首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The period of interplanetary, geomagnetic and solar disturbances of September 7–15, 2005, is characterized by two sharp increases of solar wind velocity to 1000 km/s and great Dst variation of the geomagnetic field (~140 nT). The time variations of theoretical and experimental geomagnetic thresholds observed during this strong geomagnetic storm, their connection with solar wind parameters and the Dst index, and the features of latitudinal behavior of geomagnetic thresholds at particular times of the storm were studied. The theoretical geomagnetic thresholds were calculated with cosmic ray particle tracing in the magnetic field of the disturbed magnetosphere described by Ts01 model. The experimental geomagnetic thresholds were specified by spectrographic global survey according to the data of cosmic ray registration by the global station network.  相似文献   

2.
Rhythms of heliogeomagnetic activity and their dynamics in the solar activity (SA) cycles are analyzed. Heliogeomagnetic rhythms are the mixture of a periodic signal and noise component, which differs from a periodic signal by a substantial suddenness. Therefore, the filtering methods optimized for smoothness were used to analyze these rhythms and to separate rhythm periodic components. Short-period rhythms of the Kp index of geomagnetic activity and Wolf numbers (W) have been revealed. The rhythm dynamics in SA cycles has been indicated. Clearly defined near-seven-day, semi-seven-day, and other components, which are harmonics of the solar rotation period, are present in the rhythms of the Kp index in contrast to W. A comparison of the Kp and Dst rhythms indicates that the seasonal and annual variations in these indices are substantially similar. It has been indicated that the rhythms of heliogeomagnetic activity could be the external synchronizers of biological rhythms, having integrated into the endogenous temporal structure of these rhythms in the process of evolution, and that the dependence of the population macroparameters on W is much weaker than on Kp.  相似文献   

3.
The dependence of the zonal geomagnetic indices (AE, Ap, Kp, Kn, and Dst) on the solar wind parameters (the electric field E y component, dynamic pressure P d and IMF irregularity σB) has been studied for two types of events: magnetic clouds and high-speed streams. Based on the empirical relationships, it has been established that the AE, Ap, Kp, and Kn indices are directly proportional to the E y value at E y < 12 mV m?1 and are inversely proportional to this value at E y > 12 mV m?1 for the first-type events. On the contrary, the dependence of Dst on E y is monotonous nonlinear. A linear dependence of all geomagnetic indices on E y is typical of the second-type events. It has been indicated that the specific features of geoeffectiveness of magnetic clouds and high-speed solar wind streams are caused by the dependence of the electric field potential across the polar cap on the electric field, solar wind dynamic pressure, and IMF fluctuations.  相似文献   

4.
Great magnetic storms (geomagnetic index C9 is ≥8 for St. Petersburg, which can correspond to Kp ≥ 8 or Dst < ?200 nT), registered from 1841 to 1870 at the St. Petersburg, Yekaterinburg, Barnaul, Nerchinsk, Sitka, and Beijing (at the Russian embassy) observatories are analyzed. A catalog of intensive magnetic storms during this period, which includes solar cycles 9–11, has been compiled. The statistical characteristics of great magnetic storms during this historical period have been obtained. These results indicate that high solar activity played a decisive role in the generation of very intense magnetic storms during the considered period. These storms are characterized by only one peak in a solar cycle, which was registered in the years of the cycle minimum (or slightly earlier): the number of great geomagnetic storms near the solar activity maximum was twice as large as the number of such storms during less active periods. A maximum in September–October and an additional maximum in February are observed in the annual distribution of storms. In addition, the storm intensity inversely depends on the storm duration.  相似文献   

5.
The ring current dynamics during the magnetic storm has been studied in the work. The response of the magnetospheric current systems to the external influence of the solar wind, specifically, resulting in the development of the asymmetric ring current component, has been calculated using the magnetic field paraboloid model. The asymmetric ring current has been considered as a family of spatial current circuits in the Northern and Southern hemispheres, composed of the zones of the partial ring current in the geomagnetic equator plane, which close through the system of field-aligned currents into the ionosphere. The value of the total partial ring current has been estimated by comparing the calculated asymmetry of the magnetospheric magnetic field at the geomagnetic equator with the value of the Asym-H geomagnetic index. The variations in the symmetric and asymmetric components of the ring current magnetic field have been calculated for the magnetic storm of November 6–14, 2004. The contributions of the magnetospheric current systems to the Dst and AU geomagnetic indices have been calculated.  相似文献   

6.
The relation of the Kp index of geomagnetic activity to the solar wind electric field (E SW) and the projection of this field onto the geomagnetic dipole has been estimated. An analysis indicated that the southward component of the IMF vector (B z < 0) is the main geoeffective parameter, as was repeatedly indicated by many researchers. The presence of this component in any combinations of the interplanetary medium parameters is responsible for a high correlation between such combinations and geomagnetic activity referred to by the authors of different studies. Precisely this field component also plays the main role in the relation between the Kp index and the relative orientation of E SW and the Earth’ magnetic moment.  相似文献   

7.
The level of wave geomagnetic activity in the morning and daytime sectors of auroral latitudes during strong magnetic storms with Dst min varying from ?100 to ?150 nT in 1995–2002 have been studied using a new ULF index of wave activity proposed in [Kozyreva et al., 2007]. It has been detected that daytime Pc5 pulsations (2–6 mHz) are most intense during the main phase of a magnetic storm rather than during the recovery phase as was considered previously. It has been indicated that morning geomagnetic pulsations during the substorm recovery phase mainly contribute to daytime wave activity. The appearance of individual intervals with the southward IMF B z component during the magnetic storm recovery phase results in increases in the ULF index values.  相似文献   

8.
The dynamics of wave disturbances in the ionospheric E region in the band of periods of thermal tidal waves and waves of planetary scales (T = 48, 72, and 192 h) has been studied based on the variations in the horizontal component of the geomagnetic field, observed at Paratunka and Barrow observatories in September–October 1999. It has been found that, at midlatitudes during high geomagnetic activity, the intensity of oscillations in the power spectra with T = 24 and 12 h varies with a periodicity of 16 days different from the periodicity of changes in the ΣKp index. The maximal deviations of these periods from the values under quiet conditions coincide with the maximal changes in the ΣKp index. The variations in the 48–192 h band of periods (especially with T ~192 h) intensify simultaneously with increasing geomagnetic activity. The intensity of this harmonic is several times as high as that of the harmonic with T ~ 24 h. The periodicity of changes in the harmonics intensity within the 48–192 h band coincides with the periodicity of changes in the ΣKp index. In the polar ionosphere, the effect of high geomagnetic activity is observed as an increase in the variations with a quasi-period of T ~ 24 h and as an appearance of variations in the 48–192 h band with the periodicity coinciding with the maximums in the ΣKp index variations.  相似文献   

9.
Equations of regression are derived for the intense magnetic storms of 1957?2016. They reflect the nonlinear relation between Dstmin and the effective index of geomagnetic activity Ap(τ) with a timeweighted factor τ. Based on this and on known estimations of the upper limit of the magnetic storm intensity (Dstmin =–2500 nT), the maximal possible value Ap(τ)max ~ 1000 nT is obtained. This makes it possible to obtain initial estimates of the upper limit of variations in some parameters of the thermosphere and ionosphere that are due to geomagnetic activity. It is found, in particular, that the upper limit of an increase in the thermospheric density is seven to eight times larger than for the storm in March 1989, which was the most intense for the entire space era. The maximum possible amplitude of the negative phase of the ionospheric storm in the number density of the F2-layer maximum at midlatitudes is nearly six times higher than for the March 1989 storm. The upper limit of the F2-layer rise in this phase of the ionospheric storm is also considerable. Based on qualitative analysis, it is found that the F2-layer maximum in daytime hours at midlatitudes for these limiting conditions is not pronounced and even may be unresolved in the experiment, i.e., above the F1-layer maximum, the electron number density may smoothly decrease with height up to the upper boundary of the plasmasphere.  相似文献   

10.
Global electron content (GEC) as a new ionospheric parameter was first proposed by Afraimovich et al. [2006]. GEC is equal to the total number of electrons in the near-Earth space. GEC better than local parameters reflects the global response to a change in solar activity. It has been indicated that, during solar cycle 23, the GEC dynamics followed similar variations in the solar UV irradiance and F 10.7 index, including the 11-year cycle and 27-day variations. The dynamics of the regional electron content (REC) has been considered for three belts: the equatorial belt and two midlatitude belts in the Northern and Southern hemispheres (±30° and 30°–65° geomagnetic latitudes, respectively). In contrast to GEC, the annual REC component is clearly defined for the northern and southern midlatitude belts; the REC amplitude is comparable with the amplitude of the seasonal variations in the Northern Hemisphere and exceeds this amplitude in the Southern Hemisphere by a factor of ~1.7. The dayside to nightside REC ratio, R(t), at the equator is a factor of 1.5 as low as such a GEC ratio, which indicates that the degree of nighttime ionization is higher, especially during the solar activity maximum. The pronounced annual cycle with the maximal R(t) value near 8.0 for the winter Southern Hemisphere and summer Northern Hemisphere is typical of midlatitudes.  相似文献   

11.
Using the foF2 database obtained from satellites and ground-based ionospheric stations, we have constructed a global empirical model of the critical frequency of the ionospheric F2-layer (SDMF2—Satellite and Digisonde Data Model of the F2 layer) for quiet geomagnetic conditions (Kp < 3). The input parameters of this model are the geographical coordinates, UT, day, month, year, and the integral index F10.7 (day, τ = 0.96) of solar activity for a given day. The SDMF2 model was based on the Legendre method for the spatial expansion of foF2 monthly medians to 12 in latitude and 8 in longitude of spherical harmonics. The resulting spatial coefficients have been expanded by the Fourier method in three spherical harmonics with respect to UT. The effect of the saturation of critical frequency of the ionospheric F2-layer at high solar activity was described in the SDMF2 model by foF2 as a logarithmic function of F10.7 (day, τ = 0.96). The difference between the SDMF2 and IRI models is a maximum at low solar activity as well as in the Southern Hemisphere and in the oceans. The testing on the basis of ground-based and satellite data has indicated that the SDMF2 model is more accurate than the IRI model.  相似文献   

12.
The dynamics of energetic electrons (E e =0.17–8 MeV) and protons (E p =1 MeV) of the outer radiation belt during the magnetic storm of May 15, 2005, at high (GOES-10 and LANL-84 geosynchronous satellites) and low (Meteor-3M polar satellite) altitudes is analyzed. The data have been compared to the density, plasma velocity, solar wind, and magnetic field measurements on the ACE satellite and geomagnetic disturbances. During the magnetic storm main phase, the nighttime boundary of the region of trapped radiation and the center of westward electrojet shifted to L ~ 3. Enhancements of only low-energy electrons were observed on May 15, 2005. The belt of relativistic electrons with a maximum at L ~ 4 was formed during the substorm, the amplitude of which reached its maximum at ~0630 UT on May 16. The results are in good agreement with the regularity relating the position of a maximum of the new relativistic electron belt, boundaries of the trapped radiation region, and extreme low-latitude position of westward electrojet center to the Dst variation amplitude.  相似文献   

13.
The heliospheric current sheet (HCS) is modified by the solar activity. HCS is highly inclined during solar maximum and almost confined with the solar equatorial plane during solar minimum. Close to the HCS solar wind parameters as proton temperature, flow speed, proton density, etc. differ compared to the region far from the HCS. The Earth’s magnetic dipole field crosses HCS several times each month. Considering interplanetary coronal mass ejections (ICME) and high speed solar wind streams (HSS) free periods an investigation of the HCS influence on the geomagnetic field disturbances is presented. The results show a drop of the Dst index and a rise of the AE index at the time of the HCS crossings and also that the behavior of these indices does not depend on the magnetic polarity.  相似文献   

14.
The empirical model of the location of the main ionospheric trough (MIT) is developed based on an analysis of data from CHAMP satellite measured at the altitudes of ~350–450 km during 2000–2007; the model is presented in the form of the analytical dependence of the invariant latitude of the trough minimum Φm on the magnetic local time (MLT), the geomagnetic activity, and the geographical longitude for the Northern and Southern Hemispheres. The time-weighted average index Kp(τ), the coefficient of which τ = 0.6 is determined by the requirement of the model minimum deviation from experimental data, is used as an indicator of geomagnetic activity. The model has no limitations, either in local time or geomagnetic activity. However, the initial set of MIT minima mainly contains data dealing with an interval of 16–08 MLT for Kp(τ) < 6; therefore, the model is rather qualitative outside this interval. It is also established that (a) the use of solar local time (SLT) instead of MLT increases the model error no more than by 5–10%; (b) the amplitude of the longitudinal effect at the latitude of MIT minimum in geomagnetic (invariant) coordinates is ten times lower than that in geographical coordinates.  相似文献   

15.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

16.
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z t) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere.  相似文献   

17.
The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm (SymH ~–220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50–60 cm–3) at a low solar wind velocity (350–400 km/s) approached the Earth’s magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations (ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to–39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth’s surface as bay-like magnetic disturbances.  相似文献   

18.
The dependence of the correlation coefficient r(h, fo) between the stratospheric parameter h(100) and critical frequency foF2 revealed in the data of two solar cycles (1979–1989 and 1990–2000) on geomagnetic activity is analyzed. It is shown that the character of the r(h, fo) dependence on limitation on the Ap geomagnetic index is the same in both cycles but depends on the time of day and solar activity level for the given year. It is also found that there is a considerable difference in the absolute values of r(h, fo) between two cycles.  相似文献   

19.
The F-region peak electron densities NmF2 measured during daytime quiet geomagnetic conditions at low solar activity on January 22, 2008, April 8, 1997, July 12, 1986, and October 26, 1995, are compared. Ionospheric parameters are measured by the ionosonde and incoherent scatter radar at Millstone Hill and calculated with the use of a 1D nonstationary ionosphere–plasmasphere model of number densities and temperatures of electrons and ions at middle geomagnetic latitudes. The formation of the semiannual anomaly of the midlatitudinal NmF2 under daytime quiet geomagnetic conditions at low solar activity is studied. The study shows that the semiannual NmF2 anomaly occurs due to the total impact of three main causes: seasonal variations in the velocity of plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity; seasonal variations in the composition and temperature of the neutral atmosphere; and the dependence of the solar zenith angle on a number of the day in the year at the same solar local time.  相似文献   

20.
The results of studying the intensity of fluxes of 30–80 keV ions from the data of measurements of the NOAA (POES) sun-synchronous satellites during geomagnetic storms of different intensity are presented. For 15 geomagnetic storms with |Dst|max from ~37 to ~422 nT, the storm-time maximum ion fluxes in the near-equatorial region (trapped particles) and at high latitudes (precipitating particles) have been considered. It is shown that the maximum fluxes of trapped particles, which are considered a ring-current proxy, increase with the storm power. In this case, if a smooth growth of fluxes is recorded for storms with |Dst|max < 250 nT in the near-equatorial region, a significantly steeper growth of fluxes of trapped particles is observed when storm power increases during storms with |Dst|max > 250 nT. This may be evidence of both an increasing of the contribution of the ring current relative to magnetotail currents to the development of high-intensity storms and to a nonlinear link between the ring current and ion fluxes at low altitudes in the near-equatorial region. Despite large variations in fluxes of precipitating particles in the polar region above the boundary of isotropization, a decreasing tendency, as a whole, in fluxes of these particles is observed with increasing the storm intensity. This is the evidence of the effect of saturation of magnetotail currents and of an increase in the relative role of the ring current during strong magnetic storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号