首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reductive biotransformation of 6-line ferrihydrite located within porous silica (intragrain ferrihydrite) by Shewanella oneidensis MR-1 was investigated and compared to the behavior of 6-line ferrihydrite in suspension (free ferrihydrite). The effect of buffer type (PIPES and NaHCO3), phosphate (P), and an electron shuttle (AQDS) on the extent of reduction and formation of Fe(II) secondary phases was investigated under anoxic conditions. Electron microscopy and micro X-ray diffraction were applied to evaluate the morphology and mineralogy of the biogenic precipitates and to study the distribution of microorganisms on the surface of porous silica after bioreduction. Kinetic reduction experiments with free and intragrain ferrihydrite revealed contrasting behavior with respect to the buffer and presence of P. The overall amount of intragrain ferrihydrite reduction was less than that of free ferrihydrite [at 5 mmol L−1 Fe(III)T]. Reductive mineralization was not observed in the intragrain ferrihydrite incubations without P, and all biogenic Fe(II) concentrated in the aqueous phase. Irrespective of buffer and AQDS addition, rosettes of Fe(II) phosphate of approximate 20-30 μm size were observed on porous silica when P was present. The rosettes grew not only on the silica surface but also within it, forming a coherent spherical structure. These precipitates were well colonized by microorganisms and contained extracellular materials at the end of incubation. Microbial extracellular polymeric substances may have adsorbed Fe(II) promoting Fe(II) phosphate nucleation with subsequent crystal growth proceeding in different directions from a common center.  相似文献   

2.
The speciation of iron (Fe) in soils, sediments and surface waters is highly dependent on chemical interactions with natural organic matter (NOM). However, the molecular structure and hydrolysis of the Fe species formed in association with NOM is still poorly described. In this study extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the coordination chemistry and hydrolysis of Fe(III) in solution of a peat humic acid (5010-49,200 μg Fe g−1 dry weight, pH 3.0-7.2). Data were analyzed by both conventional EXAFS data fitting and by wavelet transforms in order to facilitate the identification of the nature of backscattering atoms. Our results show that Fe occurs predominantly in the oxidized form as ferric ions and that the speciation varies with pH and Fe concentration. At low Fe concentrations (5010-9920 μg g−1; pH 3.0-7.2) mononuclear Fe(III)-NOM complexes completely dominates the speciation. The determined bond distances for the Fe(III)-NOM complexes are similar to distances obtained for Fe(III) complexed by desferrioxamine B and oxalate indicating the formation of a five-membered chelate ring structure. At higher Fe concentrations (49,200 μg g−1; pH 4.2-6.9) we detect a mixture of mononuclear Fe(III)-NOM complexes and polymeric Fe(III) (hydr)oxides with an increasing amount of Fe(III) (hydr)oxides at higher pH. However, even at pH 6.9 and a Fe concentration of 49,200 μg g−1 our data indicates that a substantial amount of the total Fe (>50%) is in the form of organic complexes. Thus, in environments with significant amounts of organic matter organic Fe complexes will be of great importance for the geochemistry of Fe. Furthermore, the formation of five-membered chelate ring structures is in line with the strong complexation and limited hydrolytic polymerization of Fe(III) in our samples and also agrees with EXAFS derived structures of Fe(III) in organic soils.  相似文献   

3.
The rate at which iron- and aluminium-natural organic matter (NOM) complexes dissociate plays a critical role in the transport of these elements given the readiness with which they hydrolyse and precipitate. Despite this, there have only been a few reliable studies on the dissociation kinetics of these complexes suggesting half-times of some hours for the dissociation of Fe(III) and Al(III) from a strongly binding component of NOM. First-order dissociation rate constants are re-evaluated here at pH 6.0 and 8.0 and 25 °C using both cation exchange resin and competing ligand methods for Fe(III) and a cation exchange resin method only for Al(III) complexes. Both methods provide similar results at a particular pH with a two-ligand model accounting satisfactorily for the dissociation kinetics results obtained. For Fe(III), half-times on the order of 6-7 h were obtained for dissociation of the strong component and 4-5 min for dissociation of the weak component. For aluminium, the half-times were on the order of 1.5 h and 1-2 min for the strong and weak components, respectively. Overall, Fe(III) complexes with NOM are more stable than analogous complexes with Al(III), implying Fe(III) may be transported further from its source upon dilution and dispersion.  相似文献   

4.
Scorodite, ferric arsenate and arsenical ferrihydrite are important arsenic carriers occurring in a wide range of environments and are also common precipitates used by metallurgical industries to control arsenic in effluents. Solubility and stability of these compounds are controversial because of the complexities in their identification and characterization in heterogeneous media. To provide insights into the formation of scorodite, ferric arsenate and ferrihydrite, series of synthesis experiments were carried out at 70 °C and pH 1, 2, 3 and 4.5 from 0.2 M Fe(SO4)1.5 solutions also containing 0.02-0.2 M Na2HAsO4. The precipitates were characterized by transmission electron microscopy, X-ray diffraction and X-ray absorption fine structure techniques. Ferric arsenate, characterized by two broad diffuse peaks on the XRD pattern and having the structural formula of FeAsO4·4-7H2O, is a precursor to scorodite formation. As defined by As XAFS and Fe XAFS, the local structure of ferric arsenate is profoundly different than that of scorodite. It is postulated that the ferric arsenate structure is made of single chains of corner-sharing Fe(O,OH)6 octahedra with bridging arsenate tetrahedra alternating along the chains. Scorodite was precipitated from solutions with Fe/As molar ratios of 1 over the pH range of 1-4.5. The pH strongly controls the kinetics of scorodite formation and its transformation from ferric arsenate. The scorodite crystallite size increased from 7 to 33 nm by ripening and aggregation. Precipitates, resulting from continuous synthesis at pH 4.5 from solutions having Fe/As molar ratios ranging from 1 to 4 and resembling the compounds referred to as ferric arsenate, arsenical ferrihydrite and As-rich hydrous ferric oxide in the literature, represent variable mixtures of ferric arsenate and ferrihydrite. When the Fe/As ratio increases, the proportion of ferrihydrite increases at the expense of ferric arsenate. Arsenate adsorption appears to retard ferrihydrite growth in the precipitates with molar Fe/As ratios of 1-4, whereas increased reaction gradually transforms two-line ferrihydrite to six-line ferrihydrite at Fe/As ratios of 5 and greater.  相似文献   

5.
Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10−6 mol m−2 h−1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.  相似文献   

6.
Sorption of contaminants such as arsenic (As) to natural Fe(III) (oxyhydr)oxides is very common and has been demonstrated to occur during abiotic and biotic Fe(II) oxidation. The molecular mechanism of adsorption- and co-precipitation of As has been studied extensively for synthetic Fe(III) (oxyhydr)oxide minerals but is less documented for biogenic ones. In the present study, we used Fe and As K-edge X-ray Absorption Near Edge Structure (XANES), extended X-ray Absorption Fine Structure (EXAFS) spectroscopy, Mössbauer spectroscopy, XRD, and TEM in order to investigate the interactions of As(V) and As(III) with biogenic Fe(III) (oxyhydr)oxide minerals formed by the nitrate-reducing Fe(II)-oxidizing bacterium Acidovorax sp. strain BoFeN1. The present results show the As immobilization potential of strain BoFeN1 as well as the influence of As(III) and As(V) on biogenic Fe(III) (oxyhydr)oxide formation. In the absence of As, and at low As loading (As:Fe ≤ 0.008 mol/mol), goethite (Gt) formed exclusively. In contrast, at higher As/Fe ratios (As:Fe = 0.020-0.067), a ferrihydrite (Fh) phase also formed, and its relative amount systematically increased with increasing As:Fe ratio, this effect being stronger for As(V) than for As(III). Therefore, we conclude that the presence of As influences the type of biogenic Fe(III) (oxyhydr)oxide minerals formed during microbial Fe(II) oxidation. Arsenic-K-edge EXAFS analysis of biogenic As-Fe-mineral co-precipitates indicates that both As(V) and As(III) form inner-sphere surface complexes at the surface of the biogenic Fe(III) (oxyhydr)oxides. Differences observed between As-surface complexes in BoFeN1-produced Fe(III) (oxyhydr)oxide samples and in abiotic model compounds suggest that associated organic exopolymers in our biogenic samples may compete with As oxoanions for sorption on Fe(III) (oxyhydr)oxides surfaces. In addition HRTEM-EDXS analysis suggests that As(V) preferentially binds to poorly crystalline phases, such as ferrihydrite, while As(III) did not show any preferential association regarding Fh or Gt.  相似文献   

7.
Nearly half a century after mine closure, release of As from the Ylöjärvi Cu–W–As mine tailings in groundwater and surface water run-off was observed. Investigations by scanning electron microscopy (SEM), electron microprobe analysis (EMPA), synchrotron-based micro-X-ray diffraction (μ-XRD), micro-X-ray absorption near edge structure (μ-XANES) and micro-extended X-ray absorption fine structure (μ-EXAFS) spectroscopy, and a sequential extraction procedure were performed to assess As attenuation mechanisms in the vadose zone of this tailings deposit. Results of SEM, EMPA, and sequential extractions indicated that the precipitation of As bearing Fe(III) (oxy)hydroxides (up to 18.4 wt.% As2O5) and Fe(III) arsenates were important secondary controls on As mobility. The μ-XRD, μ-XANES and μ-EXAFS analyses suggested that these phases correspond to poorly crystalline and disordered As-bearing precipitates, including arsenical ferrihydrite, scorodite, kaňkite, and hydrous ferric arsenate (HFA). The pH within 200 cm of the tailings surface averaged 5.7, conditions which favor the precipitation of ferrihydrite. Poorly crystalline Fe(III) arsenates are potentially unstable over time, and their transformation to ferrihydrite, which contributes to As uptake, has potential to increase the As adsorption capacity of the tailings. Arsenic mobility in tailings pore water at the Ylöjärvi mine will depend on continued arsenopyrite oxidation, dissolution or transformation of secondary Fe(III) arsenates, and the As adsorption capacity of Fe(III) (oxy)hydroxides within this tailings deposit.  相似文献   

8.
Characterization of Fe(III) (hydr)oxides in soils near the Ichinokawa mine was conducted using X-ray absorption fine structure (XAFS) and Mössbauer spectroscopies, and the structural changes were correlated with the release of As into pore-water. The Eh values decreased monotonically with depth. Iron is mainly present as poorly-ordered Fe(III) (hydr)oxides, such as ferrihydrite, over a wide redox range (from Eh = 360 to −140 mV). Structural details of the short-range order of these Fe(III) (hydr)oxides were examined using Mössbauer spectroscopy by comparing the soil phases with synthesized ferrihydrite samples having varying crystallinities. The crystallinity of the soil Fe (hydr)oxides decreased slightly with depth and Eh. Thus, within the redox range of this soil profile, ferrihydrite dominated, even under very reducing conditions, but the crystalline domain size, and, potentially, particle size, changed with the variation in Eh. In the soil–water system examined here, where As concentration and the As(III)/As(V) ratio in soil water increased with depth, ferrihydrite persisted and maintained or even enhanced its capacity for As retention with increased reducing conditions. Therefore, it is concluded that As release from these soils largely depends on the transformation of As(V) to As(III) rather than reductive dissolution of Fe(III) (hydr)oxide.  相似文献   

9.
We investigated Fe(III)-precipitates formed from Fe(II) oxidation in water at pH 7 as a function of dissolved Fe(II), As(III), phosphate, and silicate in the absence and presence of Ca. We used transmission electron microscopy (TEM), including selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX) to characterize the morphology, structure and elemental composition of the precipitates. Results from our companion X-ray absorption spectroscopy (XAS) study suggested that the oxidation of Fe(II) leads to the sequential formation of distinct polymeric units in the following order: Fe(III)-phosphate oligomers in the presence of phosphate, silicate-rich hydrous ferric oxide (HFO-Si) at high Si/Fe (>0.5) or 2-line ferrihydrite (2L-Fh) at lower Si/Fe (∼0.1-0.5), and lepidocrocite (Lp) in the absence of phosphate at low Si/Fe (<0.1). Results from this study show that the size of the polymeric units increased along the same sequence and that the aggregation of these polymeric units resulted in spherical particles with characteristic surface textures changing from smooth to coarse. The diameter of the spherical particles increased from 15 to 380 nm as the molar ratio (P + Si + As)/Fe(II) in the starting solution decreased and larger spherical particles precipitated from Ca-containing than from Ca-free solutions. These trends suggested that the size of the spherical particles was controlled by the charge of the polymeric units. Spherical particles coagulated into flocs whose size was larger in the presence than in the absence of Ca. Further observations pointed to the importance of Fe(II) oxidation and polymerization versus polymer aggregation and floc formation kinetics in controlling the spatial arrangement of the different polymeric units within Fe(III)-precipitates. The resulting structural and compositional heterogeneity of short-range-ordered Fe(III)-precipitates likely affects their colloidal stability and their chemical reactivity and needs to be considered when addressing the fate of co-transformed trace elements such as arsenic.  相似文献   

10.
Iron(III) (hydr)oxides formed at extracellular biosurfaces or in the presence of exopolymeric substances of microbes and plants may significantly differ in their structural and physical properties from their inorganic counterparts. We synthesized ferrihydrite (Fh) in solutions containing acid polysaccharides [polygalacturonic acid (PGA), alginate, xanthan] and compared its properties with that of an abiotic reference by means of X-ray diffraction, transmission electron microscopy, gas adsorption (N2, CO2), X-ray absorption spectroscopy, 57Fe Mössbauer spectroscopy, and electrophoretic mobility measurements. The coprecipitates formed contained up to 37 wt% polymer. Two-line Fh was the dominant mineral phase in all precipitates. The efficacy of polymers to precipitate Fh at neutral pH was higher for polymers with more carboxyl C (PGA ∼ alginate > xanthan). Pure Fh had a specific surface area of 300 m2/g; coprecipitation of Fh with polymers reduced the detectable mineral surface area by up to 87%. Likewise, mineral micro- (<2 nm) and mesoporosity (2-10 nm) decreased by up to 85% with respect to pure Fh, indicative of a strong aggregation of Fh particles by polymers in freeze-dried state. C-1s STXM images showed the embedding of Fh particles in polymer matrices on the micrometer scale. Iron EXAFS spectroscopy revealed no significant changes in the local coordination of Fe(III) between pure Fh and Fh contained in PGA coprecipitates. 57Fe Mössbauer spectra of coprecipitates confirmed Fh as dominant mineral phase with a slightly reduced particle size and crystallinity of coprecipitate-Fh compared to pure Fh and/or a limited magnetic super-exchange between Fh particles in the coprecipitates due to magnetic dilution by the polysaccharides. The pHiep of pure Fh in 0.01 M NaClO4 was 7.1. In contrast, coprecipitates of PGA and alginate had a pHiep < 2. Considering the differences in specific surface area, porosity, and net charge between the coprecipitates and pure Fh, composites of exopolysaccharides and Fe(III) (hydr)oxides are expected to differ in their geochemical reactivity from pure Fe(III) (hydr)oxides, even if the minerals have a similar crystallinity.  相似文献   

11.
The Fe(II)-catalysed transformation of synthetic schwertmannite, ferrihydrite, jarosite and lepidocrocite to more stable, crystalline Fe(III) oxyhydroxides is prevented by high, natural concentrations of Si and natural organic matter (NOM). Adsorption isotherms demonstrate that Si adsorbs to the iron minerals investigated and that increasing amounts of adsorbed Si results in a decrease in isotope exchange between aqueous Fe(II) and the Fe(III) mineral. This suggests that the adsorption of Si inhibits the direct adsorption of Fe(II) onto the mineral surface, providing an explanation for the inhibitory effect of Si on the Fe(II)-catalysed transformation of Fe(III) minerals. During the synthesis of lepidocrocite and ferrihydrite, the presence of equimolar concentrations of Si and Fe resulted in the formation of 2-line ferrihydrite containing co-precipitated Si in both cases. Isotope exchange experiments conducted with this freeze-dried Si co-precipitated ferrihydrite species (Si-ferrihydrite) demonstrated that the rate and extent of isotope exchange between aqueous Fe(II) and solid 55Fe(III) was very similar to that of 2-line ferrihydrite formed in the absence of Si and which had not been allowed to dry. In contrast to un-dried ferrihydrite formed in the absence of Si, Si-ferrihydrite did not transform into a more crystalline Fe(III) mineral phase over the 7-day period of investigation. Reductive dissolution studies using ascorbic acid demonstrated that both dried Si-ferrihydrite and un-dried 2-line ferrihydrite were very reactive, suggesting these species may be major contributors to the rapid release of dissolved iron following flooding and the onset of conditions conducive to reductive dissolution in acid sulphate soil environments.  相似文献   

12.
Aluminum, one of the most abundant elements in soils and sediments, is commonly found co-precipitated with Fe in natural Fe(III) (hydr)oxides; yet, little is known about how Al substitution impacts bacterial Fe(III) reduction. Accordingly, we investigated the reduction of Al substituted (0-13 mol% Al) goethite, lepidocrocite, and ferrihydrite by the model dissimilatory Fe(III)-reducing bacterium (DIRB), Shewanella putrefaciens CN32. Here we reveal that the impact of Al on microbial reduction varies with Fe(III) (hydr)oxide type. No significant difference in Fe(III) reduction was observed for either goethite or lepidocrocite as a function of Al substitution. In contrast, Fe(III) reduction rates significantly decreased with increasing Al substitution of ferrihydrite, with reduction rates of 13% Al-ferrihydrite more than 50% lower than pure ferrihydrite. Although Al substitution changed the minerals’ surface area, particle size, structural disorder, and abiotic dissolution rates, we did not observe a direct correlation between any of these physiochemical properties and the trends in bacterial Fe(III) reduction. Based on projected Al-dependent Fe(III) reduction rates, reduction rates of ferrihydrite fall below those of lepidocrocite and goethite at substitution levels equal to or greater than 18 mol% Al. Given the prevalence of Al substitution in natural Fe(III) (hydr)oxides, our results bring into question the conventional assumptions about Fe (hydr)oxide bioavailability and suggest a more prominent role of natural lepidocrocite and goethite phases in impacting DIRB activity in soils and sediments.  相似文献   

13.
The subsurface behaviour of 99Tc, a contaminant resulting from nuclear fuels reprocessing, is dependent on its valence (e.g., IV or VII). Abiotic reduction of soluble Tc(VII) by Fe(II)(aq) in pH 6-8 solutions was investigated under strictly anoxic conditions using an oxygen trap (<7.5 × 10−9 atm O2). The reduction kinetics were strongly pH dependent. Complete and rapid reduction of Tc(VII) to a precipitated Fe/Tc(IV) form was observed when 11 μmol/L of Tc(VII) was reacted with 0.4 mmol/L Fe(II) at pH 7.0 and 8.0, while no significant reduction was observed over 1 month at pH 6.0. Experiments conducted at pH 7.0 with Fe(II)(aq) = 0.05-0.8 mmol/L further revealed that Tc(VII) reduction was a combination of homogeneous and heterogeneous reaction. Heterogeneous reduction predominated after approximately 0.01 mmol/L of Fe(II) was oxidized. The heterogeneous reaction was more rapid, and was catalyzed by Fe(II) that adsorbed to the Fe/Tc(IV) redox product. Wet chemical and Fe-X-ray absorption near edge spectroscopy measurements (XANES) showed that Fe(II) and Fe(III) were present in the Fe/Tc(IV) redox products after reaction termination. 57Fe-Mössbauer, extended X-ray adsorption fine structure (EXAFS), and transmission electron microscopy (TEM) measurements revealed that the Fe/Tc(IV) solid phase was poorly ordered and dominated by Fe(II)-containing ferrihydrite with minor magnetite. Tc(IV) exhibited homogeneous spatial distribution within the precipitates. According to Tc-EXAFS measurements and structural modeling, its molecular environment was consistent with an octahedral Tc(IV) dimer bound in bidentate edge-sharing mode to octahedral Fe(III) associated with surface or vacancy sites in ferrihydrite. The precipitate maintained Tc(IV)aq concentrations that were slightly below those in equilibrium with amorphous Tc(IV)O2·nH2O(s). The oxidation rate of sorbed Tc(IV) in the Fe/Tc precipitate was considerably slower than Tc(IV)O2·nH2O(s) as a result of its intraparticle/intragrain residence. Precipitates of this nature may form in anoxic sediments or groundwaters, and the intraparticle residence of sorbed/precipitated Tc(IV) may limit 99Tc remobilization upon the return of oxidizing conditions.  相似文献   

14.
Discharge of Fe(II)-rich groundwaters into surface-waters results in the accumulation of Fe(III)-minerals in salinized sand-bed waterways of the Hunter Valley, Australia. The objective of this study was to characterise the mineralogy, micromorphology and pore-water geochemistry of these Fe(III) accumulations. Pore-waters had a circumneutral pH (6.2–7.2), were sub-oxic to oxic (Eh 59–453 mV), and had dissolved Fe(II) concentrations up to 81.6 mg L−1. X-ray diffraction (XRD) on natural and acid-ammonium-oxalate (AAO) extracted samples indicated a dominance of 2-line ferrihydrite in most samples, with lesser amounts of goethite, lepidocrocite, quartz, and alumino-silicate clays. The majority of Fe in the samples was bound in the AAO extractable fraction (FeOx) relative to the Na-dithionite extractable fraction (FeDi), with generally high FeOx:FeDi ratios (0.52–0.92). The presence of nano-crystalline 2-line ferrihydrite (Fe5HO3·4H2O) with lesser amounts of goethite (α-FeOOH) was confirmed by scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED). In addition, it was found that lepidocrocite (γ-FeOOH), which occurred as nanoparticles as little as ∼5 lattice spacings thick perpendicular to the (0 2 0) lattice plane, was also present in the studied Fe(III) deposits. Overall, the results highlight the complex variability in the crystallinity and particle-size of Fe(III)-minerals which form via oxidation of Fe(II)-rich groundwaters in sand-bed streams. This variability may be attributed to: (1) divergent precipitation conditions influencing the Fe(II) oxidation rate and the associated supply and hydrolysis of the Fe(III) ion, (2) the effect of interfering compounds, and (3) the influence of bacteria, especially Leptothrix ochracea.  相似文献   

15.
We have investigated the kinetics of Fe(III) complexation by several organic ligands including fulvic acid, citrate and ethylenediaminetetraacetic acid (EDTA). Particular attention was given to examination of the effect of competitive divalent cations (Me: Ca2+ and Mg2+) at concentrations typical of seawater on the complexation rate. All experiments were conducted in 0.5 M NaCl solution buffered with 2 mM bicarbonate at pH 8.0 in the absence and presence of Me (25 μM-250 mM). The rate constants of complex formation determined by using the competitive ligand (5-sulfosalicylic acid) method combined with visible spectrophotometry ranged from 3.3 × 104 to 3.2 × 106 M−1 s−1. The mechanism of complexation was then examined based on a kinetic model. When EDTA was used as a ligand, Me at concentrations comparable to the ligand markedly retarded the rate of iron complex formation due to the predominance of an adjunctive pathway (where iron-ligand complex is formed via direct association of iron to Me-ligand complex). In contrast, the competing effect of Me on iron complexation by citrate and fulvic acid was observed only when the Me concentration was in excess of the ligand by more than a factor of 10-1000. The kinetic model suggests that iron complexation by fulvic acid occurs predominantly via a disjunctive pathway (where iron complexation by ligand occurs after dissociation of Me from Me-ligand complex) at concentrations of divalent cations and natural organic matter typical of natural waters including seawater and freshwater.  相似文献   

16.
We present a chemical and mineralogical explanation, derived from powder X-ray diffraction and Mössbauer spectroscopy measurements of synthetic samples, of the P:Fe = 1:2 limiting ratio of P incorporation (as PO4) that was previously observed in natural aquatic oxic iron precipitates. The 57Fe Mössbauer hyperfine parameters are interpreted with the help of state-of-the-art ab initio electronic structure calculations. We find that there is a strong tendency for solid solution P-Fe mixing in the P-bearing hydrous ferric oxide (P-HFO) aqueous coprecipitate system, interpreted as occurring between the P-free (ferrihydrite) end-member and an inferred P:Fe = 1:2 end-member beyond which P is not incorporated in the structure of the P-HFO solid. Up to and somewhat beyond the limiting end-member P:Fe ratio, all available P is scavenged by the coprecipitation reaction, suggesting strong P-Fe complexation in the precipitation-precursor dissolved species. The P-HFO solids are more stable (i.e., have stronger chemical bonds) than the P-free ferrihydrite end-member. We show that in coprecipitation the P specifically incorporates within the nanoparticle structure rather than complexing to the nanoparticle surface. Our results are relevant to the question of the mechanisms of coupling between the Fe and P cycles in natural aqueous environments and highlight a strong affinity between Fe and P in aqueous environments.  相似文献   

17.
Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (μXRF), X-ray absorption spectroscopy (μΕXAFS), and X-ray diffraction (μXRD) in conjunction with focused ion beam (FIB) sectioning, and high resolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1−xS, 0 ? x ? 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe μEXAFS spectroscopy and μXRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that microbiologically produced Fe-complexing ligands may play critical roles in both the delivery of Fe(II) to oxidases, and the limited Fe(III) oxyhydroxide crystallinity observed within the biofilm. Our research provides insight into the structure and formation of naturally occurring, microbiologically produced Fe oxyhydroxide minerals in the deep-sea. We describe the initiation of microbial seafloor weathering, and the morphological and mineralogical signals that result from that process. Our observations provide a starting point from which progressively older and more extensively weathered seafloor sulfide minerals may be examined, with the ultimate goal of improved interpretation of ancient microbial processes and associated biological signatures.  相似文献   

18.
In oxic environments contaminated with arsenate (As(V)), small polyhydroxycarboxylates such as citrate may impact the structure of precipitating ferrihydrite (Fh) and thus the surface speciation of As(V). In this study, ‘2-line’ Fh was precipitated from ferric nitrate solutions that were neutralized to pH 6.5 in the presence of increasing citrate concentrations and in the absence or presence of As(V). The initial citrate/Fe and As/Fe ratios were 0-50 mol% and 5 mol%, respectively. The reaction products, enriched with up to 0.32 mol citrate per mole Fe, were characterized by X-ray diffraction, transmission electron microscopy, and Fe and As K-edge X-ray absorption spectroscopy. Citrate decreased the particle size of Fh by impairing the polymerization of Fe(O,OH)6 octahedra via edge and corner linkages. In the presence of citrate and As(V), coordination numbers of Fe decreased by up to 28% relative to pure Fh. Citrate significantly reduced the static disorder of Fe-O bonds, implying a decreased octahedral distortion in Fh. Mean bond distances in Fh were not affected by citrate and remained constant within error at 1.98 Å for Fe-O, 3.03 Å for Fe-Fe1, and 3.45 Å for Fe-Fe2. Likewise, citrate had no effect on the As-Fe (3.31 Å) bond distance in As(V) coprecipitated with Fh. The As K-edge EXAFS data comply with the formation of (i) only monodentate binuclear (2C) As(V) surface complexes and (ii) combinations of 2C, monodentate mononuclear (1V), and outersphere As(V) surface complexes. Our results suggest that increasing citrate concentrations led to a decreasing 1V/2C ratio and/or that citrate increasingly impaired the formation of outersphere As(V) complexes. Moreover, citrate stabilized colloidal suspensions of Fh (pH 4.3-6.6, I ∼0.45 M) and reduced Fh formation at the expense of soluble Fe(III)-citrate complexes. At initial citrate/Fe ratios ?25 mol%, between 8% and 41% of total Fe was bound in Fe(III)-citrate complexes after Fh formation. Polynuclear Fe(III)-citrate species were found to bind As(V) via surface complexes indistinguishable by EXAFS from those of As(V) adsorbed to or coprecipitated with Fh. Our study implies that low molecular weight polyhydroxycarboxylates may enhance the mobility of As(V) in aqueous systems of high ionic strength (e.g., neutralizing acid mine drainage) by colloidal stabilization of suspended Fh particles and the formation of ternary As(V) complexes.  相似文献   

19.
The poorly crystalline Fe(III) hydroxide ferrihydrite is considered one of the most important sinks for (in)organic contaminants and nutrients within soils, sediments, and waters. The ripening of ferrihydrite to more stable and hence less reactive phases such as goethite is catalyzed by surface reaction with aqueous Fe(II). While ferrihydrite within most natural environments contains high concentrations of adsorbed or co-precipitated cations (particularly Al), little is known regarding the impact of these cations on Fe(II)-induced transformation of ferrihydrite to secondary phases. Accordingly, we explored the extent, rates, and pathways of Fe(II)-induced secondary mineralization of Al-ferrihydrites by reacting aqueous Fe(II) (0.2 and 2.0 mM) with 2-line ferrihydrite containing a range of Al levels substituted within (6-24 mol% Al) or adsorbed on the surface (0.1-27% Γmax). Here, we show that regardless of the Fe(II) concentration, Al substituted within or adsorbed on ferrihydrite results in diminished secondary mineralization and preservation of ferrihydrite. In contrast to pure ferrihydrite, the concentration of Fe(II) may not in fact influence the mineralization products of Al-compromised ferrihydrites. Furthermore, the secondary mineral profiles upon Fe(II) reaction with ferrihydrite are not only a function of Al concentration but also the mode of Al incorporation. While Al substitution impedes lepidocrocite formation and magnetite nucleation, Al adsorption completely inhibits goethite formation and appears to have a lesser impact on magnetite nucleation. When normalized to total Al content associated with ferrihydrite, Al adsorption results in greater degree of ferrihydrite preservation relative to Al substitution. These findings provide insight into mechanisms that may be responsible for ferrihydrite preservation and low levels of secondary magnetite typically found in sedimentary environments. Considering the preponderance of cation substitution within and adsorption on ferrihydrite in soils and sediments, the reactivity of natural (compromised) ferrihydrites and the subsequent impact on mineral evolution needs to be more fully explored.  相似文献   

20.
Sorption of phosphate by Fe(III)- and Al(III)-(hydr)oxide minerals regulates the mobility of this potential water pollutant in the environment. The objective of this research was to determine the molecular configuration of phosphate bound on ferrihydrite at pH 6 by interpreting P K-edge XANES spectra in terms of bonding mode. XANES and UV-visible absorption spectra for aqueous Fe(III)-PO4 solutions (Fe/P molar ratio = 0-2.0) provided experimental trends for energies of P(3p)-O(2p) and Fe(3d)-O(2p) antibonding molecular orbitals. Molecular orbitals for Fe(III)-PO4 or Al(III)-PO4 complexes in idealized monodentate or bidentate bonding mode were generated by conceptual bonding arguments, and Extended-Hückel molecular orbital computations were used to understand and assign XANES spectral features to bound electronic states. The strong white line at the absorption edge in P K-edge XANES spectra for Fe-PO4 or Al-PO4 systems is attributable to an electronic transition from a P 1s atomic orbital into P(3p)-O(2p) or P(3p)-O(2p)-Al(3p) antibonding molecular orbitals, respectively. For Fe-PO4 systems, a XANES peak at 2-5 eV below the edge was assigned to a P 1s electron transition into Fe(4p)-O(2p) antibonding molecular orbitals. Similarly, a shoulder on the low-energy side of the white line for variscite corresponds to a transition into Al(3p)-O(2p) orbitals. In monodentate-bonded phosphate, Fe-O bonding is optimized and P-O bonding is weakened, and the converse is true of bidentate-bonded phosphate. These differences explained an inverse correlation between energies of P(3p)-O(2p) and Fe(3d)-O(2p) antibonding molecular orbitals consistent with a monodentate-to-bidentate transition in aqueous Fe(III)-PO4 solutions. The intensity of the XANES pre-edge feature in Fe(III)-bonded systems increased with increasing number of Fe(III)-O-P bonds. Based on the similarity of intensity and splitting of the pre-edge feature for phosphate sorbed on ferrihydrite at 750 mmol/kg at pH 6 and aqueous Fe-PO4 solutions containing predominantly bidentate complexes, XANES results indicated that phosphate adsorbed on ferrihydrite was predominantly a bidentate-binuclear surface complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号