain mica. Because of this close association of these two types to their parent material, it was concluded that the aluminous vermiculite is a product of alteration of mica whereas the silicious type is a product of synthesis from primary oxides of silica, alumina, iron, and magnesium. Both types of vermiculite clays tend to be dioctahedral in contrast to the trioctahedral nature of the coarse-grained vermiculite.  相似文献   

8.
Microprobe analysis, single crystal X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chemical formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe 0.294 2+ )T2 (Mg0.735 Mn0.091 Fe 1.184 2+ )AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chemical composition. The determination of the amount of each element on the mineral surface, obtained through X-ray photoelectron spectroscopy high-resolution spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidation state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, respectively, both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.  相似文献   

9.
Fe-Li云母化学成分的解释和分类   总被引:3,自引:0,他引:3       下载免费PDF全文
孙世华 《地质科学》1988,(3):213-228
用置换矢量概念解释了115个天然 Fe-Li 云母化学成分的变化。Fe-Li 云母是三八面体 Li-Fe-Al 云母,其基本置换是四锂云母置换。由于 Al-Li 白云母置换和白云母置换的影响,其化学组成变化的基本趋势呈明显的非线性,因而 Fe-Li 云母不是真正的二元系。作为 Fe-Li 云母,富铁黑云母和铁叶云母都是最富铁的成员,因而建议称 Fe-Li 云母为黑云母-锂云母系列。根据化学成分,晶胞参数和折光率的异常变化还提出了该系列自然分类的方案。  相似文献   

10.
Mössbauer studies of micas on the polylithionite-side-rophyllite join show the existence of a relation between the quadrupole splitting (ΔE Q) values of Fe2+ high spin doublets and both cationic and anionic composition of micas. This linear relation is positive as Li2O content increases and negative as F content increases. In the lithium iron micas, the inner ferrous quadrupole doublet is assigned to the cis-site M(2), while the outer doublet is assigned to the trans-site M(1). A random distribution of Fe2+ is observed in fluorine-rich compositions, while slight enrichment of the M(1) site is noticed in hydroxyl compositions, perhaps due to a more sensitive oxidation in situ in M(2) than M(1) sites. The Mössbauer spectrum of siderophyllite K2(Fe 4 2+ Al2)(Si4Al4)O20(OH)4 shows the presence of only one ferrous doublet, which is assigned to M(2) sites. Hence from Mössbauer data we must consider a clintonite (“xanthophyllite”) structure for this mica. The ordered octahedral layer has two distorted ferrous cis-sites and one, more symmetrical, aluminum trans-site.  相似文献   

11.
Micaceous kimberlites from South Africa and Canada contain two types of groundmass mica less than 1 mm across. Very rare Type I micas are relatively iron-rich with mg [ = Mg/(Mg + Fe)] 0.45–0.65, TiO2 3–6 wt%, Al2O3 14–16wt%, no Fe3+ required in tetrahedral sites, low NiO (~0.02 wt%), and relatively high na [Na2O/(Na2O + K2O)] 0.02–0.03. The much more abundant Type II micas are variable in composition, but relative to Type I micas are more magnesium (mg 0.80-0.93), lower in TiO2 (0.7–4.0 wt%) and Al2O3 (6.8–14.2 wt%), have substantial Fe3+ in tetrahedral sites, and have relatively low na. Both types may have rims with compositions indicative of mica-‘serpentine’ mixtures resulting from reaction with a highly aqueous fluid. The petrographically-determined ‘serpentine’ is chemically of two types: Fe-rich serpentine and Fe-rich talc. Associated phases in the ground-mass vary from one kimberlite to another: calcite, dolomite, diopside, chromite, Mg-ilmenite, perovskite, barite, pyrite, pentlandite, millerite?, heazlewoodite?, quartz.Inter-grain variations in composition of Type II micas may result from establishment of local reservoirs on a mm scale, consequent upon mechanical mixing and competition of other phases for minor elements (e.g. chromite for Cr, serpentine for Ni).Type I micas may result from an intrusive precursor (carbonatitic?) to kimberlite, perhaps genetically related, which was incorporated into a later pulse of kimberlite from which the Type II micas crystallized.  相似文献   

12.
Potassic cordierites with the chemical composition K x Mg2Al4+x Si5xO18 (x = 0.00, 0.10, 0.20, and 0.25) were synthesized by annealing glasses at 1290° C for different lengths of time. The procedure resulted in cordierites with different states of Al,Si-order for the tetrahedral sites in the structure. The dependence between the potassium-content and the state of order on one side and between annealing time and the state of order on the other side was then studied using 29Si MAS nuclear magnetic resonance (NMR) spectroscopy. The spectra show that the state of order is a continuous function of annealing time for all compositions considered, but the rate of ordering decreases with increasing K-content. Since the substitution K+Al Si leads to higher Al/Si-ratios; the lower rate of ordering is discussed as a consequence of changed statistics for Al, Si site exchanges. The Al atoms replacing silicon in the structure to balance the charge of potassium cations are not located close to the potassium ion but at a maximum distance from it. This is shown to be a consequence of an improvement in coordination of all oxygen atoms in the cordierite framework.  相似文献   

13.
The 29Si and 27Al nuclear magnetic resonance (NMR) analysis of synthetic trioctahedral phyllosilicates 2:1, with tetrahedral ratios Al T/(Si + Al T) ranging from 0 to 0.5, has shown that the ditrigonal distortion of tetrahedral rings (angle ) is the main factor controlling chemical shift values of tetrahedral components in both signals. The increase of ditrigonal rotation angle shifts these components towards more positive values. For each sample, the composition of tetrahedral and octahedral sheets determine the value of , and from this parameter, the mean tetrahedral Tot angle and the chemical shift values of components are deduced. For a given environment, variations on ditrigonal angle are responsibles for the observed evolution of chemical shift values with bulk composition. The comparative analysis of micas and saponite samples has demonstrated that the location of compensating charge (interlayer and octahedral sheet) does not affect chemical shift values.  相似文献   

14.
A geochemical study of pegmatitic micas from Minas Gerais State in Brazil was performed with an electron microprobe, in order to examine the variations of Rb, K, Al and F contents. It is observed a linear decreasing relationship between the [Rb/K] ratio of the micas and their contents in AlVI. The interpretation is based on the hypothesis that the partition coefficient CRb/Kmica/fl between fluid and mineral does not vary significantly as a function of temperature and pressure in the narrow conditions of crystallization of pegmatites. It is suggested that the relation: CRb/Kmica/fl=0.55×(5?[AlVI]) is of crystallochemical order. Micas with low contents in Al take higher contents in Rb because the potassic sites where Rb enters are larger. This relation gives another way of calculating the values [Rb/K] of the fluids knowing Rb, K, Al and Si in the micas. This crystallochemistry also allows us to foresee a direct correlation between Rb and F in the pegmatitic micas. To cite this article: J. Quéméneur et al., C. R. Geoscience 336 (2004).  相似文献   

15.
The paper reports results of an experimental thermochemical study (in a heat-flux Tian-Calvet microcalorimeter) of montmorillonite from (I) the Taganskoe and (II) Askanskoe deposits and (III) from the caldera of Uzon volcano, Kamchatka. The enthalpy of formation Δ f H el 0 (298.15 K) of dehydrated hydroxyl-bearing montmorillonite was determined by melt solution calorimetry: ?5677.6 ± 7.6 kJ/mol for Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 (I), ?5614.3 ± 7.0 kJ/mol for Na0.4K0.1(Ca0.1Mg0.3Al1.5Fe 0.1 3+ )[Si3.9Al0.1O10](OH)2 (II), ?5719 ± 11 kJ/mol for K0.1Ca0.2Mg0.2(Mg0.6Al1.3Fe 0.1 3+ ) [Si3.7Al0.3O10](OH)2 (III), and ?6454 ± 11 kJ/mol for water-bearing montmorillonite (I) Na0.3Ca0.1(Mg0.4Al1.6)[Si3.9Al0.1O10](OH)2 · 2.6H2O. The paper reports estimated enthalpy of formation for the smectite end members of the theoretical composition of K-, Na-, Mg-, and Ca-montmorillonite and experimental data on the enthalpy of dehydration (14 ± 2 kJ per mole of H2O) and dehydroxylation (166 ± 10 kJ per mole of H2O) for Na-montmorillonite.  相似文献   

16.
A series of alumina-free micas was synthesized hydrothermally in the potassium-poor portion of the system K2O-MgO-SiO2-H2O. One end member of this series has the composition KMg2.5[Si4O10](OH)2, which, because of its octahedral occupancy, is intermediate between the dioctahedral and trioctahedral micas.From this end member a series of mica solid solutions extends towards more Mg-rich compositions. Single phase micas were obtained along the substitution line 2Mg for Si which appears to involve incorporation of part of the Mg in tetrahedral sites. It leads to a theoretical end member with a structural formula KMg3[Si3.5Mg0.5O10](OH)2. Solid solutions containing up to 75 mole % of this theoretical end member could be synthesized. The observed densities, water contents, and a one-dimensional Fourier synthesis are consistent with the assumed substitution.At 1 kb fluid pressure and 620° C the Si-rich end member KMg2.5[Si4O10](OH)2 decomposes to a more Mg-rich mica, the roedderite phase K2Mg5Si12O30, liquid, and H2O-rich vapor. With increasing Mg-content the thermal stability of the mica solid solutions increases up to 860°C at a composition of about K2O·6.2MgO·7.4SiO2·2H2O, i.e. KMg2.8[Si3.7Mg0.3O10](OH)2. This mica disintegrates directly into forsterite + liquid + H2O-rich vapor. The mica phase richest in Mg with a composition of about K2O·6.5MgO·7.25SiO2·2H2O, i.e. KMg2.875 [Si3.625Mg0.375O10](OH)2, breaks down at 765° C into forsterite, a more Si-rich mica, liquid, and H2O-rich vapor.This binary series of alumina-free micas forms a complete series of ternary solid solutions with normal phlogopite, KMg3[Si3AlO10](OH)2. Analyses of some natural phlogopites showing Si in excess of 3.0 (up to 3.18) per formula unit can be explained through this ternary miscibility range.  相似文献   

17.
18.
Sapphirine II     
The crystal structure of aP21/a polymorph of sapphirine (a=11.286(3),b=14.438(2),c=9.957(2) Å, β=125.4(2) °) of composition [Mg3.7Fe 0.1 2+ Al4.1- Fe 0.1 3+ ]IV[Si1.8Al4.2]IVO20 was refined using structure factors determined by both neutron and x-ray diffraction methods to conventionalR factors of 0.067 and 0.031. respectively, forF obs>2σ. The results of the two refinements agree reasonably well, but a half-normal probability plot (Abrahams, 1974) comparing the two data sets indicates that the pooled standard deviations of the atomic coordinates have been underestimated by a factor of two. The structure of sapphirine, solved initially by Moore (1969), consists of cubic closest packed oxygens with octahedral and predominantly tetrahedral layers alternately stacked along [100]. The layer in which 70% of the octahedral sites are occupied has an Mg-Al distribution characterized by Mg-rich octahedra sharing edges mainly with Al-rich octahedra. Mean octahedral bond lengths correlate well with Al occupancy determined by neutron site refinement if the relative number of shared octahedral edges is taken into account (see Table 1). The predominantly tetrahedral layer has 10% of the octahedral sites occupied by Al and 30% of the tetrahedral sites occupied by Al-Si in the ratio 2.33∶1. There are single chains of Al-Si tetrahedra parallel toz with corner-sharing wing tetrahedra (T5 andT6) on either side in the (100) plane. The meanT-O distance is highly correlated with Al occupancy, XAl, as determined from the neutron site refinement: $$\langle T - O\rangle = 1.656 + 0.105X_{Al} (r^2 = 0.995).$$ Details of the neutron refinement are summarized below.  相似文献   

19.
20.
Fault affecting silicoclastic sediments are commonly enriched in clay minerals. Clays are sensitive to fluid–rock interactions and deformation mechanisms; in this paper, they are used as proxy for fault activity and behavior. The present study focuses on clay mineral assemblages from the Point Vert normal fault zone located in the Annot sandstones, a Priabonian-Rupelian turbidite succession of the Alpine foredeep in SE France. In this area, the Annot sandstones were buried around 6–8 km below the front of Alpine nappes soon after their deposition and exhumed during the middle-late Miocene. The fault affects arkosic sandstone beds alternating with pelitic layers, and displays throw of about thirty meters. The fault core zone comprises intensely foliated sandstones bounding a corridor of gouge about 20 cm thick. The foliated sandstones display clay concentration along S–C structures characterized by dissolution of K-feldspar and their replacement by mica, associated with quartz pressure solution, intense microfracturation and quartz vein precipitation. The gouge is formed by a clayey matrix containing fragments of foliated sandstones and pelites. However, a detailed petrographical investigation suggests complex polyphase deformation processes. Optical and SEM observations show that the clay minerals fraction of all studied rocks (pelites and sandstones from the damage and core zones of the fault) is dominated by white micas and chlorite. These minerals have two different origins: detrital and newly-formed. Detrital micas are identified by their larger shape and their chemical composition with a lower Fe–Mg content than the newly-formed white micas. In the foliated sandstones, newly-formed white micas are concentrated along S–C structures or replace K-feldspar. Both types of newly formed micas display the same chemical composition confirmed microstructural observations suggesting that they formed in the same conditions. They have the following structural formulas: Na0.05 K0.86 (Al 1.77 Fe0.08 Mg0.15) (Si3.22 Al0.78) O10 (OH)2. They are enriched in Fe and Mg compared to the detrital micas. Newly-formed chlorites are associated with micas along the shear planes. According to microprobe analyses, they present the following structural formula: (Al1,48 Fe2,50 Mg1,84) (Si2,82 Al1,18) O10 (OH)8. All these data suggest that these clay minerals are synkinematic and registered the fault activity. In the gouge samples, illite and chlorite are the major clay minerals; smectite is locally present in some samples.In the foliated sandstones, Kubler Index (KI) ((001) XRD peak width at half height) data and thermodynamic calculations from synkinematic chlorite chemistry suggest that the main fault deformation occurred under temperatures around 220 °C (diagenesis to anchizone boundary). KI measured on pelites and sandstones from the hanging and footwall, display similar values coherent with the maximal burial temperature of the Annot sandstones in this area. The gouge samples have a higher KI index, which could be explained by a reactivation of the fault at lower temperatures during the exhumation of the Annot sandstones formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号