首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Solar sails are a proposed form of spacecraft propulsion using large membrane mirrors to propel a satellite taking advantage of the solar radiation pressure. To model the dynamics of a solar sail we have considered the Earth–Sun Restricted Three Body Problem including the Solar radiation pressure (RTBPS). This model has a 2D surface of equilibrium points parametrised by the two angles that define the sail orientation. In this paper we study the non-linear dynamics close to an equilibrium point, with special interest in the bounded motion. We focus on the region of equilibria close to SL 1, a collinear equilibrium point that lies between the Earth and the Sun when the sail is perpendicular to the Sun–sail direction. For different fixed sail orientations we find families of planar, vertical and Halo-type orbits. We have also computed the centre manifold around different equilibria and used it to describe the quasi-periodic motion around them. We also show how the geometry of the phase space varies with the sail orientation. These kind of studies can be very useful for future mission applications.  相似文献   

2.
The interior of the Sun is not directly observable to us. Nevertheless, it is possible to infer the physical conditions prevailing in the solar interior with the help of theoretical models coupled with observational input provided by measured frequencies of solar oscillations. The frequencies of these solar oscillations depend on the internal structure and dynamics of the Sun and from the knowledge of these frequencies it is possible to infer the internal structure as well as the large scale flows inside the Sun, in the same way as the observations of seismic waves on the surface of Earth help us in the study of its interior. With the accumulation of seismic data over the last six years it has also become possible to study temporal variations in the solar interior. Some of these seismic inferences would be described.  相似文献   

3.
Dibyendu Nandy 《Solar physics》2004,224(1-2):161-169
Sun-like stars are known to display a wide variety of magnetic activity which is likely to be the signature of a hydromagnetic dynamo mechanism working in stellar interiors. This dynamo mechanism has been studied extensively in the context of the Sun. Here we take ideas and experiences gained from solar dynamo modeling and build upon it to study the inferred scaling laws, involving stellar parameters, from observations of stellar magnetic activity. We also discuss how such a synthesis of theoretical dynamo modeling of Sun-like stars and stellar cycle observations may help us reconstruct the long-term variability of the Sun – an important ingredient for understanding the effects of solar forcing on space and global climate.  相似文献   

4.
We study the phenomenon of neutrino spin-flavor oscillations due to solar magnetic fields. This allows us to examine how significantly the electron neutrinos produced in the solar interior undergo a resonant spin-flavor conversion. We construct analytical models for the solar magnetic field in all the three regions of the Sun. Neutrino spin-flavor oscillations in this magnetic field are examined by studying the level crossing phenomenon and comparing the two cases of zero and non-zero vacuum mixing respectively.Results from the Borexino experiment are used to place an upper limit on the magnetic field in the solar core. Related phenomena such as effects of matter on neutrino spin transitions and differences between Dirac and Majorana transitions in the solar magnetic fields are also discussed.  相似文献   

5.
In this presentation we briefly describe the Sun through large number of illustrations and pictures of the Sun taken from early times to the present day space missions. The importance of the study of the Sun is emphasized as it is the nearest star which presents unparallelled views of surface details and numerous phenomena. Our Sun offers a unique celestial laboratory where a large variety of phenomena take place, ranging in temporal domain from a few milliseconds to several decades, in spatial domain from a few hundred kilometers to thousands of kilometers, and in the temperature domain from a few thousand degrees to several million degrees. Its mass motion ranges from thousandths to thousands of kilometers per second. Such an object provides us with a unique laboratory to study the state of matter in the Universe. The existing solar ground-based and space missions have already revealed several mysteries of the outer environment of our Sun and much more is going to come in the near future from planned new sophisticated ground-based solar telescopes and Space missions. The new technique of helioseismology has unravelled many secrets of the solar interior and has put the Standard Solar Model (SSM) on firm footing. The long-standing problem of solar neutrinos has been recently sorted out, and even the ‘back side’ view of the Sun can be seen using the technique of holographic helioseismology.  相似文献   

6.
Douglas Gough 《Solar physics》1985,100(1-2):65-99
Methods by which the observed frequencies of solar oscillations can be, and in some cases have been used to infer the internal structure of the Sun are discussed. Attention is confined to so-called inverse methods that identify and extract the information that is actually contained in the data. Because only a finite quantity of data can ever be acquired, the functions describing the interior stratification of the Sun can never be established completely without the acceptance of certain assumptions. Nevertheless, the assumptions that are required are simple to understand, and the results do not depend on the complicated and uncertain theory of stellar evolution which has traditionally been used to construct solar models. First results of the inversions have given us an estimate of the sound speed and the angular velocity throughout much of the solar interior. These estimates have already stimulated speculation which hopefully will encourage further theoretical and observational research that will improve our understanding of the Sun.  相似文献   

7.
太阳模型的研究是了解太阳整体结构和性质的极为重要的手段。90年代以来太阳模型研究取得了进展。随着MHD及OPAL物态方程的引入,理论上的太阳振荡频率与观测值的差别已大为减小,而考虑湍流频谱分布的局域对流理论和三维流体动力学模拟结果可对太阳内部对流能量传输过程有更深刻的理解.以前所发现的理论模型与反演结果得到的初始氦丰度的差别已能由扩散过程加以解释,而太阳表面锂丰度亏损问题也可以由扩散过程或早期演化星风来加以解决,太阳中微子问题则似应由粒子物理而不是天体物理来解决。  相似文献   

8.
We present results of solar-wind parameters generated by 3D MHD models. The ENLIL inner-heliosphere solar-wind model together with the MAS or Wang – Sheeley – Arge (WSA) coronal models, describe the steady solar-wind stream structure and its origins in the solar corona. The MAS/ENLIL and WSA/ENLIL models have been tuned to provide a simulation of plasma moments as well as interplanetary magnetic-field magnitude and polarity in the absence of disturbances from coronal transients. To investigate how well the models describe the ambient solar wind structure from the Sun out to 1 AU, the model results are compared to solar-wind measurements from the ACE spacecraft. We find that there is an overall agreement between the observations and the model results for the general large-scale solar-wind structures and trends, such as the timing of the high-density structures and the low- and high-speed winds, as well as the magnetic sector structures. The time period of our study is the declining phase of Solar Cycle 23 when the solar activity involves well-defined stream structure, which is ideal for testing a quasi-steady-state solar-wind model.  相似文献   

9.
Summary Accurate measurements of observed frequencies of solar oscillations are providing a wealth of data on the properties of the solar interior. The frequencies depend on solar structure, and on the properties of the plasma in the Sun. Here we consider in particular the dependence on the thermodynamic state. From an analysis of the equations of stellar structure, and the relevant aspects of the properties of the oscillations, we argue that in the convection zone one can isolate information about the equation of state which is relatively unaffected by other uncertainties in the physics of the solar interior. We review the different treatments that have been used to describe the thermodynamics of stellar plasmas. Through application of several of these to the computation of models of the solar envelope we demonstrate that the sensitivity of the observed frequencies is in fact sufficient to distinguish even quite subtle features of the physics of solar matter. This opens up the possibility of using the Sun as a laboratory for statistical mechanics, under conditions that are out of reach in a terrestrial laboratory.  相似文献   

10.
Lemaire  P.  Wilhelm  K.  Curdt  W.  SchÜle  U.  Marsch  E.  Poland  A. I.  Jordan  S. D.  Thomas  R. J.  Hassler  D. M.  Vial  J. C.  KÜhne  M.  Huber  M. C. E.  Siegmund  O. H. W.  Gabriel  A.  Timothy  J. G.  Grewing  M. 《Solar physics》1997,170(1):105-122
SUMER – Solar Ultraviolet Measurements of Emitted Radiation – is not only an extreme ultraviolet (EUV) spectrometer capable of obtaining detailed spectra in the range from 500 to 1610 Å, but, using the telescope mechanisms, it also provides monochromatic images over the full solar disk and beyond, into the corona, with high spatial resolution. We report on some aspects of the observation programmes that have already led us to a new view of many aspects of the Sun, including quiet Sun, chromospheric and transition region network, coronal hole, polar plume, prominence and active region studies. After an introduction, where we compare the SUMER imaging capabilities to previous experiments in our wavelength range, we describe the results of tests performed in order to characterize and optimize the telescope under operational conditions. We find the spatial resolution to be 1.2 arc sec across the slit and 2 arc sec (2 detector pixels) along the slit. Resolution and sensitivity are adequate to provide details on the structure, physical properties, and evolution of several solar features which we then present. Finally some information is given on the data availability and the data management system.  相似文献   

11.
The observed solar p-mode frequencies provide a powerful diagnostic of the internal structure of the Sun and permit us to test in considerable detail the physics used in the theory of stellar structure. Among the most commonly used techniques for inverting such helioseismic data are two implementations of the optimally localized averages (OLA) method, namely the subtractive optimally localized averages (SOLA) and multiplicative optimally localized averages (MOLA). Both are controlled by a number of parameters, the proper choice of which is very important for a reliable inference of the solar internal structure. Here we make a detailed analysis of the influence of each parameter on the solution and indicate how to arrive at an optimal set of parameters for a given data set.  相似文献   

12.
13.
In recent years, the capability to detect and analyse solar oscillation acoustic modes has greatly improved. The development of ground based networks like GONG or BiSON and the use of space platforms like SOHO has allowed us to study the structure and dynamics of the Sun with unprecedented precision. In this work we explore the distribution of the rotation in the solar interior, specially in the core. This kind of information is essential in order to study the physical processes involved in the evolution of the Sun and many other stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Heliophysics is a new discipline that studies of the effect of the Sun on the Solar System and spans a number of existing scientific domains—solar physics, heliospheric physics, and magnetospheric and ionospheric physics. In order to build a virtual observatory for heliophysics we have to find ways to conduct searches that span the domains and track the evolution of phenomena in 4 dimensions as they propagate through interplanetary space. To facilitate this it will be necessary to improve the quality of the metadata that are used in the search and to describe the observations. We describe some of the issues and how these can be addressed.  相似文献   

15.
Flux-transport type solar dynamos have achieved considerable success in correctly simulating many solar cycle features, and are now being used for prediction of solar cycle timing and amplitude. We first define flux-transport dynamos and demonstrate how they work. The essential added ingredient in this class of models is meridional circulation, which governs the dynamo period and also plays a crucial role in determining the Sun’s memory about its past magnetic fields. We show that flux-transport dynamo models can explain many key features of solar cycles. Then we show that a predictive tool can be built from this class of dynamo that can be used to predict mean solar cycle features by assimilating magnetic field data from previous cycles.  相似文献   

16.
Observations of the Sun at millimeter and submillimeter wavelengths offer a unique probe into the structure, dynamics, and heating of the chromosphere; the structure of sunspots; the formation and eruption of prominences and filaments; and energetic phenomena such as jets and flares. High-resolution observations of the Sun at millimeter and submillimeter wavelengths are challenging due to the intense, extended, low-contrast, and dynamic nature of emission from the quiet Sun, and the extremely intense and variable nature of emissions associated with energetic phenomena. The Atacama Large Millimeter/submillimeter Array (ALMA) was designed with solar observations in mind. The requirements for solar observations are significantly different from observations of sidereal sources and special measures are necessary to successfully carry out this type of observations. We describe the commissioning efforts that enable the use of two frequency bands, the 3-mm band (Band 3) and the 1.25-mm band (Band 6), for continuum interferometric-imaging observations of the Sun with ALMA. Examples of high-resolution synthesized images obtained using the newly commissioned modes during the solar-commissioning campaign held in December 2015 are presented. Although only 30 of the eventual 66 ALMA antennas were used for the campaign, the solar images synthesized from the ALMA commissioning data reveal new features of the solar atmosphere that demonstrate the potential power of ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning efforts will continue to enable new and unique solar observing capabilities.  相似文献   

17.
As any comet nears the Sun, gas sublimes from the nucleus taking dust with it. Jupiter family comets are no exception. The neutral gas becomes ionized, and the interaction of a comet with the solar wind starts with ion pickup. This key process is also important in other solar system contexts wherever neutral particles become ionized and injected into a flowing plasma such as at Mars, Venus, Io, Titan and interstellar neutrals in the solar wind. At comets, ion pickup removes momentum and energy from the solar wind and puts it into cometary particles, which are then thermalised via plasma waves. Here we review what comets have shown us about how this process operates, and briefly look at how this can be applied in other contexts. We review the processes of pitch angle and energy scattering of the pickup ions, and the boundaries and regions in the comet-solar wind interaction. We use in-situ measurements from the four comets visited to date by spacecraft carrying plasma instrumentation: 21P/Giacobini-Zinner, 1P/Halley, 26P/Grigg-Skjellerup and 19P/Borrelly, to illustrate the process in action. While, of these, comet Halley is not a Jupiter class comet, it has told us the most about cometary plasma environments. The other comets, which are from the Jupiter family, give an interesting comparison as they have lower gas production rates and less-developed interactions. We examine the prospects for Rosetta at comet Churyumov-Gerasimenko, another Jupiter family comet where a wide range of gas production rates will be studied.  相似文献   

18.
The Teepee Tee array of the Clark Lake Radio Observatory has been used to compare the flux of the Sun with that of the sidereal sources Tau A and Vir A at several frequencies in the range 109.0–19.0 MHz. Only the two central banks of the E-W arm of the array were used as elements of a phase switched interferometer so that the Sun could be observed as a point source and compared directly to the sidereal sources. The Sun was still partially resolved however, and appropriate corrections for this effect were made. The observations were taken at times when the Sun and either Tau A or Vir A were at the same declination. We have therefore been able to derive the values for the solar flux, without having to resort to a gain vs zenith distance correction. The observations, combined with those available in the literature, allow us to derive an accurate meter and decameter wavelength spectrum of the quiet Sun.On leave of absence from Instituto Argentino de Radioastronomía, Argentina.  相似文献   

19.
Summary. This review is primarily directed to the question whether photometric solar analogues remain such when subjected to detailed spectroscopic analyses and interpreted with the help of internal stucture models. In other words, whether the physical parameters: mass, chemical composition, age (determining effective temperature and luminosity), chromospheric activity, equatorial rotation, lithium abundance, velocity fields etc., we derive from the spectral analysis of a photometric solar analogue, are really close to those of the Sun. We start from 109 photometric solar analogues extracted from different authors. The stars selected had to satisfy three conditions: i) their colour index must be contained in the interval: –0.69, ii) they must possess a trigonometric parallax, iii) they must have undergone a high resolution detailed spectroscopic analysis. First, this review presents photometric and spectrophotometric researches on solar analogues and recalls the pionneering work on these stars by the late Johannes Hardorp. After a brief discussion on low and high resolution spectroscopic researches, a comparison is made between effective temperatures as obtained, directly, from detailed spectral analyses and those obtained, indirectly, from different photometric relations. An interesting point in this review is the discussion on the tantalilizing value of the of the Sun, and the presentation of a new reliable value of this index. A short restatement of the kinematic properties of the sample of solar analogues is also made. And, finally, the observational diagram, obtained with 99 of the initially presented 109 analogues, is compared to a theoretical diagram. This latter has been constructed with a grid of internal structure models for which, (very important for this investigation), the Sun was used as gauge. In analysing the position, with respect to the Sun, of each star we hoped to find a certain number of stars tightly neighbouring the Sun in mass, chemical composition and state of evolution. The surprising result is that the stars occupy in this HR Diagram a rather extended region around the Sun, many of them seem more evolved and older than the Sun, and only 4 of the evolved stars seem younger. The age of some stars in the sample is also discussed in terms of chromospheric activity and Li-content. Our conclusion is much the same as that contained in previous papers we have written on the subject: in spite of a much larger number of stars, we have not been able to nominate a single star of the sample for a “perfect good solar twin”. Another aim in beginning, 25 years ago, this search for solar analogues, was to have ready a bunch of stars resembling the Sun and analysed spectroscopically in detail, in order that, when planets hunters of solar type stars, finally would have found such a specimen, we would have been able to immediately compare the physical parameters of this star to those of the Sun. We have been lucky enough: one of the good solar analogues we present herewith, is 51 Pegasi (HD 217014) which, according to the very recent observations by Mayor and Queloz (1995), has a planet orbiting around it. And what is more: two other stars possessing planets: 47 Ursae Majoris (HD 95128) and 70 Virginis (HD 117176), have just been discovered by Marcy and Butler (187 Meeting of the AAS, January 1996). One of them, 47 Ursae Majoris, is also included in the list of photometric solar analogues. The other star, 70 Virginis, has only been included after the “Planets News”, because the colour index of this star is slightly higher than the prescribted limit of the selection, (, instead, 0.69). It would have been a pity to leave the third ” planet star out of the competition.  相似文献   

20.
Helioseismology has been widely acclaimed as having been a great success: it appears to have answered nearly all the questions that we originally asked, some with unexpectedly high precision. We have learned how the sound speed and matter density vary throughout almost all of the solar interior – something which not so very long ago was generally considered to be impossible – we have learned how the Sun rotates, and we have a beautiful picture, on a coffee cup, of the thermal stratification of a sunspot, and also an indication of the material flow around it. We have tried, with some success at times, to apply our findings to issues of broader relevance: the test of the General Theory of Relativity via planetary orbit precession (now almost forgotten because the issue has convincingly been closed, albeit no doubt temporarily) the solar neutrino problem, the manner of the transport of energy from the centre to the surface of the Sun, the mechanisms of angular-momentum redistribution, and the workings of the solar dynamo. The first two were of general interest to the broad scientific community beyond astronomy, and were, quite rightly, principally responsible for our acclaimed success; the others are still in a state of flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号