首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The Jane Arc and Basin system is located at the eastern offshore prolongation of the Antarctic Peninsula, along the southern margin of the South Orkney Microcontinent. Three magnetic anomaly profiles orthogonal to the main tectonic and bathymetric trends were recorded during the SCAN97 cruise by the Spanish R/V Hespérides. In our profiles, chron C6n (19.5 Ma) was identified as the youngest oceanic crust of the Northern Weddell Sea, whose northern spreading branch was totally subducted. The profiles from the Jane Basin allow us to date, for the first time, the age of the oceanic crust using linear sea floor magnetic anomalies. The spreading in the Jane Basin began around the age of the oldest magnetic anomaly at 17.6 Ma (chron C5Dn), and ended about 14.4 Ma (chron C5ADn). The distribution of the magnetic anomalies indicate that the mechanism responsible for the development of Jane Basin was the subduction of the Weddell Sea spreading centre below the SE margin of the South Orkney Microcontinent, suggesting a novel mechanism for an extreme case of backarc development.  相似文献   

2.
The Clarion-Clipperton Zone (CCZ) of the central Pacific is one of the few regions in the world’s oceans that are still lacking full coverage of reliable identifications of seafloor spreading anomalies. This is mainly due to the geometry of the magnetic lineations’ strike direction sub-parallel to the Earth’s magnetic field vector near the equator resulting in low amplitude magnetic anomalies, and the remoteness of the region which has hindered systematic surveying in the past. Following recently granted research licenses for manganese nodules in the CCZ by the International Seabed Authority, new magnetic data acquired with modern instrumentation became available which combined with older underway data make the identification of seafloor spreading anomalies possible for large parts of the CCZ and adjacent areas. The spreading rates deduced from the seafloor spreading patterns show a sharp increase at the end of Chron 21 (47.5 Ma) which corresponds to the age of the bend in the Hawaii-Emperor seamount chain and an associated plate tectonic reorganisation in the Central Pacific. An accurate map of crustal ages for the central-eastern Pacific based on our anomaly picks may provide a basis for improved plate tectonic reconstructions of the region.  相似文献   

3.
4.
南海西北海盆的构造特征及南海新生代的海底扩张   总被引:10,自引:0,他引:10  
分析了南海西北海盆及其邻区的地形地貌、重磁场异常和地壳结构特征,并对穿过西北海盆和中央海盆的地震剖面进行精细解释。结果发现,西北海盆的地球物理场异常、地质构造和地壳厚度均呈NE走向展布,而中央海盆则表现为EW向特征;西北海盆中的新生代沉积比中央海盆多一套地层(T4-Tg),说明西北海盆的年龄比中央海盆老。联系到南海西南海盆和西北海盆在区域构造、地球物理场异常和地形地貌特征等方面的相似,以及西南海盆和中央海盆由磁异常条带对比得出的年龄差异,我们认为,西北海盆和西南海盆是在第一次海底扩张时(42-35MaB.P.)形成的,中央海盆是在第二次海底扩张时形成的。  相似文献   

5.
We confirm that a Malvinas Plate is required in the Agulhas Basin during the Late Cretaceous because: (1) oblique Mercator plots of marine gravity show that fracture zones generated on the Agulhas rift, as well as the Agulhas Fracture Zone, do not lie on small circles about the 33o-28y South America-Africa stage pole and were therefore not formed by South America-Africa spreading, (2) the 33o-28y South America-Africa stage rotation does not bring 33o magnetic anomalies on the Malvinas Plate into alignment with their conjugates on the African Plate, and (3) errors in the 33o-28y South America-Africa stage rotation cannot account for the misalignment. We present improved Malvinas-Africa finite rotations determined by interpreting magnetic anomaly data in light of fracture zones and extinct spreading rift segments (the Agulhas rift) that are clearly revealed in satellite-derived marine gravity fields covering the Agulhas Basin. The tectonic history of the Malvinas Plate is chronicled through gravity field reconstructions that use the improved Malvinas-Africa finite rotations and more recent South America-Africa and Antarctica-Africa finite rotations. Newly-mapped triple junction traces on the Antarctic, South American, Malvinas, and African Plates, combined with geometric and magnetic constraints observed in the reconstructions, enable us to investigate the locations of the elusive western and southern boundaries of the Malvinas Plate. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
冲绳海槽中段地球物理场及对其新生洋壳的认识   总被引:13,自引:1,他引:13  
通过对冲绳海槽中的磁场进行分析,在海槽轴部追踪到了线性磁条带异常。另外,在扩张轴附近也拖到了新鲜拉斑玄武岩。重力自由空气异常值较低。根据这是由于深部地幔大幅上升所致。地震剖面及磁力资料显示在海槽轴部有强磁性浅层侵入体及海底山,这些侵入体很可能来自于深部地幔。高温地幔物质上涌在海槽轴部形成高热流、强磁异常、多火山以及热液活动。上述现象说明冲绳海槽中段张裂轴部大陆岩石圈已经破裂,并可能已有新生洋壳形成。  相似文献   

7.
A New Scenario of the Parece Vela Basin Genesis   总被引:4,自引:0,他引:4  
Okino  K.  Kasuga  S.  Ohara  Y. 《Marine Geophysical Researches》1998,20(1):21-40
A new high density geophysical data set in the Parece Vela Basin north of 15°N has been obtained through surveys conducted by the Hydrographic Department of Japan. The combined analyses of the swath bathymetry, magnetic and gravity anomalies from these surveys reveal a new scenario for the genesis of this basin. The evolutionary process is as follows: rifting and crust thinning (29–26 Ma), northward propagation of east-west opening (26-23 Ma) , east-west opening together with the Shikoku Basin (23–21 Ma), and the northeast-southwest opening (20/19–15 Ma). The western part of the basin is complicated, displaying some traces of northward propagation of the spreading center. The change between early east-west opening and the final stage of northeast-southwest spreading is marked by a distinct north-south boundary in both structural and magnetic patterns. Deep and rough topography of the extinct Parece Vela Rift is due to magma starvation in the terminal phase of the spreading.  相似文献   

8.
通过模型正演分析发现,盆地深层火山岩产生的磁异常不是很大,表现为叠加在强背景之上的次级异常。基于积分迭代延拓方法提出了增强盆地深层火山岩磁异常信息的新方法—积分迭代延拓平化曲。该方法不仅能起到增强盆地深层火山岩磁异常的作用,而且还能起到消除火山岩埋深不同对磁异常形态和大小的影响,以达到均衡磁异常的目的。将该方法应用到松辽盆地的深层火山岩预测中见到了明显的应用效果。  相似文献   

9.
Magnetic anomalies measured in the central to western half of the Solomon Sea, when considered with other magnetic data, reveal the existence of linear patterns. Magnetic lineation anomaly models of the Cenozoic, 65 to 0 Ma, suggest that an age between 34 and 28 Ma and a half-rate spreading speed of 5.8 cm/yr for the northern flank of a former spreading center best fits our present magnetic data in the Solomon Sea Basin. Heat flow and bathymetry data support this preferred model.  相似文献   

10.
Magnetic anomalies measured in the central to western half of the Solomon Sea, when considered with other magnetic data, reveal the existence of linear patterns. Magnetic lineation anomaly models of the Cenozoic, 65 to 0 Ma, suggest that an age between 34 and 28 Ma and a half-rate spreading speed of 5.8 cm/yr for the northern flank of a former spreading center best fits our present magnetic data in the Solomon Sea Basin. Heat flow and bathymetry data support this preferred model.  相似文献   

11.
Faults on the outer wall of the northern Peru—Chile trench, seaward of the Lima Basin, Arica Bight, and Iquique Basin, parallel the trend of Nazca plate magnetic anomalies. Where the Nazca Ridge enters the subduction zone, faulting parallels the trench, probably reflecting a lack of spreading fabric on the ridge. Seaward of the Yaquina Basin, faulting does not parallel the trench or the spreading fabric, possibly reflecting stress changes caused by N—S extension across the nearby Mendaña fracture zone. These results generally agree with a previous review of subduction-related faulting, which concluded that faults parallel the spreading fabric where it differs from the strike of the dipping slab by less than 30°.  相似文献   

12.
Identification by Bhattacharya et al. (1994) of seafloor spreading type magnetic anomalies in the basin lying between Laxmi Ridge in the Arabian Sea and the Indian continent necessitates a change in plate tectonic reconstruction. Naini and Talwani (1982) named this basin the Eastern Basin and we will continue to use this term in this paper. Others, in the literature, have called this the Laxmi Basin. Previous reconstructions had assumed that the Eastern Basin is underlain by continental crust. The new reconstruction moves Seychelles' original location closer to India and ameliorates a space problem in the Mascarene Basin. A new rotation pole between anomaly 28 and 34 times avoids skipping of fracture zones resulting from rotation poles described earlier. The negative gravity anomaly over the Eastern Basin is a necessary consequence of a continental sliver lying between oceanic crust on either side. Seismic velocities that are slightly greater than 7 km s–1 under the Eastern need not be necessarily interpreted as material that underplates continental crust.  相似文献   

13.
In this paper, we demonstrate the effectiveness of steerable filters as a method of delineating the boundaries of subsurface geological structures. Steerable filters, generally used for edge detection on 2-D images, have the properties of band pass filters with certain directions and are applied to many image processing problems. We first tested the method on synthetic data and then applied it to the aeromagnetic data of İskenderun Basin and adjacent areas.İskenderun Basin is located in the Northeastern Mediterranean where African–Arabian and Anatolian plates are actively interacting. The basin fill records a complex tectonic evolution since the Early Miocene, involving ophiolite emplacement, diachronous collision of Eurasian and Arabian plates and subsequent tectonic escape related structures and associated basin formation. Geophysical investigations of the tectonic framework of İskenderun Basin of Turkey provide important insights on the regional tectonics of the Eastern Mediterranean and Middle East. In this study we show geological structures, which are responsible for the magnetic anomalies in İskenderun Basin and enlighten the structural setting of the Northeastern Mediterranean triple junction using steerable filters. We obtained a magnetic anomaly map of the region from the General Directorate of Mineral Research and Exploration as raw data and then evaluated this by steerable filters. We determined the magnetic anomaly boundaries for İskenderun Basin by using various types of steerable filters and correlated these to drilling data and seismic profiles from the Turkish Petroleum Corporation. The result of the steerable filter analysis was a clarified aeromagnetic anomaly map of İskenderun Basin. The tectonic structure of İskenderun Basin is divided into regions by an N–S trending oblique-slip fault defined by the steerable filter outputs. We propose a new tectonic structure model of İskenderun Basin and modify the direction of the East Anatolian Fault Zone. In our model, East Anatolian Fault Zone cross-cuts the basin as a narrow fault zone and continues towards the Cyprus arc.  相似文献   

14.
台西南盆地的构造演化与油气藏组合分析   总被引:14,自引:2,他引:14  
本文根据台西南盆地的地质、地球物理资料,对台西南盆地的地壳结构、基底特征、沉积厚度、断裂构造等基本地质构造特征^[1]作了研究,探讨了台西南盆地的构造发展演化及及油气藏组合。认为该盆地的构造演化为幕式拉张。幕式拉张可分为三大张裂幕,相应的热沉降作用使盆地在不同的张裂幕时期发展为断陷,裂陷,裂拗-拗陷。它们分别与板块作用下的区域构造运动阶段相对应,说明区域构造运动不但控制了盆地的发展演化,同时也制约  相似文献   

15.
从南海与大洋磁异常的相关性探讨南海的成因   总被引:1,自引:0,他引:1  
对南海与大洋盆地条带状磁异常的相关分析表明,相关系数为0.11—0.659,存在弱线性关系。这从一个侧面反映出边缘海洋壳与大洋壳本质上的差异。边缘海洋壳是玄武岩浆侵入并吞蚀破碎的大陆边缘地壳后形成的不同于大洋壳的新型洋壳。南海盆地磁异常显示其洋壳是新老不一、厚薄不匀的新洋壳的拼合叠覆体。  相似文献   

16.
南海东北部陆缘构造演化信息丰富,对于理解南海的演化过程至关重要。本文收集了南海东北部的深反射地震和海底广角地震成果剖面,提取地壳和下地壳高速层的厚度结果,并结合水深、重磁异常和岩石圈的流变学等地质地球物理资料,对南海东北部的地壳减薄特征、吕宋-琉球转换板块边界的性质和下地壳高速层的分布及成因进行了分析和讨论。南海东北部的地壳减薄在横向和垂向上都存在不均匀性,以下地壳减薄为主,在台西南盆地存在极端减薄地壳;南海北缘的白云凹陷、西沙海槽和西缘的中建南盆地也存在类似的极端减薄地壳,且都与刚性地块共轭或邻近,推测刚性地块的存在导致地壳初始破裂时下地壳流动和地幔上隆是局部出现地壳极端减薄的主要原因。吕宋-琉球转换板块边界两侧在海底地形、新生代反射和重磁异常等方面均存在差异,与中生代岛弧引起的高磁异常大角度相交,其可能是中生代古特提斯构造域向太平洋构造域转换的边界断裂。下地壳高速层在南海东北部广泛发育,结合其分布特征和波速比Vp/Vs的分布区间,认为其是多期次岩浆底侵形成的铁镁质基性岩。  相似文献   

17.
Compared to the northern South China Sea continental margin, the deep structures and tectonic evolution of the Palawan and Sulu Sea and ambient regions are not well understood so far. However, this part of the southern continental margin and adjacent areas embed critical information on the opening of the South China Sea (SCS). In this paper, we carry out geophysical investigations using regional magnetic, gravity and reflection seismic data. Analytical signal amplitudes (ASA) of magnetic anomalies are calculated to depict the boundaries of different tectonic units. Curie-point depths are estimated from magnetic anomalies using a windowed wavenumber-domain algorithm. Application of the Parker–Oldenburg algorithm to Bouguer gravity anomalies yields a 3D Moho topography. The Palawan Continental Block (PCB) is defined by quiet magnetic anomalies, low ASA, moderate depths to the top and bottom of the magnetic layer, and its northern boundary is further constrained by reflection seismic data and Moho interpretation. The PCB is found to be a favorable area for hydrocarbon exploration. However, the continent–ocean transition zone between the PCB and the SCS is characterized by hyper-extended continental crust intruded with magmatic bodies. The NW Sulu Sea is interpreted as a relict oceanic slice and the geometry and position of extinct trench of the Proto South China Sea (PSCS) is further constrained. With additional age constraints from inverted Moho and Curie-point depths, we confirm that the spreading of the SE Sulu Sea started in the Early Oligocene/Late Eocene due to the subduction of the PSCS, and terminated in the Middle Miocene by the obduction of the NW Sulu Sea onto the PCB.  相似文献   

18.
The data from a recent magnetic compilation by Verhoefet al. (1991) off west Africa were used in combination with data in the western Atlantic to review the Mesozoic plate kinematic evolution of the central North Atlantic. The magnetic profile data were analyzed to identify the M-series sea floor spreading anomalies on the African plate. Oceanic fracture zones were identified from magnetic anomalies and seismic and gravity measurements. The identified sea floor spreading anomalies on the African plate were combined with those on the North American plate to calculate reconstruction poles for this part of the central Atlantic. The total separation poles derived in this paper describe a smooth curve, suggesting that the motion of the pole through time was continuous. Although the new sea floor spreading history differs only slightly from the one presented by Klitgord and Schouten (1986), it predicts smoother flowlines. On the other hand, the sea floor spreading history as depicted by the flowlines for the eastern central Atlantic deviates substantially from that of Sundvik and Larson (1988). A revised spreading history is also presented for the Cretaceous Magnetic Quiet Zone, where large changes in spreading direction occurred, that can not be resolved when fitting magnetic isochrons only, but which are evident from fracture zone traces and directions of sea floor spreading topography.Deceased 11 November 1991  相似文献   

19.
The importance of geomagnetic studies in the World Ocean for deep structure research and fore-casting of mineral resources is noted. A combined method for development of a marine nuclear magnetometer is adduced. The physical background of operation of nuclear magnetometers is analyzed in order to optimize the measurements of the magnetic field. The results of the experiments on detecting nuclear precession signals against the background of ship noises are considered and the elaboration of an MM-1 nuclear magnetometer at the Shirshov Institute of Oceanology is described. A technique for magnetic survey and comprehensive geological interpretation of the anomalies and Z and H field components are presented. Examples of geomagnetic studies performed in the World Ocean with the MM-Inuclear magnetometer are assessed: for the first time in Russia, linear magnetic anomalies were identified and sea-floor spreading rates were calculated (the northern part of the Indian Ocean); a regional geomagnetic survey was carried out in the region of Iceland, which proved the spreading origin of the seafloor in this vast region. A systematic analysis of geomagnetic data obtained with the MM-1 magnetometer in the World Ocean provided the creation and development of the methodology for their tectonic and geodynamical interpretation. On the basis of the geomagnetic data obtained, new fundamental conclusions about the deep structure, kinematics and paleogeodynanics of the World Ocean floor were made.  相似文献   

20.
In this short note, we report the ages of five lava samples from a segment of the Eastern Lau Spreading Center (ELSC) and three samples from the Valu Fa Ridge (VFR) in the southern Lau Basin. These samples were collected in situ from the axes and flanks of the spreading centers in the basin. These ages provide a key to better understanding the spreading mode, crustal formation and overall tectonic evolution of the basin. Except for two basaltic andesites and one andesite, the lavas analyzed are basalts. The ages of the lavas from ELSC range from (1.45 ± 0.15) Ma to (0.74 ± 0.04) Ma whereas those from VFR range from (0.50 ± 0.06) Ma to (0.32 ± 0.27) Ma, and the basalts give the oldest ages. The relatively younger ages of the VFR lavas are consistent with proposed tectonic evolution of the southern Lau Basin, i.e., VFR is a propagating extension of ELSC. The occurence of older lavas close to or on spreading axes in the southern Lau Basin implies the complex tectonic evolution of the basin. These results underscore a need for further detailed geophysical and geological studies in the southern Lau Basin, in order to better clarify the crustal accretion tectonic evolution in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号