首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
《International Geology Review》2012,54(14):1792-1812
Abundant crude oil and CO2 gas coexist in the fourth member of the Upper Cretaceous Quantou reservoir in the Huazijing Step of the southern Songliao Basin, China. Here, we present results of a petrographic characterization of this reservoir based on polarizing microscope, X-ray diffraction, fluid inclusion, and carbon–oxygen isotopic data. These data were used to identify whether CO2 might be trapped in minerals after the termination of a CO2-enhanced oil recovery (EOR) project, and to determine what effects might the presence of CO2 have on the properties of crude oil in the reservoir. The crude oil reservoir in the study area, which coexists with mantle-derived CO2, is hosted by dawsonite-bearing lithic arkoses and feldspathic litharenites. These sediments are characterized by a paragenetic sequence of clay, quartz overgrowth, first-generation calcite, dawsonite, second-generation calcite, and ankerite. The dawsonite analysed during this study exhibits δ13 C (Peedee Belemnite, PDB) values of ?4.97‰ to 0.67‰, which is indicative for the formation of magmatic–mantle CO2. The paragenesis and compositions of fluid inclusions in the dawsonite-bearing sandstones record a sequence of two separate filling events, the first involving crude oil and the second involving magmatic–mantle CO2. The presence of prolate primary hydrocarbon inclusions within the dawsonite indicates that these minerals precipitated from oil-bearing pore fluids at temperatures of 94–97°C, in turn suggesting that CO2 could be stored as carbonate minerals after the termination of a CO2-EOR project. In addition, the crude oil in the basin would become less dense after deposition of bitumen by deasphalting the injection of CO2 gas into the oil pool.  相似文献   

2.
The mineralogy of the high-volatile bituminous coals and associated strata from the Greta seam, Sydney Basin, Australia, has been evaluated in this study. Although the seam is not immediately overlain by marine strata, percolation of marine water into the original peat bed is indicated by the petrological, mineralogical and geochemical characteristics, which resemble those of coals with marine roof strata. The upper and lower sections of the seam have contrasting mineralogy. Pyrite typically comprises 40 to 56 wt% of the mineral assemblage in the marine-influenced upper part of the seam section. The lower part contains much less pyrite (typically <5 wt%, organic-free basis), and also relatively abundant dawsonite (up to 14 wt%, organic-free basis). The minerals within most coal plies are largely of authigenic origin. These include pyrite, siderite, clay minerals (mainly kaolinite and Na-rich mixed-layer illite/smectite), and quartz, most of which have a relatively early, syngenetic origin. Minor Ti-bearing minerals, anatase or rutile, and phosphate minerals, fluorapatite and goyazite, were probably also formed during early diagenesis. Other minerals have features that indicate late-stage precipitation. These include abundant cleat- and fracture-filling dawsonite, which may be the result of reactions between earlier-precipitated kaolinite and Na2CO3- or NaHCO3-bearing fluids. Minor albite may also be epigenetic, possibly precipitated from the same Ca–Al bearing fluids that formed the dawsonite. The most abundant detrital minerals in the Greta coals are quartz, poorly ordered kaolinite, illite and mixed-layer illite/smectite (I/S). These occur mainly in the floor, roof and other epiclastic horizons of the seam, reflecting periods of greater clastic influx into those parts of the original peat-forming environment. Detrital minerals are rare in the coals away from the epiclastic horizons, probably owing to almost complete sediment bypassing in the depositional system. Alternatively, any detrital minerals that were originally present may have been leached from the peat bed by diagenetic or post-diagenetic processes.  相似文献   

3.
The CO2 gas reservoir sandstones in the Hailaer Basin contain abundant dawsonite and provide an ideal laboratory to study whether any genetic relationship exists between dawsonite and the modern gas phase of CO2. The origins of dawsonite and CO2 in these sandstones were studied by petrographic and isotopic analysis. According to the paragenetic sequence of the sandstones, dawsonite grew later than CO2 charging at 110–85 Ma. The dawsonite δ18O value is 7.4‰ (SMOW), and the calculated δ18O values of the water present during dawsonite growth are from −11.4‰ to −9.2‰ (SMOW). This, combined with the NaHCO3-dominated water linked to dawsonite growth, suggests meteoric water being responsible for dawsonite growth. The δ13C values of gas phase CO2 and the ratios of 3He/4He of the associated He suggest a mantle magmatic origin of CO2-rich natural gas in Hailaer basin. Dawsonite δ13C values are −5.3‰ to −1.5‰ (average −3.4‰), and the calculated δ13C values of CO2 gas in isotopic equilibrium with dawsonite are −11.4‰ to −7.3‰. These C isotopic values are ambiguous for the dawsonite C source. From the geological context, the timing of events, together with formation water conditions for dawsonite growth, dawsonite possibly grew in meteoric-derived water, atmospherically-derived CO2 maybe, or at least the dominant, C source for dawsonite. It seems that there are few relationships between dawsonite and the modern gas phase of CO2 in the Hailaer basin.  相似文献   

4.
自生片钠铝石的碳氧同位素特征及其成因意义   总被引:4,自引:0,他引:4  
自生片钠铝石的碳氧同位素特征可以为片钠铝石的成因研究提供重要的地球化学依据。以海拉尔盆地乌尔逊凹陷和松辽盆地孤店构造片钠铝石碳氧同位素分析为基础,结合国内外已报道的自生片钠铝石的碳氧同位素数据,对自生片钠铝石的碳氧同位素特征及其成因意义进行了探讨。研究表明,海拉尔盆地乌尔逊凹陷和松辽盆地南部孤店CO2气田砂岩中片钠铝石的δ13C范围分别为–5.3‰~–1.5‰(PDB)、–1.9‰~+0.3‰(PDB),均分布于含无机碳物质δ13C分布区间(-9.0‰~+2.7‰)内。计算出的海拉尔盆地和松辽盆地与片钠铝石平衡的CO2气碳同位素分布范围分别为-10.7~-7.0‰(PDB)、-8.7~-6.9‰(PDB),表明片钠铝石绝大部分形成于无机CO2背景。实际地质观察中形成片钠铝石的CO2绝大多数为岩浆脱气来源,岩浆成因片钠铝石碳同位素分布范围为-5.5~+4.5‰(PDB)。海拉尔盆地和松辽盆地的片钠铝石是岩浆成因CO2气运移、聚集的特征矿物。计算出的海拉尔盆地和松辽盆地片钠铝石沉淀时介质水的δ18O值范围为-14.3~-9.4‰(SMOW),表现为轻同位素的特点,表明片钠铝石形成时地层水为大气降水。计算出的海拉尔盆地片钠铝石同位素为52.7~93.6℃,与样品所在深度处的古地温范围(65.4~87.6℃)基本吻合。  相似文献   

5.
滇中荒田铅锌矿床赋存于下二叠统碳酸盐岩与上二叠统峨眉山玄武岩接触界面上,矿体主要呈似层状、透镜状产出。矿石矿物组合以闪锌矿、方铅矿为主,脉石矿物以石英、方解石、白云石为主。热液方解石C、O同位素组成表明荒田铅锌矿床成矿流体中CO_2的碳具有多元性,主要来源于幔源与海相碳酸盐岩的混合碳;硫化物硫同位素组成表明荒田铅锌矿床硫以岩浆硫为主,可能混有其他硫源(可能包括地层硫酸盐),铅同位素表明赋矿围岩、玄武岩和燕山期花岗岩均有可能为成矿提供了成矿物质,是多源混合后的产物;闪锌矿Rb-Sr同位素等时线年龄为(83.2±3.4)Ma,指示荒田铅锌矿床形成于晚燕山期,荒田铅锌矿床成矿动力学背景可能与右江褶皱带在中生代末期发生了大规模的岩石圈伸展有关。而晚二叠世海相喷发火山岩对矿区铅锌矿床的形成起了重要的盖层、赋矿层及矿化作用。综上,荒田铅锌矿床成矿流体中的不同组分来源不同,矿床类型为沉积-改造型矿床。  相似文献   

6.
We determined the rock types, the authigenic minerals, the paragenetic sequence, and the origin of dawsonite in pyroclastic rocks from the Yimin Formation of Beier Sag in the Hailar Basin, China. Dawsonite, a diagenetic mineral, is thought to result from a large influx of CO2 and, therefore, this system represents a natural analogue for in-situ mineral carbon storage. The studied host rocks are mainly tuffs/tuffaceous sandstones which now contain up to 70 vol% authigenic carbonates, including dawsonite, ankerite, and siderite. The initial alteration of the tuffs yielded minor siderite. Kaolinite, illite and mixed illite/smectite then formed as product phases. Dawsonite and quartz subsequently precipitated in response to CO2 influx apparently coupled to feldspar and perhaps kaolinte dissolution. Dawsonite reaches a maximum 25 vol% of the bulk rock. Mass balance suggests that this CO2 influx was coupled to the external import of sodium and export of SiO2. Ankerite and additional siderite precipitated during the late-stage alkaline diagenesis. The carbon isotope values of the dawsonite are in the range −4.1‰ to −2.2‰, indicating the magmatic origin of the CO2. Vitrinite reflectance and thermal gradient constraints suggest that the dawsonite at this location formed at a temperature of ∼75 °C.  相似文献   

7.
本文对白乃庙地区徐尼乌苏组沉积特征、原岩建造、变质火山岩及变质碎屑岩的年代学和地球化学进行了研究,探讨了白乃庙地区早古生代构造演化。本次研究采集了徐尼乌苏组中具有代表性的变质含砾粗粒杂砂岩、变质英安质晶屑凝灰岩和变质长石石英细砂岩样品,进行了锆石LA-ICP-MS U-Pb年代学和岩石地球化学分析。结果显示,2个变质英安质晶屑凝灰岩锆石的加权平均年龄分别为440.9±1.8Ma(MSWD=0.10)和440.9±1.7Ma(MSWD=0.15),锆石Th/U比值为0.46~1.59,自形程度较好,发育有典型的岩浆锆石振荡环带结构,显示为岩浆成因锆石的特点,表明徐尼乌苏组的形成时代为早志留世。变质含砾粗粒杂砂岩的碎屑锆石年龄在452.0±1.3Ma~535.0±1.0Ma之间,最高峰值年龄为490Ma左右;变质长石石英细砂岩碎屑锆石年龄则在440.1±5.7Ma~3268.9±57.7Ma之间,最小谐和年龄为440.1±5.7Ma,峰值年龄为490Ma左右,另有1.0Ga、1.6Ga、1.8Ga和2.5Ga四个明显的峰值年龄。根据研究区徐尼乌苏组岩性组合与结构构造,可将该组划分为3个不同的沉积旋回。结合白乃庙地区徐尼乌苏组测年结果、岩石地球化学特征、原岩建造及区域岩浆岩资料,白乃庙弧后盆地沉积可划分为三个演化阶段:早期快速堆积阶段(452.3~440.9Ma),形成了一套成熟度较低的粗碎屑岩建造,物源主要来源于白乃庙岩浆弧中的岩浆岩;中期火山喷发阶段(440.9~440.1Ma),以火山沉积作用为主,为火山碎屑岩建造夹有碳酸盐建造和少量碎屑岩建造,碎屑物质主要来源于该时期的火山活动;晚期稳定沉积阶段(440.1Ma),形成一套细碎屑岩建造和碳酸盐建造,为浅海相稳定沉积,此时物源广泛,分别来源于华北克拉通基底、兴蒙造山带和白乃庙早古生代火山弧。根据徐尼乌苏组的沉积建造和火山建造特征,结合白乃庙火山弧岩浆活动特征,认为徐尼乌苏组形成于早古生代弧后盆地中,此时华北板块北缘属于安第斯型活动大陆边缘。  相似文献   

8.
The Warburton Basin of central Australia has experienced a complex tectonic and fluid-flow history, resulting in the formation of various authigenic minerals. Geochemical and geochronological analyses were undertaken on vein carbonates from core samples of clastic sediments. Results were then integrated with zircon U–Pb dating and uraninite U–Th–total Pb dating from the underlying granite. Stable and radiogenic isotopes (δ18O, Sr and εNd), as well as trace element data of carbonate veins indicate that >200 °C basinal fluids of evolved meteoric origin circulated through the Warburton Basin. Almost coincidental ages of these carbonates (Sm–Nd; 432 ± 12 Ma) with primary zircon (421 ± 3.8 Ma) and uraninite (407 ± 16 Ma) ages from the granitic intrusion point towards a substantial period of active tectonism and an elevated thermal regime during the mid Silurian. We hypothesise that such a thermal regime may have resulted from extensional tectonism and concomitant magmatic activity following regional orogenesis. This study shows that the combined application of geochemical and geochronological analyses of both primary and secondary species may constrain the timing of tectonomagmatic events and associated fluid flow in intraplate sedimentary basins. Furthermore, this work suggests that the Sm–Nd-isotopic system is surprisingly robust and can record geologically meaningful age data from hydrothermal mineral species.  相似文献   

9.
The Woods Point dyke swarm comprises hundreds of narrow, subparallel igneous dykes and dozens of pipe-shaped dyke bulges within strongly deformed early Palaeozoic turbidites of the Melbourne trough. Porpylitic alteration accompanied dyke emplacement and was followed by microfracturing induced by high fluid pressures, involving CO2 of magmatic origin, as the dykes solidified. Further stress caused through-going faults having ladder and other patterns. Isotopic studies suggest that metamorphically or geothermally-derived solutions filled the faults and other fractures with quartz and carbonate and altered immediately adjacent dyke rock. However earlier-formed vein and wall rock carbonates retained their magmatic isotopic composition. Fluid inclusions indicate vein deposition began at approximately 400°C with salinities up to 9 weight percent NaCl. Nine sulfide minerals and gold were deposited in the veins after ankerite, sericite and albite, while quartz deposition continued through all stages. Sulfur isotopic determinations indicate the vein sulfur could not have been derived from adjacent sedimentary rocks, nor exclusively from the dykes. Metamorphic waters of marine origin is a viable source for sulfur. Saline and CO2-rich alkaline solutions reacted with the dyke wall rocks and probably evolved chemically prior to deposition of gold. Vug carbonates deposited by meteoric water that leached vein carbonates mark the end of vein formation.Present Adress: 631 Station Street, North Carlton 3054, Victoria, Australia  相似文献   

10.
沉积型锂资源成矿作用特征   总被引:2,自引:0,他引:2  
沉积型锂资源作为可利用锂资源的重要组成部分,由于其储量大、分布范围广而备受关注,但对于锂的赋存状态、赋矿沉积岩的沉积特征、成矿物质来源等成矿作用特征观点不一。通过对国内外沉积型锂资源成矿作用的综合分析,文章尝试总结出沉积型锂资源的成矿作用规律。综合国内外沉积型锂资源(矿床)的特征分析,沉积型锂资源主要赋存于黏土岩、铝质黏土岩及铝土矿中,部分分布于绿豆岩(凝灰岩)以及砂岩、泥岩等碎屑岩。锂在其中的赋存状态多样,主要以类质同象或离子吸附形式赋存在绿泥石、蒙脱石、高岭石和伊利石等黏土矿物中,个别为可开采的独立含锂矿物。多数沉积型锂资源沉积在湖相、泻湖相等低能的还原环境中,富锂岩石主要来源于岛弧类长英质火山岩和少量碎屑岩-碳酸盐岩,且源区母岩经历强烈的风化作用,沉积物可能经历再旋回的搬运过程。富锂岩石源于大陆岛弧环境,沉积于被动大陆边缘、裂谷或克拉通盆地。火山岩和含锂地层下伏的碳酸盐岩均可能是沉积型锂资源中锂的来源,成矿源区的不同造成了沉积型锂资源成矿作用的差异。  相似文献   

11.
The Middle-Lower Yangtze (Changjiang) River Valley metallogenic belt is located on the northern margin of the Yangtze Craton of eastern China. Most polymetallic deposits in the Changjiang metallogenic belt are clustered in seven districts where magmatism of Mesozoic age (Yanshanian tectono-thermal event) is particularly extensive. From west to east these districts are: E-dong, Jiu-Rui, Anqing-Guichi, Lu-Zong, Tong-Ling, Ning-Wu and Ning-Zhen. World-class iron ore deposits occur in the Lu-Zong and Ning-Wu ore clusters, which are mainly located in continental fault-bound volcanic-sedimentary basins. One of these deposits is the Longqiao iron deposit, discovered in the northern part of the Lu-Zong Basin in 1985. This deposit consists of a single stratabound and stratiform orebody, hosted in sedimentary carbonate rocks of the Triassic Dongma'anshan Formation. A syenite pluton (Longqiao intrusion) is situated below the deposit. The iron ore is massive and disseminated and the ore minerals are mainly magnetite and minor pyrite. Wall rock alteration mostly consists of skarn minerals, such as diopside, garnet, potassic feldspar, quartz, chlorite, phlogopite and anhydrite. Thin sedimentary siderite beds of Triassic age occur as relict laminated ore at the top and the margin of the magnetite orebody. These sideritic laminae are part of Triassic evaporite-bearing carbonate deposits (Dongma'anshan Formation).Sulfur isotopic compositions show that the sulfur in the deposit was derived from a mixture of magmatic hydrothermal fluids and carbonate–evaporite host rocks. Similarly, the C and O isotopic compositions of limestones from the Dongma'anshan Formation indicate that these rocks interacted with magmatic hydrothermal fluids. The O isotopic compositions of the syenitic rocks and minerals from the deposit show that the hydrothermal magnetite and skarn minerals were formed from magmatic fluids. The Pb isotopic compositions of sulfides are similar to those of the Longqiao syenite. Phlogopite coexisting with magnetite in the magnetite ores yielded a plateau age of 130.5 ± 1.1 Ma (2σ), whereas the LA-ICP MS age of the syenite intrusion is 131.1 ± 1.5 Ma, which is slightly older than the age of phlogopite.The Longqiao syenite intrusion may have crystallized from a parental alkaline magma, generated by partial melting of lithospheric mantle, during extensional tectonics. The ore fluids were probably first derived from magma at depth, later emplaced in the sedimentary rocks of the Dongma'anshan Formation, where it interacted with siderite and evaporite-bearing carbonate strata, resulting in the formation of magnetite and skarn minerals. The Longqiao iron deposit is a skarn-type stratabound and stratiform mineral system, genetically and temporally related to the Longqiao syenite intrusion. The Longqiao syenite is part of the widespread Mesozoic intracontinental magmatism (Yanshanian event) in eastern China, which has been linked to lithospheric delamination and asthenospheric upwelling.  相似文献   

12.
We present a summary of late Paleoproterozoic to Neoproterozoic mafic magmatism in the Siberian craton, including recently published U–Pb and 40Ar–39Ar dates. These new precise ages suggest that at least some of the previously published K–Ar ages of Siberian mafic bodies should be ignored. The time–space geochronological chart, or the ‘barcode’ of mafic magmatic events shows significant differences between northern and southern Siberia. Both are characterized by ∼1900–1700 Ma magmatic events, but then there was an almost 1 Ga mafic magmatic ‘pause’ in south Siberia until ∼800 Ma. Meanwhile there are indications of multiple mafic magmatic events in North Siberia (Anabar shield and Olenek uplift) between ∼1600 and 1000 Ma. A series of magmatic events probably related to the breakup of Rodinia occurred in southern Siberia after ∼800 Ma. So far, there are no indications of late Neoproterozoic mafic magmatism in North Siberia. Ca. 1000–950 Ma mafic sills were reported from Meso- to Neo-Proterozoic sedimentary successions in the Sette-Daban area on the east side of the Siberian craton, but their tectonic setting is debated. Recent Ar–Ar dates of ∼1750 Ma for NW-trending dykes in the Aldan and Anabar shields, together with similar-age NNE-trending Baikal uplift dykes in south-eastern Siberia suggest the existence of a giant radial dyke swarm possibly related to a mantle plume centred in the Vilyui River area.  相似文献   

13.
锶同位素地层学在碎屑岩成岩研究中的应用   总被引:15,自引:0,他引:15  
基于同一地质历史时期海水的锶同位素组成为一定值的锶同位素地层学基本原理,可将锶同位素地层学用于碎屑岩成岩作用研究,以评价海相和非海相对成岩作用的影响.三个不同类型的研究实例说明:1)海相碎屑岩成岩流体的锶同位素组成的演化途径有较好的规律性,陆相影响随成岩作用的进行而增加,相对晚期的碳酸盐胶结物的87Sr/86Sr比值通常高于相对早期的碳酸盐胶结物,变化的本底值即为同期海水的锶同位素组成,该数值为一定值;2)有沉积期深源锶和非同期海相影响的陆相碎屑岩中,碳酸盐胶结物的锶同位素比值可能低于大陆淡水,但埋藏成岩过程中相对晚期的碳酸盐胶结物的87Sr/86Sr比值仍高于相对早期的碳酸盐胶结物;3)当深部流体影响碎屑岩的整个成岩过程时,深源锶的烙印可以抹掉或减少不同成岩阶段不同程度陆相影响造成的各种碳酸盐胶结物之间锶同位素组成的差别,使各种碳酸盐胶结物都具有很低的87Sr/86Sr比值,因而缺乏其它沉积盆地中常见的相对晚期碳酸盐胶结物87Sr/86Sr比值高于早期胶结物的一般模式。  相似文献   

14.
15.
Deep fluids in a petroliferous basin generally come from the deep crust or mantle beneath the basin basement, and they transport deep substances(gases and aqueous solutions) as well as heat to sedimentary strata through deep faults. These deep fluids not only lead to large-scale accumulations of CO_2, CH_4, H_2, He and other gases, but also significantly impact hydrocarbon generation and accumulation through organic-inorganic interactions. With the development of deep faults and magmatic-volcanic activities in different periods, most Chinese petroliferous basins have experienced strong impacts associated with deep fluid activity. In the Songliao, Bohai Bay, Northern Jiangsu, Sanshui, Yinggehai and Pearl Mouth Basins in China, a series of CO_2 reservoirs have been discovered. The CO_2 content is up to 99%, with δ~(13)C_(CO2) values ranging from-4.1‰ to-0.37‰ and ~3He/~4He ratios of up to 5.5 Ra. The abiogenic hydrocarbon gas reservoirs with commercial reserves, such as the Changde, Wanjinta, Zhaozhou, and Chaoyanggou reservoirs, are mainly distributed in the Xujiaweizi faulted depression of the Songliao Basin. The δ~(13)CCH4 values of the abiogenic alkane gases are generally -30‰ and exhibit an inverse carbon isotope sequence of δ~(13)C_(CH4)δ~(13)C_(C2H6)δ~(13)C_(C3H8)δ~(13)C_(C4H10). According to laboratory experiments, introducing external H_2 can improve the rate of hydrocarbon generation by up to 147% through the kerogen hydrogenation process. During the migration from deep to shallow depth, CO_2 can significantly alter reservoir rocks. In clastic reservoirs, feldspar is easily altered by CO_2-rich fluids, leading to the formation of dawsonite, a typical mineral in high CO_2 partial pressure environments, as well as the creation of secondary porosity. In carbonate reservoirs, CO_2-rich fluids predominately cause dissolution or precipitation of carbonate minerals. The minerals, e.g., calcite and dolomite, show some typical features, such as higher homogenization temperatures than the burial temperature, relatively high concentrations of Fe and Mn, positive Eu anomalies, depletion of 18 O and enrichment of radiogenic ~(87)Sr. Due to CO_2-rich fluids, the development of high-quality carbonate reservoirs is extended to deep strata. For example, the Well TS1 in the northern Tarim Basin revealed a high-quality Cambrian dolomite reservoir with a porosity of 9.1% at 8408 m, and the Well ZS1 C in the central Tarim Basin revealed a large petroleum reserve in a Cambrian dolomite reservoir at ~6900 m. During the upward migration from deep to shallow basin strata, large volumes of supercritical CO_2 may extract petroleum components from hydrocarbon source rocks or deep reservoirs and facilitate their migration to shallow reservoirs, where the petroleum accumulates with the CO_2. Many reservoirs containing both supercritical CO_2 and petroleum have been discovered in the Songliao, Bohaiwan, Northern Jiangsu, Pearl River Mouth and Yinggehai Basins. The components of the petroleum trapped with CO_2 are dominated by low molecular weight saturated hydrocarbons.  相似文献   

16.
为了查明火山碎屑岩中自生碳酸盐矿物的分布特征及对储层物性的影响,以海拉尔盆地贝尔凹陷火山碎屑岩为研究对象,调查火山碎屑岩中自生碳酸盐矿物的类型,并通过统计50余口探井的碳酸盐含量及储层物性数据,探讨其分布特征及对储层物性的影响。结果表明:海拉尔盆地贝尔凹陷火山碎屑岩中自生碳酸盐矿物主要为方解石和白云石,其次为菱铁矿、片钠铝石和铁白云石;纵向上随着埋藏深度增加出现两个碳酸盐含量高值带,分别出现在1 500~1 900m和2 200~2 700m深度,前者主要为以胶结作用为主的连生方解石和显晶方解石及菱铁矿,后者主要为以交代作用为主的晚期方解石、白云石、铁白云石和片钠铝石;湖底扇等分选较差的沉积相为碳酸盐矿物发育的有利相带,扇-辫状河三角洲相为次有利相带;靠近德尔布干深大断裂的井碳酸盐含量要高于远离该断裂的井,且在该断裂附近的德2、德6和德8等井中见片钠铝石自生矿物,这主要因为断层是CO2逸散的通道,断层处的富CO2流体能够与围岩反应生成碳酸盐矿物;熔结凝灰岩和凝灰岩中的碳酸盐矿物含量要高于沉凝灰岩、凝灰质砂岩及普通砂岩,这主要因为火山岩及火山碎屑物质中金属离子含量高,易于释放,从而结合CO23-形成碳酸盐矿物;贝尔凹陷内储层孔隙度和渗透率等参数与碳酸盐含量呈负相关关系,说明碳酸盐含量对储层物性主要起破坏作用。  相似文献   

17.
We have studied melt and fluid inclusions in minerals from alkali basalts, mantle xenoliths, and dawsonite-bearing sandstones from the Shuangliao volcanic field in southern Songliao Basin, Northeast China. The inclusions have been investigated using petrographic, geochemical, and laser Raman spectroscopic techniques. Volcanic rocks of the Shuangliao field are predominantly alkali olivine basalts that contain rare mantle xenoliths. Silicate melt and fluid inclusions are common in both olivine phenocrysts and the mantle xenoliths. The fluid inclusions are mainly composed of CO2 with small amounts of CO, CH4, N2, and H2O, which is consistent with an upper mantle origin. CO2 gas reservoirs in the southern Songliao Basin are mostly derived from a mantle–magmatic source. Coeval fluid-inclusion homogenization temperatures, coupled with the thermal burial history, show that the CO2 gas reservoirs in the southern Songliao Basin are Cenozoic (40–63 Ma) and coeval with the magmatism in the Shuangliao volcanic field. Despite the relatively small scale of this volcanic activity, it released large amounts of CO2. Much of the magma was not erupted, and CO2- and H2O-rich magma was probably intruded into the basin along deep faults, acting as a major source of inorganic CO2 gas in the southern Songliao Basin.  相似文献   

18.
湖南前震旦系铀矿化成因探讨   总被引:1,自引:0,他引:1  
田应龙 《铀矿地质》1990,6(1):11-18
湖南前震旦系冷家溪群和板溪群是一套浅变质沉积岩,主要由各种板岩、变质砂岩、凝灰质板岩组成,夹有基性、中-酸性火山熔岩、火山碎屑岩及碳酸盐岩。现已落实铀矿床3个、矿(化)点14个。铀成矿年龄为85—50Ma,最晚者16Ma。稳定同位素研究结果表明,前震旦系铀矿化属岩浆岩源及沉积(变质)岩源中-新生代大气降水热液成因;铀矿化受断裂构造控制;凝灰质板岩、砂质板岩及角岩等是矿化有利的围岩。  相似文献   

19.
混积岩是指陆源碎屑与碳酸盐组分经混合沉积作用而形成的岩石,广义混积岩包括由陆源碎屑与碳酸盐组分在空间上构成交替互层或夹层的混合。本文在大量资料调研基础上,结合酒泉盆地青西凹陷下白垩统混积岩储层薄片观察、场发射扫描电镜观察、全岩及黏土矿物分析、压汞测试、纳米CT等研究工作,分析了混积岩储层岩性组合、储层特征等。宏观上,混积岩岩性复杂多样,由白云质泥岩、泥质白云岩、灰质泥岩、灰质白云岩、白云质灰岩等组成,剖面上呈现大段厚层式、厚夹薄层式、近等厚互层式三种组合样式;微观上,黏土矿物、碳酸盐矿物及有机质等呈纹层状或块状分布;储集空间主要为微-纳米级的粒间孔、粒内孔以及微裂缝,矿物组成及其含量是影响储集空间类型的一个主要因素;多数混积岩储层孔隙度、渗透率低,为致密储层。  相似文献   

20.
This study focused on typical injection layers of deep saline aquifers in the Shiqianfeng Formation used in the Carbon Capture and Sequestration Demonstration Projects in the Ordos Basin, Northwest China. The study employed experiments and numerical simulations to investigate the mechanism of CO2 mineral sequestration in these deep saline aquifers. The experimental results showed that the dissolved minerals are plagioclase, hematite, illite–smectite mixed layer clay and illite, whereas the precipitated minerals are quartz (at 55, and 70 °C) and kaolinite (at 70 °C). There are rare carbonate mineral precipitations at the experimental time scale, while the precipitation of quartz as a product of the dissolution of silicate minerals and some intermediate minerals rich in K and Mg that transform to clay minerals, reveals the possibility of carbonate precipitation at the longer time scale. These results are consistent with some results previously reported in the literature. We calibrated the kinetic parameters of mineral dissolution and precipitation by these experimental results and then simulated the CO2 mineral sequestration under deep saline aquifer conditions. The simulation results showed that the dissolved minerals are albite, anorthite and minor hematite, whereas the precipitated minerals are calcite, kaolinite and smectite at 55 and 70 °C. The geochemical reaction of illite is more complex. At 55 °C, illite is dissolved at the relatively lag time and transformed to dawsonite; at 70 °C, illite is precipitated in the early reaction period and then transformed to kaolinite. Based on this research, sequestrated CO2 minerals, which are mainly related to the temperature of deep saline aquifers in Shiqianfeng Fm., are calcite and dawsonite at lower temperature, and calcite at higher temperature. The simulation results also establish that calcite could precipitate over a time scale of thousands of years, and the higher the temperature the sooner such a process would occur due to increased reaction rates. These characteristics are conducive, not only to the earlier occurrence of mineral sequestration, but also increase the sequestration capacity of the same mineral components. For a sequestration period of 10,000 years, we determined that the mineral sequestration capacity is 0.786 kg/m3 at 55 °C, and 2.180 kg/m3 at 70 °C. Furthermore, the occurrence of mineral sequestration indirectly increases the solubility of CO2 in the early reaction period, but this decreases with the increase in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号