首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A deep seismic‐reflection transect in western Victoria was designed to provide insights into the structural relationship between the Lachlan and the Delamerian Orogens. Three seismic lines were acquired to provide images of the subsurface from west of the Grampians Range to east of the Stawell‐Ararat Fault Zone. The boundary between the Delamerian and Lachlan Orogens is now generally considered to be the Moyston Fault. In the vicinity of the seismic survey, this fault is intruded by a near‐surface granite, but at depth the fault dips to the east, confirming recent field mapping. East of the Moyston Fault, the uppermost crust is very weakly reflective, consisting of short, non‐continuous, west‐dipping reflections. These weak reflections represent rocks of the Lachlan Orogen and are typical of the reflective character seen on other seismic images from elsewhere in the Lachlan Orogen. Within the Lachlan Orogen, the Pleasant Creek Fault is also east dipping and approximately parallel to the Moyston Fault in the plane of the seismic section. Rocks of the Delamerian Orogen in the vicinity of the seismic line occur below surficial cover to the west of the Moyston Fault. Generally, the upper crust is only weakly reflective, but subhorizontal reflections at shallow depths (up to 3 km) represent the Grampians Group. The Escondida Fault appears to stop below the Grampians Group, and has an apparent gentle dip to the east. Farther east, the Golton and Mehuse Faults are also east dipping. The middle to lower crust below the Delamerian Orogen is strongly reflective, with several major antiformal structures in the middle crust. The Moho is a slightly undulating horizon at the base of the highly reflective middle to lower crust at 11–12 s TWT (approximately 35 km depth). Tectonically, the western margin of the Lachlan Orogen has been thrust over the Delamerian Orogen for a distance of at least 25 km, and possibly over 40 km.  相似文献   

2.
40Ar/39Ar age data from the boundary between the Delamerian and Lachlan Fold Belts identify the Moornambool Metamorphic Complex as a Cambrian metamorphic belt in the western Stawell Zone of the Palaeozoic Tasmanide System of southeastern Australia. A reworked orogenic zone exists between the Lachlan and Delamerian Fold Belts that contains the eastern section of the Cambrian Delamerian Fold Belt and the western limit of orogenesis associated with the formation of an Ordovician to Silurian accretionary wedge (Lachlan Fold Belt). Delamerian thrusting is craton-verging and occurred at the same time as the final consolidation of Gondwana. 40Ar/39Ar age data indicate rapid cooling of the Moornambool Metamorphic Complex at about 500 Ma at a rate of 20 – 30°C per million years, temporally associated with calc-alkaline volcanism followed by clastic sedimentation. Extension in the overriding plate of a subduction zone is interpreted to have exhumed the metamorphic rocks within the Moornambool Metamorphic Complex. The Delamerian system varies from a high geothermal gradient with syntectonic plutonism in the west to lower geothermal gradients in the east (no syntectonic plutonism). This metamorphic zonation is consistent with a west-dipping subduction zone. Contrary to some previous models involving a reversal in subduction polarity, the Ross and Delamerian systems of Antarctica and Australia are inferred to reflect deformation processes associated with a Cambrian subduction zone that dipped towards the Gondwana supercontinent. Western Lachlan Fold Belt orogenesis occurred about 40 million years after the Delamerian Orogeny and deformed older, colder, and denser oceanic crust, with metamorphism indicative of a low geothermal gradient. This orogenesis closed a marginal ocean basin by west-directed underthrusting of oceanic crust that produced an accretionary wedge with west-dipping faults that verge away from the major craton. The western Lachlan Fold Belt was not associated with arc-related volcanism and plutonism occurred 40 – 60 million years after initial deformation. The revised orogenic boundaries have implications for the location of world-class 440 Ma orogenic gold deposits. The structural complexity of the 440 Ma Stawell gold deposit reflects its location in a reworked part of the Cambrian Delamerian Fold Belt, while the structurally simpler 440 Ma Bendigo deposit is hosted by younger Ordovician turbidites solely deformed by Lachlan orogenesis.  相似文献   

3.
The Wyangala Batholith, in the Lachlan Fold Belt of New South Wales, is pre‐tectonic with respect to the deformation that caused the foliation in the granite, and was emplaced during a major thermal event, perhaps associated with dextral shearing, during the Late Silurian to Early Devonian Bowning Orogeny. This followed the first episode of folding in the enclosing Ordovician country rocks. Intrusion was facilitated by upward displacement of fault blocks, with local stoping. Weak magmatic flow fabrics are present. After crystallization of the granite, a swarm of mafic dykes intruded both the granite and country rock, possibly being derived from the same tectonic regime responsible for emplacement of the Wyangala Batholith. A contact aureole surrounding the granite contains cordierite‐biotite and cordierite‐andalusite assemblages. Slaty cleavage produced in the first deformation was largely obliterated by recrystallization in the contact aureole.

Postdating granite emplacement and basic dyke intrusion, a second regional deformation was accompanied by regional metamorphism ranging from lower greenschist to albite‐epidote‐amphibolite facies, and produced tectonic foliations, termed S and C, in the granite, and a foliation, S2, in the country rocks. Contact metamorphic rocks underwent retrogressive regional metamorphism at this time. S formed under east‐west shortening and vertical extension, concurrently with S2. C surfaces probably formed concurrently with S and indicate reverse fault motion on west‐dipping ductile shear surfaces. The second deformation may be related to Devonian or Early Carboniferous movement on the Copperhannia Thrust east of the Wyangala Batholith.  相似文献   

4.
The western half of the Cooma Complex, New South Wales, consists of three thrust‐bound blocks that contain the same structural fabrics, but with different orientations and intensities, owing largely to heterogeneous strain late in the deformation history. Correlation of these fabrics with those found regionally outside the complex shows that a well‐developed, gently dipping crenulation cleavage (S4) apparently has no regional counterpart. This cleavage may have formed by vertical shortening that was restricted to the complex and its development may have been assisted by the higher temperatures there. The Cooma Complex is one of five metamorphic complexes in what is known as the Eastern Metamorphic Belt, which stretches several hundred kilometres through the southeastern Lachlan Fold Belt. The complexes may have formed as local hot spots, possibly related to underplating of mafic magma or intrusion of hot tonalites at or near the base of the Ordovician metasediments (or both). Whether or not these complexes are exhumed portions of an extensive layer in the mid‐crust of the fold belt can be tested by evaluating Late Ordovician/Early Silurian thermal gradients in the ubiquitous Ordovician metasediments.  相似文献   

5.
Structural studies of Lower Permian sequences exposed on wave‐cut platforms within the Nambucca Block, indicate that one to two ductile and two to three brittle — ductile/brittle events are recorded in the lower grade (sub‐greenschist facies) rocks; evidence for four, possibly five, ductile and at least three brittle — ductile/brittle events occurs in the higher grade (greenschist facies) rocks. Veins formed prior to the second ductile event are present in some outcrops. Further, the studies reveal a change in fold style from west‐southwest‐trending, open, south‐southeast‐verging, inclined folds (F1 0) at Grassy Head in the south, to east‐northeast‐trending, recumbent, isoclinal folds (F1 0; F2 0) at Nambucca Heads to the north, suggesting that strain increases towards the Coffs Harbour Block. A solution cleavage formed during D1 in the lower grade rocks and cleavages defined by neocrystalline white mica developed during D1 and D2 in the higher grade rocks. South‐ to south‐southwest‐directed tectonic transport and north‐south shortening operated during these earlier events. Subsequently, north‐northeast‐trending, open, upright F3 2 folds and inclined, northwest‐verging, northeast‐trending F4 2 folds developed with poorly to moderately developed axial planar, crenulation cleavage (S3 and S4) formed by solution transfer processes. These folds formed heterogeneously in S2 throughout the higher grade areas. Later northeast‐southwest shortening resulted in the formation of en échelon vein arrays and kink bands in both the lower and higher grade rocks. Shortening changed to east‐northeast‐west‐southwest during later north‐northeast to northeast, dextral, strike‐slip faulting and then to approximately northwest‐southeast during the formation of east‐southeast to southeast‐trending, strike‐slip faults. Cessation of faulting occurred prior to the emplacement of Triassic (229 Ma) granitoids. On a regional scale, S1 trends east‐west and dips moderately to the north in areas unaffected by later events. S2 has a similar trend to S1 in less‐deformed areas, but is refolded about east‐west axes during D3. S3 is folded about east‐west axes in the highest grade, multiply deformed central part of the Nambucca Block. The deformation and regional metamorphism in the Nambucca Block is believed to be the result of indenter tectonics, whereby south‐directed movement of the Coffs Harbour Block during oroclinal bending, sequentially produced the east‐west‐trending structures. The effects of the Coffs Harbour Block were greatest during D1 and D2.  相似文献   

6.
The western margin of the Lachlan Fold Belt contains early ductile and brittle structures that formed during northeast‐southwest and east‐west compression, followed by reactivation related to sinistral wrenching. At Stawell all of these structural features (and the associated gold lodes) are dismembered by a complex array of later northwest‐, north‐ and northeast‐dipping faults. Detailed underground structural analysis has identified northwest‐trending mid‐Devonian thrusts (Tabberabberan) that post‐date Early Devonian plutonism and have a top‐to‐the‐southwest transport. Deformation associated with the initial stages of dismemberment occurred along an earlier array of faults that trend southwest‐northeast (or east‐west) and dip to the northwest (or north). The initial transport of the units in the hangingwall of these fault structures was top‐to‐the‐southeast. ‘Missing’ gold lodes were discovered beneath the Magdala orebody by reconstructing a displacement history that involved a combination of transport vectors (top‐to‐the‐southeast and top‐to‐the‐southwest). Fold interference structures in the adjacent Silurian Grampians Group provide further evidence for at least two almost orthogonal shortening regimes, post the mid‐Silurian. Overprinting relationships, and correlation with synchronous sedimentation in the Melbourne Trough, indicates that the early fault structures are mid‐ to late‐Silurian in age (Ludlow: ca 420–414 Ma). These atypical southeast‐vergent structures have regional extent and separate significant northeast‐southwest shortening that occurred in the mid‐Devonian (‘Tabberabberan orogeny’) and Late Ordovician (‘Benambran orogeny’).  相似文献   

7.

Several Late Palaeozoic granites which intrude strata of the Silurian‐Devonian Hodgkinson Province, north Queensland, display pronounced west‐northwest‐east‐southeast orientations, as do a suite of brittle structures that have affected both the plutons and country rocks. These features define a 20 km‐wide, west‐northwest‐trending zone, here named the Desailly Structure, which traverses the Hodgkinson Province and extends west across the Palmerville Fault into the Proterozoic Yambo Inlier. Deformation within the Desailly Structure was heterogeneously partitioned into zones of west‐northwest‐east‐southeast faulting separated by tracts of competent country rock. The latter contain a pervasive north‐south‐trending structural grain which locally controlled pluton emplacement and resulted in a meridional orientation of many granitoid bodies. Initiation of the Desailly Structure is attributed to have occurred syn‐ to post‐D2 of the regional deformation history. It was reactivated in the Hunter‐Bowen Orogeny (D4), with the zone expressing an overall sinistral sense of displacement.  相似文献   

8.
One of the most significant, but poorly understood, tectonic events in the east Lachlan Fold Belt is that which caused the shift from mafic, mantle‐derived calc‐alkaline/shoshonitic volcanism in the Late Ordovician to silicic (S‐type) plutonism and volcanism in the late Early Silurian. We suggest that this chemical/isotopic shift required major changes in crustal architecture, but not tectonic setting, and simply involved ongoing subduction‐related magmatism following burial of the pre‐existing, active intraoceanic arc by overthrusting Ordovician sediments during Late Ordovician — Early Silurian (pre‐Benambran) deformation, associated with regional northeast‐southwest shortening. A review of ‘type’ Benambran deformation from the type area (central Lachlan Fold Belt) shows that it is constrained to a north‐northwest‐trending belt at ca 430 Ma (late Early Silurian), associated with high‐grade metamorphism and S‐type granite generation. Similar features were associated with ca 430 Ma deformation in east Lachlan Fold Belt, highlighted by the Cooma Complex, and formed within a separate north‐trending belt that included the S‐type Kosciuszko, Murrumbidgee, Young and Wyangala Batholiths. As Ordovician turbidites were partially melted at ca 430 Ma, they must have been buried already to ~20 km before the ‘type’ Benambran deformation. We suggest that this burial occurred during earlier northeast‐southwest shortening associated with regional oblique folds and thrusts, loosely referred to previously as latitudinal or east‐west structures. This event also caused the earliest Silurian uplift in the central Lachlan Fold Belt (Benambran highlands), which pre‐dated the ‘type’ Benambran deformation and is constrained as latest Ordovician — earliest Silurian (ca 450–440 Ma) in age. The south‐ to southwest‐verging, earliest Silurian folds and thrusts in the Tabberabbera Zone are considered to be associated with these early oblique structures, although similar deformation in that zone probably continued into the Devonian. We term these ‘pre’‐ and ‘type’‐Benambran events as ‘early’ and ‘late’ for historical reasons, although we do not consider that they are necessarily related. Heat‐flow modelling suggests that burial of ‘average’ Ordovician turbidites during early Benambran deformation at 450–440 Ma, to form a 30 km‐thick crustal pile, cannot provide sufficient heat to induce mid‐crustal melting at ca 430 Ma by internal heat generation alone. An external, mantle heat source is required, best illustrated by the mafic ca 430 Ma, Micalong Swamp Igneous Complex in the S‐type Young Batholith. Modern heat‐flow constraints also indicate that the lower crust cannot be felsic and, along with petrological evidence, appears to preclude older continental ‘basement terranes’ as sources for the S‐type granites. Restriction of the S‐type batholiths into two discrete, oblique, linear belts in the central and east Lachlan Fold Belt supports a model of separate magmatic arc/subduction zone complexes, consistent with the existence of adjacent, structurally imbricated turbidite zones with opposite tectonic vergence, inferred by other workers to be independent accretionary prisms. Arc magmas associated with this ‘double convergent’ subduction system in the east Lachlan Fold Belt were heavily contaminated by Ordovician sediment, recently buried during the early Benambran deformation, causing the shift from mafic to silicic (S‐type) magmatism. In contrast, the central Lachlan Fold Belt magmatic arc, represented by the Wagga‐Omeo Zone, only began in the Early Silurian in response to subduction associated with the early Benambran northeast‐southwest shortening. The model requires that the S‐type and subsequent I‐type (Late Silurian — Devonian) granites of the Lachlan Fold Belt were associated with ongoing, subduction‐related tectonic activity.  相似文献   

9.
F1 macroscopic folds in the Late Palaeozoic Coffs Harbour Beds in the SE portion of the New England Fold Belt are commonly transected by cleavage. These macroscopic folds are tight to isoclinal structures, with a consistent vergence to the NE. Axial surfaces are either steeply dipping to the SW or vertical, and are typically faulted. Anomalous bedding‐cleavage relations occur where the steeply dipping cleavage intersects overturned limbs of F1 macroscopic and some F1 mesoscopic folds. Elsewhere F1 mesoscopic folds have a well developed, axial‐surface cleavage and are rarely downward facing. Cleavage is commonly strike‐divergent from axial surfaces of F1 macroscopic folds, except adjacent to the Demon Fault System, where they are parallel. These anomalous cleavage‐folds relations possibly developed during the one deformation. D1 structures are refolded by kink‐like folds that are steeply plunging. The structural style of the D1 deformation indicates that it possibly resulted from accretionary processes at a consuming plate margin.  相似文献   

10.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   

11.
Fault zones within turbidite-dominated orogenic systems, typified by the Lachlan Orogen of eastern Australia, are characterised by higher than average strain and intense mica fabrics, transposition foliation and isoclinal folds, poly-deformation with overprinting crenulation cleavages, and steeply to moderately plunging meso- and micro-folds. They have a different character compared to the brittle–ductile fault zones of classic foreland fold-and-thrust belts such as the Appalachians and the Canadian Rocky Mountains. Multiple cleavages and transposition layering record a progressive shear-related deformation history. An intense mica fabric evolves initially during shortening of the overlying sedimentary wedge, but is progressively modified during rotation and emplacement to higher structural levels along the steep parts of inferred listric faults. The deformed wedge outside the fault zones generally undergoes one phase of deformation, shown by a weak to moderately developed slaty cleavage which is parallel to the axial surface of upright, subhorizontally plunging chevron-folds. Other faults within the turbidites of the Lachlan Orogen include the steep zones of ‘ductile’ strike-slip deformation that bound a centrally located, high T/low P metamorphic complex. Characterised by SC mylonites, these ductile shear zones indicate a southward passage of the metamorphic complex as a crustal wedge, with emplacement to higher structural levels along a leading-edge, ductile thrust-fault. Ar–Ar dating constrains the timing of regional deformation to be mostly Late Ordovician through Silurian across the Lachlan Orogen. Faults in the low grade turbidite sequences record the kinematic evolution of the developing Lachlan Orogen and indicate progressive deformation associated with simultaneous, eastward propagating and migrating deformation fronts in both the western and eastern parts of the fold belt. These deformation fronts are related to ‘accretionary style’ deformation at the leading edges of overriding plates, in an inferred southwest Pacific-type subduction setting from the Late Ordovician to the mid-Devonian, along the former Gondwana margin. The fault zones effectively accommodate and preserve movements within the structurally thickening, migrating and prograding accretionary wedge.  相似文献   

12.
雅拉香波穹隆韧性剪切带变形特征与剪切作用类型研究   总被引:1,自引:0,他引:1  
雅拉香波变质核杂岩位于北喜马拉雅穹隆带东端,其拆离断层系的糜棱岩带构成了杂岩核部的外缘,带内主要变形岩石类型为石榴石千糜岩、糜棱状片麻岩和糜棱状花岗岩.糜棱状岩石中宏、微观韧性变形组构丰富,暗示区内存在多种显微变形机制:物质扩散迁移、晶内脆性破裂、粒内滑动及粒间滑动等,3种运动学涡度统计和计算结果表明:雅拉香波变质核杂岩拆离系的剪切作用类型是以简单剪切作为主的一般剪切;剪切带厚度变化为76%左右,属于减薄型:后期纯剪切应变速率比早期的有所增强,这可能与杂岩体核部岩浆岩后期上侵增强,穹隆进一步抬升和脆性垮塌下滑作用相关.  相似文献   

13.

The Hilton deposit is a deformed and metamorphosed Proterozoic stratiform Pb‐Zn‐Ag‐Cu deposit hosted by dolomitic and carbonaceous sediments of the Urquhart Shale of the Mt Isa Group. Rocks in the Hilton area show a history of folding and faulting which spans the time range recognized elsewhere in the Western Succession of the Mt Isa Inlier, though the effects of relatively late and brittle deformation are more pronounced in the Hilton area. The Hilton area shows intense faulting relative to similar rocks to the south in the Mt Isa‐Hilton belt. Faulting in the Hilton area has generally resulted in east‐west shortening and extension in both north‐south and vertical directions. This relatively intense late strain is attributed to the geometry of the Paroo Fault Zone, a major north‐trending zone that bounds the Hilton area to the west, and the Sybella Batholith, which formed a relatively rigid indenter during late deformation in the Hilton area. The structural history of the Hilton area is broadly consistent with ongoing east‐west shortening during progressive uplift from mainly ductile to more brittle conditions. Based on these observations, thinning of the Mt Isa Group which was previously attributed to synsedimentary faulting, can now be shown to be related to heterogeneous strain during late faulting. Sulphide layers show a history of folding which is similar to that of the surrounding rocks. Pyrite which is paragenetically associated with mineralization is overprinted by a bedding‐parallel foliation which predates all other structures in the area. This suggests that stratiform sulphide mineralization in the Hilton area predates deformation. Deformation has affected the Hilton orebodies at all scales. Changes in thickness and ‘fault windows’ in the orebody interval occur on the scale of the entire deposit. Mesoscopic ore thickness changes are often clearly related to extensional and contractional structures within sulphide layers. These macroscopic and mesoscopic ore‐thickness variations are spatially associated with cross‐cutting brittle faults, suggesting that strain incompatibility between brittle host rocks and more ductile ore layers played a major role in the present geometry and thickness of sulphide ores at Hilton.  相似文献   

14.
In the eastern part of southern Peninsular India, the charnockitic hills of the Madras block are cut across by the E-W trending Attur shear zone (ASZ) which is characterised by a thick (1 to 1.5 km) phyllonite zone, showing intense mylonitisation due to ductile shearing. Steeply plunging (70°–80°) stretching lineation on steeply dipping mylonitic foliation within this zone indicates a relative vertical upliftment of the adjacent blocks. A dextral shearing event from west to east is envisaged from the kinematic analysis of shear sense indicators such as S-C fabric, asymmetric folds, asymmetric augens and asymmetric porphyroclasts. Simultaneous development of these features, related to vertical and horizontal movements may be explained by the mechanism of transpressional deformation. The Attur shear zone may be correlated with the Moyar shear zone based on distinct lithological and structural similarities.  相似文献   

15.

The Cobar Basin in central western New South Wales is a mineral‐rich Early Devonian basin typical of those that characterize the Siluro‐Devonian history of the Lachlan Orogen of southeastern Australia. One hundred and seventy kilometres of seismic profiling in three lines across the basin have shown it to be asymmetrical in shape with an east‐dipping western margin that is steeper than the moderately west‐dipping eastern margin. Maximum basin thickness is around 6 km, but there are significant thickness changes, especially from south to north, which reflect the effect of synsedimentary faulting. Seismic profiling suggests that the basin deformed by thin‐skinned tectonics; postulated strike‐slip effects were not visible on the sections. The seismic profiling has, for the first time, imaged the western synrift basin margin which is generally not exposed. Strain variations during deformation along this edge were taken up by the formation of a major jog ('dog‐leg') which has propagated into the basin as a tear fault. Intrabasinal tears, as well as thrusts, which link into one or more detachments, provide potential pathways for mineralizing fluids during basin inversion.  相似文献   

16.
New gravity data along five profiles across the western side of the southern New England Fold Belt and the adjoining Gunnedah Basin show the Namoi Gravity High over the Tamworth Belt and the Meandarra Gravity Ridge over the Gunnedah Basin. Forward modelling of gravity anomalies, combined with previous geological mapping and a seismic-reflection transect acquired by Geoscience Australia, has led to iterative testing of models of the crustal structure of the southern New England Fold Belt, which indicates that the gravity anomalies can generally be explained using the densities of the presently exposed rock units. The Namoi Gravity High over the Tamworth Belt results from the high density of the rocks of this belt that reflects the mafic volcanic source of the older sedimentary rocks in the Tamworth Belt, the burial metamorphism of the pre-Permian units and the presence of some mafic volcanic units. Modelling shows that the Woolomin Association, present immediately east of the Peel Fault and constituting the most western part of the Tablelands Complex, also has a relatively high density of 2.72 – 2.75 t/m3, and this unit also contributes to the Namoi Gravity High. The Tamworth Belt can be modelled with a configuration where the Tablelands Complex has been thrust over the Tamworth Belt along the Peel Fault that dips steeply to the east. The Tamworth Belt is thrust westward over the Sydney – Gunnedah Basin for 15 – 30 km on the Mooki Fault, which has a shallow dip (~25°) to the east. The Meandarra Gravity Ridge in the Gunnedah Basin was modelled as a high-density volcanic rock unit with a density contrast of 0.25 t/m3 relative to the underlying rocks of the Lachlan Fold Belt. The modelled volcanic rock unit has a steep western margin, a gently tapering eastern margin and a thickness range of 4.5 – 6 km. These volcanic rocks are assumed to be Lower Permian and to be the western extension of the Permian Werrie Basalts that outcrop on the western edge of the Tamworth Belt and which have been argued to have formed in an extensional basin. Blind granitic plutons are inferred to occur near the Peel Fault along the central and the southern profiles.  相似文献   

17.
In the late Silurian, the Lachlan Orogen of southeastern Australia had a varied paleogeography with deep-marine, shallow-marine, subaerial environments and widespread igneous activity reflecting an extensional backarc setting. This changed to a compressional–extensional regime in the Devonian associated with episodic compressional events, including the Bindian, Tabberabberan and Kanimblan orogenies. The Early Devonian Bindian Orogeny was associated with SSE transport of the Wagga–Omeo Zone that was synchronous with thick sedimentation in the Cobar and Darling basins in central and western New South Wales. Shortening has been controlled by the margins of the Wagga–Omeo Zone with partitioning along strike-slip faults, such as along the Gilmore Fault, and inversion of pre-existing extensional basins including the Limestone Creek Graben and the Canbelego–Mineral Hill Volcanic Belt. Shortening was more widespread in the late Early Devonian to Middle Devonian Tabberabberan Orogeny, with major deformation in the Melbourne Zone, Cobar Basin and eastern Lachlan Orogen. In the eastern Melbourne Zone, structural trends have been controlled by the pre-existing structural grain in the adjacent Tabberabbera Zone. Elsewhere Tabberabberan deformation involved inversion of pre-existing rifts resulting in a variation in structural trends. In the Early Carboniferous, the Lachlan Orogen was in a compressional backarc setting west of the New England continental margin arc with Kanimblan deformation most evident in Upper Devonian units in the eastern Lachlan Orogen. Kanimblan structures include major thrusts and associated fault-propagation folds indicated by footwall synclines with a steeply dipping to overturned limb adjacent to the fault. Ongoing deformation and sedimentation have been documented in the Mt Howitt Province of eastern Victoria. Overall, structural trends reflect a combination of controls provided by reactivation of pre-existing contractional and extensional structures in dominantly E–W shortening operating intermittently from the earliest Devonian to Early Carboniferous.  相似文献   

18.
The Hastings Block is a weakly cleaved and complexly folded and faulted terrain made up of Devonian, Carboniferous and Permian sedimentary and volcanic rocks. The map pattern of bedding suggests a major boundary exists that divides the Hastings Block into northern and southern parts. Bedding north of this boundary defines an upright box-like Parrabel Anticline that plunges gently northwest. Four cleavage/fold populations are recognised namely: E–W-striking, steeply dipping cleavage S1 that is axial surface to gently to moderately E- or W-plunging; F1 folds that were re-oriented during the formation of the Parrabel Anticline with less common N–S-trending, steeply dipping cleavage S2, axial surface to gently to moderately N-plunging F2 folds; poorly developed NW–SE-striking, steeply dipping cleavage S3 axial surface to mesoscopic, mainly NW-plunging F3 folds; and finally, a weakly developed NE–SW-striking, steeply dipping S4 cleavage formed axial surface to mainly NE-plunging F4. The Parrabel Anticline is considered to have formed during the D3 deformation. The more intense development of S2 and S3 on the western margin of the Northern Hastings Block reflects increasing strain related to major shortening of the sequences adjacent to the Tablelands Complex during the Hunter–Bowen Orogeny. The pattern of multiple deformation we have recorded is inconsistent with previous suggestions that the Hastings Block is part of an S-shaped orocline folded about near vertically plunging axes.  相似文献   

19.
In the Shoalhaven River Gorge, in the eastern Lachlan Fold Belt, the Ordovician quartz‐turbidite succession (Adaminaby Group) is affected by one major phase of deformation with northerly trending, gently plunging, upright, close to tight folds (F1) characterised by a range in half wavelengths up to 3 km. Several anticlinoria and synclinoria are developed and folds occur in at least four orders; these characteristics are consistent with buckling occurring at several scales and are controlled by the thickness of competent units in the multilayered succession. F1 folding is thick‐skinned in style with the whole crust probably having been affected by deformation. D1 occurred during the Silurian to Middle Devonian interval and was associated with crustal thickening and the shallowing of depositional environments over time. Locally, F1 is overprinted by south‐southeast‐trending, steeply to moderately inclined F2 that reorients F1 to recumbent attitudes. D2 is of Early to Middle Carboniferous age. Both deformations are related to convergence in an intra‐arc to backarc region and occurred inboard of a subduction zone, remnants of which occur in the New England Fold Belt.  相似文献   

20.
The Lachlan Transverse Zone is a major yet subtle west‐northwest‐trending structure that cuts across the Tasmanides of southeastern Australia. It extends from the western part of the Olepoloko Fault in the west, where it marks the boundary between the Delamerian and Thomson Orogens, across the Lachlan Orogen into the Sydney Basin where it is represented by dykes and intrusions. The western part of the Lachlan Transverse Zone is defined by west‐northwest‐trending faults. In the Eastern Belt of the Lachlan Orogen, it is defined as a corridor of west‐northwest‐trending folds and faults that disrupt major folds and faults which constitute the regional grain of the orogen. The Lachlan Transverse Zone was active in the development of the Lachlan Orogen since at least the Middle Ordovician period. It has influenced the partitioning of upper crustal extensional and contractional deformation, the intrusion of igneous bodies as well as the distribution of copper‐gold deposits in the Eastern Belt of the orogen. The Lachlan Transverse Zone appears to be an extension of the Proterozoic Amadeus Transverse Zone, as well as an extension of a west‐northwest‐trending transform segment in the Tasman Line that controlled the Neoproterozoic and Cambrian breakup of cratonic Australia. For these reasons, we suggest that the Lachlan Transverse Zone represents the reactivation of a fundamental crustal weakness in the cratonic lithosphere that propagated into younger Neoproterozoic to Palaeozoic lithosphere of oceanic and continental character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号