首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (∼15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After ∼15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ∼90-100 ka, followed by another period of anoxic, non-sulfidic conditions lasting for ∼15-20 ka. The observed cyclicity at the lower end of the redox scale may have been triggered by repeated incursions of more oxygenated surface- to mid-waters from the South Atlantic resulting in a lowering of the oxic-anoxic chemocline in the water column. Alternatively, sea water sulfate might have been stripped by long-lasting high rates of sulfate reduction, removing the ultimate source for HS production.  相似文献   

2.
Five different sapropels (S1, S3–S6) from two sites (2750 m and 3308 m water depth) in the eastern Mediterranean were analysed for Corg content and specific activities of , , and . Anoxia in the sapropel sediments during or shortly after deposition leads to U enrichment, and the observed excess of over activity is consistent with a seawater source for authigenic U. In certain cases, the U profile shape in and around the sappropels is interpreted to indicate that oxidation shortly after sapropel formation has caused a post-depositional downwards migration of both U isotopes. Systematic variability of the activity ratio across the sapropel units indicates that a different diagenetic process has also led to preferential relocation of produced in situ from the parent. The construction of quasi-isochrons in successively older sapropel units demonstrate that radioactive secular equilibrium is approached by a systematic ingrowth of over time from the marked initial disequilibrium between and the U isotopes. The effects of post-depositional diagenesis violate the isochron model boundary conditions, however, and lead to a deviation of the isochron ages from the expected stratigraphic ages. Following assessment of each data point, some improvements in the calculated ages were achieved in one case by exclusion from the calculations of those points most severely affected by open system behaviour.  相似文献   

3.
Organic nitrogen chemistry during low-grade metamorphism   总被引:1,自引:0,他引:1  
Most of the organic nitrogen (Norg) on Earth is disseminated in crustal sediments and rocks in the form of fossil nitrogen-containing organic matter. The chemical speciation of fossil Norg within the overall molecular structure of organic matter changes with time and heating during burial. Progressive thermal evolution of organic matter involves phases of enhanced elimination of Norg and ultimately produces graphite containing only traces of nitrogen. Long-term chemical and thermal instability makes the chemical speciation of Norg a valuable tracer to constrain the history of sub-surface metamorphism and to shed light on the subsurface biogeochemical nitrogen cycle and its participating organic and inorganic nitrogen pools. This study documents the evolutionary path of Norg speciation, transformation and elimination before and during metamorphism and advocates the use of X-ray photoelectron spectroscopy (XPS) to monitor changes in Norg speciation as a diagnostic tool for organic metamorphism. Our multidisciplinary evidence from XPS, stable isotopes, traditional quantitative coal analyses, and other analytical approaches shows that at the metamorphic onset Norg is dominantly present as pyrrolic and pyridinic nitrogen. The relative abundance of nitrogen substituting for carbon in condensed, partially aromatic systems (where N is covalently bonded to three C atoms) increases exponentially with increasing metamorphic grade, at the expense of pyridinic and pyrrolic nitrogen. At the same time, much Norg is eliminated without significant nitrogen isotope fractionation. The apparent absence of Rayleigh-type nitrogen isotopic fractionation suggests that direct thermal loss of nitrogen from an organic matrix does not serve as a major pathway for Norg elimination. Instead, we propose that hot H, O-containing fluids or some of their components gradually penetrate into the carbonaceous matrix and eliminate Norg along a progressing reaction front, without causing nitrogen isotope fractionation in the residual Norg in the unreacted core of the carbonaceous matrix. Before the reaction front can reach the core, an increasing part of core Norg chemically stabilizes in the form of nitrogen atoms substituting for carbon in condensed, partially aromatic systems forming graphite-like structural domains with delocalized π-electron systems (nitrogen atoms substituting for “graphitic” carbon in natural metamorphic organic matter). Thus, this nitrogen species with a conservative isotopic composition is the dominant form of residual nitrogen at higher metamorphic grade.  相似文献   

4.
The redox stratification of bottom sediments in Kandalaksha Bay, White Sea, is characterized by elevated concentrations of Mn (3–5%) and Fe (7.5%) in the uppermost layer, which is two orders of magnitude and one and a half times, respectively, higher than the average concentrations of these elements in the Earth’s crust. The high concentrations of organic matter (Corg = 1–2%) in these sediments cannot maintain (because of its low reaction activity) the sulfate-reducing process (the concentration of sulfide Fe is no higher than 0.6%). The clearest manifestation of diagenesis is the extremely high Mn2+ concentration in the silt water (>500 μM), which causes its flux into the bottom water, oxidation in contact with oxygen, and the synthesis of MnO2 oxyhydroxide enriching the surface layer of the sediments. Such migrations are much less typical of Fe. Upon oxygen exhaustion in the uppermost layer of the sediments, the synthesized oxyhydroxides (MnO2 and FeOOH) serve as oxidizers of organic matter during anaerobic diagenesis. The calculated diffusion-driven Mn flux from the sediments (280 μmM/m2 day) and corresponding amount of forming Mn oxyhydrate as compared to opposite oxygen flux to sediments (1–10 mM/m2 day) indicates that >10% organic matter in the surface layer of the sediments can be oxidized with the participation of MnO2. The roles of other oxidizers of organic matter (FeOOH and SO42−) becomes discernible at deeper levels of the sediments. The detailed calculation of the balance of reducing processes testifies to the higher consumption of organic matter during the diagenesis of surface sediments than it follows from the direct determination of Corg. The most active diagenetic redox processes terminate at depths of 25–50 cm. Layers enriched in Mn at deeper levels are metastable relicts of its surface accumulation and are prone to gradual dissemination  相似文献   

5.
Phosphorus regeneration and burial fluxes during and after formation of the most recent sapropel S1 were determined for two deep-basin, low-sedimentation sites in the eastern Mediterranean Sea. Organic C/P ratios and burial fluxes indicate enhanced regeneration of P relative to C during deposition of sapropel S1. This is largely due to the enhanced release of P from organic matter during sulfate reduction. Release of P from Fe-bound P also increased, but this was only a relatively minor source of dissolved P. Pore-water HPO42− concentrations remained too low for carbonate fluorapatite formation. An increased burial of biogenic Ca-P (i.e., fish debris) was observed for one site. Estimated benthic fluxes of P during sapropel formation were elevated relative to the present day (∼900 to 2800 vs. ∼70 to 120 μmol m−2 yr−1). The present-day sedimentary P cycle in the deep-basin sediments is characterized by two major zones of reaction: (1) the zone near the sediment-water interface where substantial release of HPO42− from organic matter takes place, and (2) the oxidation front at the top of the S1 where upward-diffusing HPO42− from below the sapropel is sorbed to Fe-oxides. The efficiency of aerobic organisms in retaining P is reflected in the low organic C/P ratios in the oxidized part of the sapropel. Burial efficiencies for reactive P were significantly lower during S1 times compared with the present day (∼7 to 15% vs. 64 to 77%). Budget calculations for the eastern Mediterranean Sea demonstrate that the weakening of the antiestuarine circulation and the enhanced regeneration of P both contributed to a significant increase in deep-water HPO42− concentrations during sapropel S1 times. Provided that sufficient vertical mixing occurred, enhanced regeneration of P at the seafloor may have played a key role in maintaining increased productivity during sapropel S1 formation.  相似文献   

6.
7.
Bulk chemical, mineralogical and selective leach analyses have been made on a suite of abyssal ferromanganese nodules and associated sediments from the S.W. equatorial Pacific Ocean. Compositional relations between nodules, sediment oxyhydroxides and nearby ferromanganese encrustations are drawn assuming that the crusts represent purely hydrogenetic ferromanganese material. Crusts, δMnO2-rich nodules and sediment oxyhydroxides are compositionally similar and distinct from diagenetic todorokitebearing nodules. Compared to Fe-Mn crusts, sediment oxyhydroxides are however slightly enriched, relative to Mn and Ni, in Fe, Cu, Zn, Ti and Al, and depleted in Co and Pb, reflecting processes of non-hydrogenous element supply and diagenesis. δMnO2 nodules exhibit compositions intermediate between Fe-Mn crusts and sediment oxyhydroxides and thus are considered to accrete oxides from both the water column and associated sediments.Deep ocean vertical element fluxes associated with large organic aggregates, biogenic calcite, silica and soft parts have been calculated for the study area. Fluxes associated with organic aggregates are one to three orders of magnitude greater than those associated with the other phases considered, are in good agreement with element accumulation rates in sediments, and are up to four orders of magnitude greater than element accumulation rates in nodules. Metal release from labile biogenic material in surface sediments can qualitatively explain the differences between the composition of Fe-Mn crusts and sediment oxyhydroxides.Todorokite-rich diagenetic nodules are confined to an eastwards widening equatorial wedge. It is proposed that todorokite precipitates directly from interstitial waters. Since the transition metal chemistry of interstitial waters is controlled dominantly by reactions involving the breakdown of organic carbon, the supply and degradation rate of organic material is a critical factor in the formation of diagenetic nodules. The wide range of (trace metal/Mn) ratios observed in marine todorokite reflects a balance between the release of trace metals from labile biogenic phases and the reductive remobilisation of Mn oxide, both of which are related to the breakdown of organic carbon.  相似文献   

8.
The reactivity of iron(III) oxyhydroxides as reflected by their tendency to dissolve is of great importance in the redox cycling of iron and the bioavailability of iron to phytoplankton in natural waters. In this study, various iron(III) oxyhydroxides were produced by oxygenation of iron(II) in the presence of solutes, such as phosphate, sulfate, bicarbonate, valeric acid, TRIS, humic and fulvic acids, and in the presence of minerals, such as bentonite and δ-Al2O3 under conditions encountered in aquatic systems. The reactivity of the different iron(III) oxyhydroxides was subsequently assessed by means of a reductive dissolution using ascorbate and non-reductive dissolution using HQS (8-hydroxyquinoline-5-sulfonic acid) or oxalate. The experimental results show that the iron(III) oxyhydroxides with a low degree of polymerization exhibit higher reactivity than those with a high degree of polymerization or with high crystallinity. The quantity of active surface sites and the coordination arrangement of the functional groups at the surface of the iron(III) oxyhydroxides, especially the extent of the endstanding -OH groups per iron(III) ion determine the reactivity of iron(III) oxyhydroxides toward dissolution.Surfaces, such as clay and aluminum oxides, not only accelerate the oxygenation reaction of iron(II), but also induce the formation of iron(III) oxyhydroxides which are more active toward the dissolution reactions. Polymerization of iron(III) oxyhydroxides on the surfaces occurs predominantly in two dimensions rather than in three dimensions.In a laboratory experiment, the iron(III) oxyhydroxide formed in the presence of TRIS can be reduced by fulvic acid in a closed system under the following conditions: Fe(OH)3(s) 0.01 g/l, fulvic acid 5 mg/l, pH 7.5, 20°C. The kinetics of the reaction depend on the reactivity of iron(III) oxyhydroxide and reducing power of fulvic acid. Although reductants other than fulvic acid may be of importance in antural waters, this result provides the laboratory evidence that the >FeIII-OH/Fe(II) is able to act as an electron transfer mediator for the oxidation of natural organic substances, such as fulvic acid, by molecular oxygen either in the absence of microorganisms or as a supplement to microbial activity.  相似文献   

9.
This article describes a series of methods developed for the determination of total carbon (CTotal), organic carbon (Corg), hydrogen, nitrogen and sulfur. The following elemental analysers were used: LECO model RC‐412 for the determination of organic carbon, total carbon and hydrogen; LECO model CS‐200 for the determination of total carbon and sulfur; LECO model TN‐400 for the determination of nitrogen; and LECO model TruSpec CHNS for the determination of organic carbon, total carbon, hydrogen, nitrogen and sulfur. Uncertainty and limits of detection and quantification were calculated for each method, as well as the running costs to define the most effective instrument for each material and each analyte. Accuracy was checked by the application of the Sutarno–Steger test. Finally, a compilation of the results obtained in the determination of CTotal, Corg, H, N and S in forty‐nine reference materials is presented.  相似文献   

10.
The relationship among H2S, total organic carbon (TOC), total sulfur (TS) and total nitrogen contents of surface sediments (0–1 cm) was examined to quantify the relationship between H2S concentrations and TOC content at the sediment water interface in a coastal brackish lake, Nakaumi, southwest Japan. In this lake, bottom water becomes anoxic during summer due to a strong halocline. Lake water has ample dissolved SO4 2? and the surface sediments are rich in planktic organic matter (C/N 7–9), which is highly reactive in terms of sulfate reduction. In this setting the amount of TOC should be a critical factor regulating the activity of sulfate reduction and H2S production. In portions of the lake where sediment TOC content is less than 3.5 %, H2S was very low or absent in both bottom and pore waters. However, in areas with TOC >3.5 %, H2S was correlated with TOC content (pore water H2S (ppm) = 13.9 × TOC (%) ? 52.1, correlation coefficient: 0.72). H2S was also present in areas with sediment TS above 1.2 % (present as iron sulfide), which suggests that iron sulfide formation is tied to the amount of TOC. Based on this relationship, H2S production has progressively increased after the initiation of land reclamation projects in Lake Nakaumi, as the area of sapropel sediments has significantly increased. This TOC–H2S relationship at sediment–water interface might be used to infer H2S production in brackish–lagoonal systems similar to Lake Nakaumi, with readily available SO4 2? and reactive organic matter.  相似文献   

11.
We report solid phase sulfur speciation of six cores from sediments underlying oxic, suboxic and anoxic-sulfidic waters of the Black Sea. Our dataset includes the five sulfur species [pyrite-sulfur, acid volatile sulfides (AVS), zerovalent sulfur (S(0)), organic polysulfides (RSx), humic sulfur] together with reactive iron and manganese, as quantified by dithionite extraction, and total organic carbon. Pyrite – sulfur was the major phase in all cores [200-400 µmol (g dry wt)- 1] except for the suboxic core. However, zerovalent sulfur and humic sulfur also reached very significant levels: up to about 109 and 80 µmol (g dry wt)- 1, respectively. Humic sulfur enrichment was observed in the surface fluff layers of the eastern central basin sediments where Unit-1 type depositional conditions prevail. Elemental sulfur accumulated as a result of porewater sulfide oxidation by reactive iron oxides in turbidities from the anoxic basin margin and western central basin sediments. The accumulation of elemental sulfur to a level close to that of pyrite-S in any part of central Black Sea sediments has never been reported before and our finding indicates deep basin turbidites prevent the build-up of dissolved sulfide in the sediment. This process also contributes to diagenetic pyrite formation whereas in the non-turbiditic parts of the deep basin water column formed (syngenetic) pyrite dominates the sulfur inventory. In slope sediments under suboxic waters, organic sulfur (humic sulfur + organic polysulfides) account for 33-42% of total solid phase S, indicating that the suboxic conditions favor organosulfur formation. Our study shows that the interactions between depositional patterns (Unit 1 vs. turbidite), redox state of overlying waters (oxic-suboxic-sulfidic) and organic matter content determine sulfur speciation and enable the accumulation of elemental sulfur and organic sulfur species close to a level of pyrite-S.  相似文献   

12.
Sulphur isotope compositions and S/C ratios of organic matter were analysed in detail by combustion-isotope ratio monitoring mass spectrometry (C-irmMS) in eastern Mediterranean sediments containing three sapropels of different ages and with different organic carbon contents (sapropel S1 in core UM26, formed from 5–9 ka ago with a maximum organic carbon content of 2.3 wt%; sapropel 967 from ODP Site 160-967C, with an age of 1.8 Ma and a maximum organic carbon content of 7.4 wt%; and sapropel 969 from ODP Site 160-969E, with an age of 2.9 Ma and a maximum organic carbon content of 23.5 wt%). Sulphur isotopic compositions (34S) of the organic matter ranged from -29.5 to +15.8 and the atomic S/C ratio was 0.005 to 0.038. The organic sulphur in the sediments is a mixture of sulphur derived from (1) incorporation of 34S-depleted inorganic reduced sulphur produced by dissimilatory microbial sulphate reduction; and (2) biosynthetic sulphur with an isotopic signature close to seawater sulphate. The calculated biosynthetic fraction of organic sulphur in non-sapropelic sediments ranges from 68–87%. The biosynthetic fraction of the organic sulphur of the sapropels (60–22%) decreases with increasing organic carbon content of the sapropels. We propose that uptake of reduced sulphur into organic matter predominantly took place within sapropels where pyrite formation was iron-limited and thus an excess of dissolved sulphide was present for certain periods of time. Simultaneously, sulphide escaped into the bottom water and into sediments below the sapropels where pyrite formation occurred.  相似文献   

13.
Recent data were summarized on the concentration and mass of inorganic and organic carbon in reservoirs of the Earth’s hydrosphere. We compared carbon masses and accumulation conditions in the surface hydrosphere and waters of the sedimentary shell and proportions between carbonate, dissolved, and suspended particulate organic carbon. It was shown that the total masses of carbon in the surface hydrosphere and in the waters of the sedimentary shell are approximately equal to 80 × 1018 g C at an organic to carbonate carbon ratio of 1 : 36 and 1 : 43, respectively. Three main forms of organic compounds in the ocean (living organisms, suspended particles, and dissolved species) occur in the proportion 1 : 13 : 250 and form the pyramid of masses 4 × 1015 g, 50 × 1015 g, and 1000 × 1015 g Corg. The descending sequence of the organic to carbonate carbon ratio in water, ocean (1 : 36) > glaciers (1 : 8) > lakes (1 : 2) > rivers (1 : 0.6) > wetlands (1 : 0.3), is in general consistent with an increase in the same direction in the mean concentrations of organic matter: 0.77 mg Corg/L in the ocean, 0.7 mg Corg/L in glaciers, 6–30 mg Corg/L in lakes, 15 mg Corg/L in rivers, and 75 mg Corg/L in wetlands. Both the mean concentrations and masses of dissolved organic matter in the pore waters of oceanic sediments and in the waters of the sedimentary shell are similar: 36–37 mg/L and 5 × 1018 and 5.6 × 1018 g, respectively. The mass of carbonate carbon in the pore waters of the ocean, (19–33) × 1018 g, is comparable with its mass in the water column, 38.1 × 1018 g.  相似文献   

14.
15.
Anatomy and origin of a Cretaceous phosphorite-greensand giant, Egypt   总被引:4,自引:0,他引:4  
Late Cretaceous epicontinental phosphorites, porcelanites/cherts, dark-coloured shales, glauconitic sandstones and bioclastic and fine-grained carbonate rocks in Egypt are examined in terms of their overall depositional and diagenetic framework and stable isotopic and organic geochemical characteristics. Two main depositional realms are interpreted and correlated through sequence stratigraphic analysis: (1) a shallow hemipelagic environment accompanying initial stages of marine transgression and conducive to the formation of organic carbon-rich shales, biosiliceous sediments and thick phosphorites, and (2) a relatively high energy depositional regime accompanying sea-level fall during which deltas advanced, glauconites were reworked seaward and prograding oyster banks became periodically exposed to episodes of fresh water diagenesis, thereby promoting solution-collapse phenomena in associated cherts. Lenticular to massive phosphorites are viewed as the result of current winnowing and concentration of authigenic grains initially precipitated in associated reducing shales and biosiliceous sediments. In eastern Egypt the phosphorites form winnowed lag layers, some of which may have been redeposited down slope in structural lows. In the west, these sands were concentrated into giant phosphorite sand waves built by reworking of penecontemporaneously deposited phosphatic muds during marine transgression. Carbon isotopic results substantiate interpretations from modern deposits for limitation of phosphate mineral precipitation with depth in sediments as a result of lattice poisoning. However, direct desorption of phosphorus to pore waters from detrital iron-oxyhydroxide phases also may have been important in the Cretaceous setting, the iron reduced in this process being available for incorporation in glauconites. The main locus for authigenic glauconite precipitation appears to be where iron fluxes from regions of lateritic weathering were highest and near the boundary between oxygenated and reduced waters. This study suggests a model for the common coexistence of glauconites and phosphorites in the geological record. Although upwelling is often advocated as the origin of nearly all giant phosphorite deposits, we suggest that some of these may have been strongly influenced by fluvially derived phosphorus borne on particulates and desorbed from these compounds upon flocculation and/or reduction in bottom waters or pore waters.  相似文献   

16.
The formation of Fe(III) oxyhydroxide colloids by oxidation of Fe(II) and their subsequent aggregation to larger particles were studied in laboratory experiments with natural water from a freshwater lake and a brackish coastal sea. Phosphate was incorporated in the solid phase during the course of hydrolysis of iron. The resulting precipitated amorphous Fe(III) oxyhydroxide phases were of varying composition, depending primarily on the initial dissolved Fe/P molar ratio, but with little influence by salinity or concentration of calcium ions. The lower limiting Fe/P ratio found for the solid phase suggests the formation of a basic Fe(III) phosphate compound with a stoichiometric Fe/P ratio of close to two. This implies that an Fe/P stoichiometry of ≈2 ultimately limits the capacity of precipitating Fe(III) to fix dissolved phosphate at oxic/anoxic boundaries in natural waters. In contrast to phosphorus, the uptake of calcium seemed to be controlled by sorption processes at the surface of the iron-rich particles formed. This uptake was more efficient in freshwater than in brackish water, suggesting that salinity restrains the uptake of calcium by newly formed Fe(III) oxyhydroxides in natural waters. Moreover, salinity enhanced the aggregation rate of the colloids formed. The suspensions were stabilised by the presence of organic matter, although this effect was less pronounced in seawater than in freshwater. Thus, in seawater of 6 to 33 ‰S, the removal of particles was fast (removal half time < 200 h), whereas the colloidal suspensions formed in freshwater were stable (removal half time > 900 h). Overall, oxidation of Fe(II) and removal of Fe(III) oxyhydroxide particles were much faster in seawater than in freshwater. This more rapid turnover results in lower iron availability in coastal seawater than in freshwater, making iron more likely to become a limiting element for chemical scavenging and biologic production.  相似文献   

17.
Subaerial exposure and oxidation of organic carbon (Corg)-rich rocks is believed to be a key mechanism for the recycling of buried C and S back to Earth's surface. Importantly, processes coupled to microbial Corg oxidation are expected to shift new biomass δ13Corg composition towards more negative values relative to source. However, there is scarcity of information directly relating rock chemistry to oxidative weathering and shifting δ13Corg at the rock-atmosphere interface. This is particularly pertinent to the sulfidic, Corg-rich alum shale units of the Baltoscandian Basin believed to constitute a strong source of metal contaminants to the natural environment, following subaerial exposure and weathering. Consistent with independent support, we show that atmospheric oxidation of the sulfidic, Corg-rich alum shale sequence of the Cambrian-Devonian Baltoscandian Basin induces intense acid rock drainage at the expense of progressive oxidation of Fe sulfides. Sulfide oxidation takes priority over microbial organic matter decomposition, enabling quantitative massive erosion of Corg without producing a δ13C shift between acid rock drainage precipitates and shale. Moreover, 13C enrichment in inorganic carbon of precipitates does not support microbial Corg oxidation as the predominant mechanism of rock weathering upon exposure. Instead, a Δ34S = δ34Sshale − δ34Sprecipitates ≈ 0, accompanied by elevated S levels and the ubiquitous deposition of acid rock drainage sulfate minerals in deposited efflorescent precipitates relative to shales, provide strong evidence for quantitative mass oxidation of shale sulfide minerals as the source of acidity for chemical weathering. Slight δ15N depletion in the new surface precipitates relative to shale, coincides with dramatic loss of N from shales. Collectively, the results point to pyrite oxidation as a major driver of alum black shale weathering at the rock-atmosphere interface, indicating that quantitative mass release of Corg, N, S, and key metals to the environment is a response to intense sulfide oxidation. Consequently, large-scale acidic weathering of the sulfide-rich alum shale units is suggested to influence the fate and redistribution of the isotopes of C, N, and S from shale to the immediate environment.  相似文献   

18.
By analogy with the present-day ocean, the primary productivity of paleoceans can be reconstructed using calculations based on the content of organic carbon in sediments and their accumulation rates. Results of calculations based on literature data show that the primary productivity of organic carbon, the mass of phosphorus involved in the process, and the content of phosphorus in oceanic waters were relatively stable in the Mesozoic and Late Mesozoic. Prior to precipitation on the seafloor together with the biogenic detritus, the dissolved phosphorus could repeatedly be involved in the biogeochemical cycle. Therefore, only less than 0.1% of phosphorus is retained in bottom sediments. The bulk phosphorus accumulation rate in oceanic sediments is partly consistent with the calculated primary productivity. Some epochs of phosphate accumulation also coincide with maximums of primary productivity and minimums of the fossilization coefficient of organic carbon. The latter fact can testify to episodes of the acceleration of organic matter mineralization and the release of phosphorus from sediments, leading to increase in the phosphorus reserve in paleoceans and phosphate accumulation in some places.  相似文献   

19.
The Maikop Formation, deposited in eastern Azerbaijan during Oligocene and Early Miocene times, contains prolific source rocks with primarily Type II organic matter. Paleontological analyses of dinoflagellate cysts revealed a Lower to Upper Oligocene age for the investigated succession near Angeharan. A major contribution of aquatic organisms (diatoms, green algae, dinoflagellates, chrysophyte algae) and minor inputs from macrophytes and land plants to organic matter accumulation is indicated by n-alkane distribution patterns, composition of steroids and δ13C of hydrocarbon biomarkers. Microbial communities included heterotrophic bacteria, cyanobacteria, chemoautotrophic bacteria, as well as green sulfur bacteria. Higher inputs of terrigenous organic matter occurred during deposition of the Upper Oligocene units of the Maikop Formation from Angeharan mountains. The terpenoid hydrocarbon composition argues for angiosperm dominated vegetation in the Shamakhy–Gobustan area.High primary bioproductivity resulted in a stratified water column and the accumulation of organic matter rich sediments in the Lower Oligocene units of the Maikop Formation. Organic carbon accumulation during this period occurred in a permanently (salinity-) stratified, mesohaline environment with free H2S in the water column. This is indicated by low pristane/phytane ratios of all sediments (varying from 0.37–0.69), lower methylated-(trimethyltridecyl)chromans ratio in the lower units and their higher contents of aryl isoprenoids and highly branched isoprenoid thiophenes. Subsequently, the depositional environment changed to normal marine conditions with oxygen deficient bottom water. The retreat of the chemocline towards the sediment–water interface and enhanced oxic respiration of OM during deposition of the Upper Oligocene Maikop sediments is proposed.Parallel depth trends in δ13C of total OM, n-alkanes, isoprenoids and steranes argue for changes in the regional carbon cycle, associated with the changing environmental conditions. Increased remineralisation of OM in a more oxygenated water column is suggested to result in low TOC and hydrocarbon contents, as well as 15N enriched total nitrogen of the Upper Oligocene units.  相似文献   

20.
基于LA-ICP-MS多元素成像技术的早寒武世磷结核成因研究   总被引:3,自引:3,他引:0  
我国下寒武统底部广泛发育磷结核、磷块岩等富磷沉积,为早寒武世最为重要的化学标志层之一,也代表了隐生宙—显生宙转折期地球表层系统的重大变革。当前对磷来源和富集机制的解释不一。为进一步明确该时期富磷沉积的形成机制,本文利用激光剥蚀电感耦合等离子体质谱联用技术(LA-ICP-MS)对贵州金沙地区牛蹄塘组黑色页岩中的磷结核进行多元素原位微区成像研究。结果表明:磷结核中各元素富集情况清晰地记录了磷结核形成过程中微环境的变化趋势。其中,磷结核内部Ca、P共富集以及Si亏损,指示P富集缘于自生磷灰石生成,P则来自于有机质含氧或厌氧降解释放;Mn、Zn与P共富集于磷结核内部,指示结核形成时的底部水体为含氧水体;As、Mo、V等元素主要富集于围岩或黑色页岩,指示缺氧含H_2S水体形成终止了结核生长。本研究显示,LA-ICP-MS原位多元素成像技术能够获取微区内丰富的地球化学信息,并提供高精度可视化证据,未来将在地质勘探和古环境研究等领域得到更广泛应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号