首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surrounding soil can drastically influence the dynamic response of buildings during strong ground shaking. Soil’s flexibility decreases the natural frequencies of the system; and in most cases, soil provides additional damping due to material hysteresis and radiation. The additional damping forces, which are in non-classical form, render the mode shapes of the soil–structure system complex-valued. The response of a soil-foundation system can be compactly represented through impedance functions that have real and imaginary parts representing the stiffness and damping of the system, respectively. These impedance functions are frequency-dependent, and their determination for different configurations been the subject of a considerable number of analytical, numerical, and experimental studies. In this paper, we first develop a new identification technique that is capable of extracting complex mode shapes from the recorded free or ambient vibrations of a system. This technique is an extension of the second-order blind identification (SOBI) method, which is fairly well established in a number of other areas including sound separation, image processing, and mechanical system identification. The relative ease of implementation of this output-only identification technique has been the primary source of its appeal. We assess the accuracy and the utility of this extended SOBI technique by applying it to both synthetic and experimental data. We also present a secondary procedure, through which the frequency-dependent soil-foundation impedance functions can be easily extracted. The said procedure has a practical appeal as it uses only free or ambient responses of the structure to extract the foundation impedance functions, whereas current techniques require expensive and time-consuming forced-vibration tests.  相似文献   

2.
This paper aims to assess and improve the seismic performance of an existing masonry building with flexible floors, representative of a Portuguese building typology—‘gaioleiro’ buildings. The study involved seismic tests and dynamic identification tests of two models (nonstrengthened and strengthened) in the shaking table. Each model was subjected to several seismic tests with increasing amplitude. Before the first test and after each seismic test, the dynamic identification of the model was carried out, aiming at obtaining their seismic vulnerability curves based on a damage indicator obtained from the decrease of the frequencies of the modes. In the strengthened model, steel elements were used to improve the connection between walls and floors, together with ties in the upper stories. The results show that adopted strengthening technique is effective for reducing the seismic vulnerability of ‘gaioleiro’ buildings, namely for improving the out‐of‐plane behavior of the facades. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A new Internet online hybrid test system, designated the ‘peer‐to‐peer (P2P) Internet online hybrid test system’, is proposed. In the system, the simulated structure is divided into multiple substructures, and each substructure is analysed numerically or tested physically in parallel at geographically distributed locations. The equations of motion are not formulated for the entire structure but for each substructure separately. Substructures are treated as highly independent systems, and only standard I/O, i.e. displacements and forces at the boundaries, are used as interfaces. A ‘Coordinator’ equipped with an iterative algorithm based on quasi‐Newton iterations is developed to achieve compatibility and equilibrium at boundaries. A test procedure, featuring two rounds of quasi‐Newton iterations and using assumed elastic stiffness, is adopted to avoid iteration for the substructure being tested physically. A fast and stable solution using a socket mechanism is developed for data exchange over the Internet. Demonstration tests applied to a base‐isolated structure was conducted, and the results are compared with an online hybrid test using the conventional test method. The results obtained from the P2P Internet hybrid test match very closely those obtained from the conventional tests. Investigations are also carried out on time consumption and control accuracy. The results show that the Internet data exchange solution using the socket mechanism is fast, and tests were completed successfully under the constructed Internet online hybrid test environment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Output‐only modal identification is needed when only structural responses are available. As a powerful unsupervised learning algorithm, blind source separation (BSS) technique is able to recover the hidden sources and the unknown mixing process using only the observed mixtures. This paper proposes a new time‐domain output‐only modal identification method based on a novel BSS learning algorithm, complexity pursuit (CP). The proposed concept—independent ‘physical systems’ living on the modal coordinates—connects the targeted constituent sources (and their mixing process) targeted by the CP learning rule and the modal responses (and the mode matrix), which can then be directly extracted by the CP algorithm from the measured free or ambient system responses. Numerical simulation results show that the CP method realizes accurate and robust modal identification even in the closely spaced mode and the highly damped mode cases subject to non‐stationary ambient excitation and provides excellent approximation to the non‐diagonalizable highly damped (complex) modes. Experimental and real‐world seismic‐excited structure examples are also presented to demonstrate its capability of blindly extracting modal information from system responses. The proposed CP is shown to yield clear physical interpretation in modal identification; it is computational efficient, user‐friendly, and automatic, requiring little expertise interactions for implementations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The performance of a building under wind and seismic loads depends on stiffness and mass distribution, and may be estimated using finite element codes. Experience has, however, shown that such finite element models often fail to predict accurately the fundamental natural frequencies. Usually the frequencies will be underestimated, that is the building will turn out to be stiffer than anticipated, meaning the design would usually be conservative. On the other hand, effects like torsional eccentricity and foundation compliance may not be correctly modelled, which could be less desirable. A full understanding of linear performance under lateral loads can be obtained through experimental evaluation of the vibration modes. Traditionally only a limited range of modal analysis procedures and software has been applied to civil applications and the ‘special case’ where no input forces can be measured has been the usual situation for large civil structures. Recent developments in system identification, which is the set of procedures to build mathematical models of the dynamic structural systems based on measured data, have added significantly to the potential of ambient vibration or ‘output only’ testing. The aim of the research reported here has been to apply and evaluate the procedures on typical buildings. The procedures are briefly explained and two experimental programmes are then described; a long‐term tremor monitoring exercise on a 280m office tower and an ambient vibration survey of a smaller office block. The different forms of response data are examined to study the performance of the analysis procedures and expose benefits and limitations in their use. There is a growing interest in output‐only modal analysis procedures in civil engineering. The experience reported in this paper has shown that quick and reliable estimation of mode shapes and frequencies can be obtained, even with small amounts of data. Judgement of modal participation and damping ratios requires more detailed study yet the results are at least as convincing as existing and relatively limited frequency domain methods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The Rayleigh damping model, which is pervasive in nonlinear response history analysis (RHA) of buildings, is shown to develop ‘spurious’ damping forces and lead to inaccurate response results. We prove that a viscous damping matrix constructed by superposition of modal damping matrices—irrespective of the number of modes included or values assigned to modal damping ratios—completely eliminates the ‘spurious’ damping forces. This is the damping model recommended for nonlinear RHA. Replacing the stiffness‐proportional part of Rayleigh damping by the tangent stiffness matrix is shown to improve response results. However, this model is not recommended because it lacks a physical basis and has conceptual implications that are troubling: hysteresis in damping force–velocity relationship and negative damping at large displacements. Furthermore, the model conflicts with the constant‐damping model that has been the basis for fundamental concepts and accumulated experience about the inelastic response of structures. With a distributed plasticity model, the structural response is not sensitive to the damping model; even the Rayleigh damping model leads to acceptable results. This perspective on damping provides yet another reason to employ the superior distributed plasticity models in nonlinear RHA. OpenSees software has been extended to include a damping matrix defined as the superposition of modal damping matrices. Although this model leads to a full populated damping matrix, the additional computational demands are demonstrated to be minimal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
对一基础隔震钢筋混凝土框架结构在无填充墙情况下进行了环境激励下的动力测试,重点利用Hilbert-Huang变换与随机减量技术相结合的方法识别了其模态参数,并与随机子空间识别法、有理分式多项式法识别的结果进行了对比。识别结果表明在环境激励下,基础隔震结构的基本周期远小于多遇和罕遇地震工况下设计计算的基本周期;等效黏滞阻尼比很小,近乎于基础固定模型。对隔震层阻尼特性的分析表明,环境激励下可以将基础隔震结构视为经典的比例阻尼系统。进一步以识别的模态参数为基准,采用优化的方法数值反演了环境激励下该结构隔震层的实际水平等效刚度,结果表明其值为多遇地震下计算刚度取值的10.75倍。  相似文献   

8.
A damage detection algorithm of structural health monitoring systems for base‐isolated buildings is proposed. The algorithm consists of the multiple‐input multiple‐output subspace identification method and the complex modal analysis. The algorithm is applicable to linear and non‐linear systems. The story stiffness and damping as damage indices of a shear structure are identified by the algorithm. The algorithm is further tuned for base‐isolated buildings considering their unique dynamic characteristics by simplifying the systems to single‐degree‐of‐freedom systems. The isolation layer and the superstructure of a base‐isolated building are treated as separate substructures as they are distinctly different in their dynamic properties. The effectiveness of the algorithm is evaluated through the numerical analysis and experiment. Finally, the algorithm is applied to the existing 7‐story base‐isolated building that is equipped with an Internet‐based monitoring system. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The paper presents a model describing the evolution of the effective stiffness of a ‘mode’ of a structure subjected to an earthquake engaging it in its non-linear phase of behaviour. Such models are available in the literature; however, the proposed one allows the estimation of the effective stiffnesses both of the virgin state of the structure and of its ultimate state, even when the excitation considered does not act on an undamaged system nor leads it to ultimate conditions. Only the base input and the response at a significant location of the structure need to be known to apply the procedure. This is satisfactorily checked against the results of shaking table tests performed on masonry buildings.  相似文献   

10.
本文结合《建筑抗震设计规范》及结构控制理论,建立起框架结构刚度优化模型及控制力与刚度的联合优化模型,最后得到刚度的优化分布规律。  相似文献   

11.
钢结构房屋动力特性脉动法测试研究   总被引:3,自引:0,他引:3  
对上海地区的10幢钢结构建筑进行脉动法测试并采集数据,得到广义钢结构房屋的动力特性。选取其中1栋典型建筑通过多次测试和数值模拟分别验证测试的稳定性和准确性。通过分析处理测试数据建立钢结构建筑一阶周期与结构层数或高度的线性关系式,并归纳总结了等效阻尼比的测试结果,为验证结构动力特性理论计算结果、钢结构建筑减震隔震设计以及鉴定、加固改造、损伤识别提供依据。  相似文献   

12.
ERA方法是基于环境激励的结构振动测试的方法中重要的时域分析方法。主要由ERA算法对齐齐哈尔砌体结构居民房的基本模态参数进行测试。简述了ERA算法的主要思路和计算过程,介绍了相应的模态识别准则MAC,以及ERA算法在MATLAB中的实现。由ERA算法得到的模态参数与有限元建模分析结果分析比较吻合,为砌体结构在环境激励下用ERA方法测试模态参数提供了实验依据。最后,讨论了ERA方法与有限元建模分析结果出现差异的原因,以及ERA方法在环境激励下的限制和不足。  相似文献   

13.
The problem of determining linear models of structures from seismic response data is investigated using ideas from the theory of system identification. The approach is to determine the optimal estimates of the model parameters by minimizing a selected measure-of-fit between the responses of the structure and the model. Because earthquake records are normally available from only a small number of locations in a structure, and because of noise in the records, it is necessary in practice to estimate parameters of the dominant modes in the records, rather than the stiffness and damping matrices of the linear model. A new algorithm is developed to determine the optimal estimates of the modal parameters. After tests with simulated data, the method is applied to a multi-storey building using records from the 1971 San Fernando earthquake in California. New information is obtained concerning the properties of the lower modes of the building and the time-varying character of the equivalent linear parameters.  相似文献   

14.
Dense networks of wireless structural health monitoring systems can effectively remove the disadvantages associated with current wire‐based sparse sensing systems. However, recorded data sets may have relative time‐delays due to interference in radio transmission or inherent internal sensor clock errors. For structural system identification and damage detection purposes, sensor data require that they are time synchronized. The need for time synchronization of sensor data is illustrated through a series of tests on asynchronous data sets. Results from the identification of structural modal parameters show that frequencies and damping ratios are not influenced by the asynchronous data; however, the error in identifying structural mode shapes can be significant. The results from these tests are summarized in Appendix A. The objective of this paper is to present algorithms for measurement data synchronization. Two algorithms are proposed for this purpose. The first algorithm is applicable when the input signal to a structure can be measured. The time‐delay between an output measurement and the input is identified based on an ARX (auto‐regressive model with exogenous input) model for the input–output pair recordings. The second algorithm can be used for a structure subject to ambient excitation, where the excitation cannot be measured. An ARMAV (auto‐regressive moving average vector) model is constructed from two output signals and the time‐delay between them is evaluated. The proposed algorithms are verified with simulation data and recorded seismic response data from multi‐story buildings. The influence of noise on the time‐delay estimates is also assessed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Dynamic characteristics of structures — viz. natural frequencies, damping ratios, and mode shapes — are central to earthquake‐resistant design. These values identified from field measurements are useful for model validation and health‐monitoring. Most system identification methods require input excitations motions to be measured and the structural response; however, the true input motions are seldom recordable. For example, when soil–structure interaction effects are non‐negligible, neither the free‐field motions nor the recorded responses of the foundations may be assumed as ‘input’. Even in the absence of soil–structure interaction, in many instances, the foundation responses are not recorded (or are recorded with a low signal‐to‐noise ratio). Unfortunately, existing output‐only methods are limited to free vibration data, or weak stationary ambient excitations. However, it is well‐known that the dynamic characteristics of most civil structures are amplitude‐dependent; thus, parameters identified from low‐amplitude responses do not match well with those from strong excitations, which arguably are more pertinent to seismic design. In this study, we present a new identification method through which a structure's dynamic characteristics can be extracted using only seismic response (output) signals. In this method, first, the response signals’ spatial time‐frequency distributions are used for blindly identifying the classical mode shapes and the modal coordinate signals. Second, cross‐relations among the modal coordinates are employed to determine the system's natural frequencies and damping ratios on the premise of linear behavior for the system. We use simulated (but realistic) data to verify the method, and also apply it to a real‐life data set to demonstrate its utility. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Recent results of in situ measurements and their interest for a seismic assessment of existing buildings are presented and analysed. The present paper (Part I) is devoted to the experimental programme. The response to ambient vibrations, harmonic excitation and shock loading is recorded on intact buildings but also after their structure or their vicinity was modified. These tests aim to identify the dynamic behaviour of ordinary intact buildings built in a conventional practise. Moreover, taking advantage of their demolition, it was possible (through these tests) to determine the actual influence of the light work elements, full precast facade panels, bearing masonry walls, and the presence of neighbouring joined buildings. These experiments realized on real buildings show that information gathered from ambient measurements provide reliable and efficient data of real interest for a clear understanding of the actual building behaviour. The advantage of integrating these data in the vulnerability assessment is presented and discussed in the next paper (Part II). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A new passive seismic response control device has been developed, fabricated, and tested by the authors and shown to be capable of producing negative stiffness via a purely mechanical mechanism, thus representing a new generation of seismic protection devices. Although the concept of negative stiffness may appear to be a reversal on the desired relationship between the force and displacement in structures (the desired relationship being that the product of restoring force and displacement is nonnegative), when implemented in parallel with a structure having positive stiffness, the combined system appears to have substantially reduced stiffness while remaining stable. Thus, there is an ‘apparent weakening and softening’ of the structure that results in reduced forces and increased displacements (where the weakening and softening is of a non‐damaging nature in that it occurs in a seismic protection device rather than within the structural framing system). Any excessive displacement response can then be limited by incorporating a damping device in parallel with the negative stiffness device. The combination of negative stiffness and passive damping provides a large degree of control over the expected performance of the structure. In this paper, a numerical study is presented on the performance of a seismically isolated highway bridge model that is subjected to various strong earthquake ground motions. The Negative Stiffness Devices (NSDs) are described along with their hysteretic behavior as obtained from a series of cyclic tests wherein the tests were conducted using a modified design of the NSDs (modified for testing within the bridge model). Using the results from the cyclic tests, numerical simulations of the seismic response of the isolated bridge model were conducted for various configurations (with/without negative stiffness devices and/or viscous dampers). The results demonstrate that the addition of negative stiffness devices reduces the base shear substantially, while the deck displacement is limited to acceptable values. This assessment was conducted as part of a NEES (Network for Earthquake Engineering Simulation) project which included shaking table tests of a quarter‐scale highway bridge model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.

Rapid and accurate identification of potential structural deficiencies is a crucial task in evaluating seismic vulnerability of large building inventories in a region. In the case of multi-story structures, abrupt vertical variations of story stiffness are known to significantly increase the likelihood of collapse during moderate or severe earthquakes. Identifying and retrofitting buildings with such irregularities—generally termed as soft-story buildings—is, therefore, vital in earthquake preparedness and loss mitigation efforts. Soft-story building identification through conventional means is a labor-intensive and time-consuming process. In this study, an automated procedure was devised based on deep learning techniques for identifying soft-story buildings from street-view images at a regional scale. A database containing a large number of building images and a semi-automated image labeling approach that effectively annotates new database entries was developed for developing the deep learning model. Extensive computational experiments were carried out to examine the effectiveness of the proposed procedure, and to gain insights into automated soft-story building identification.

  相似文献   

19.
A neural network-based approach is presented for the detection of changes in the characteristics of structure-unknown systems. The approach relies on the use of vibration measurements from a ‘healthy’ system to train a neural network for identification purposes. Subsequently, the trained network is fed comparable vibration measurements from the same structure under different episodes of response in order to monitor the health of the structure. The methodology is applied to actual data obtained from ambient vibration measurements on a steel building structure that was damaged under strong seismic motion during the Hyogo-Ken Nanbu Earthquake of 17 January 1995. The measurements were done before and after repairs to the damaged frame were made. A neural network is trained with data after the repairs, which represents ‘healthy’ condition of the building. The trained network, which is subsequently fed data before the repairs, successfully identified the difference between the damaged storey and the undamaged storey. Through this study, it is shown that the proposed approach has the potential of being a practical tool for a damage detection methodology applied to smart civil structures. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Effectiveness of a new semiactive independently variable stiffness (SAIVS) device in reducing seismic response of sliding base isolated buildings is evaluated analytically and experimentally. Through analytical and experimental study of force—displacement behaviour of the SAIVS device, it is shown that the device can vary stiffness continuously and smoothly between minimum and maximum stiffness. Passive sliding base isolation systems reduce interstorey drifts and superstructure accelerations, but with increased base displacements, which is undesirable, under large velocity near fault pulse type earthquakes. It is a common practice to incorporate non‐linear passive dampers into the isolation system to reduce bearing displacements. Incorporation of passive dampers, however, may result in increased superstructure accelerations and drifts; while, properly designed passive dampers can be beneficial. A viable alternative is to use semiactive variable stiffness systems, which can vary the period of the sliding base isolated buildings in real time, to simultaneously reduce bearing displacements and superstructure responses further than the passive systems, which deserves investigation. This study investigates the performance of a 1:5 scaled smart sliding base isolated building model equipped with the SAIVS device analytically and experimentally, under near fault earthquakes, by developing a new moving average non‐linear tangential stiffness control algorithm for control of the SAIVS device. The SAIVS device reduces bearing displacements further than the passive cases, while maintaining isolation level forces and superstructure responses at the same level as the passive minimum stiffness case, indicating the significant potential of the SAIVS system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号