首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most significant, but poorly understood, tectonic events in the east Lachlan Fold Belt is that which caused the shift from mafic, mantle‐derived calc‐alkaline/shoshonitic volcanism in the Late Ordovician to silicic (S‐type) plutonism and volcanism in the late Early Silurian. We suggest that this chemical/isotopic shift required major changes in crustal architecture, but not tectonic setting, and simply involved ongoing subduction‐related magmatism following burial of the pre‐existing, active intraoceanic arc by overthrusting Ordovician sediments during Late Ordovician — Early Silurian (pre‐Benambran) deformation, associated with regional northeast‐southwest shortening. A review of ‘type’ Benambran deformation from the type area (central Lachlan Fold Belt) shows that it is constrained to a north‐northwest‐trending belt at ca 430 Ma (late Early Silurian), associated with high‐grade metamorphism and S‐type granite generation. Similar features were associated with ca 430 Ma deformation in east Lachlan Fold Belt, highlighted by the Cooma Complex, and formed within a separate north‐trending belt that included the S‐type Kosciuszko, Murrumbidgee, Young and Wyangala Batholiths. As Ordovician turbidites were partially melted at ca 430 Ma, they must have been buried already to ~20 km before the ‘type’ Benambran deformation. We suggest that this burial occurred during earlier northeast‐southwest shortening associated with regional oblique folds and thrusts, loosely referred to previously as latitudinal or east‐west structures. This event also caused the earliest Silurian uplift in the central Lachlan Fold Belt (Benambran highlands), which pre‐dated the ‘type’ Benambran deformation and is constrained as latest Ordovician — earliest Silurian (ca 450–440 Ma) in age. The south‐ to southwest‐verging, earliest Silurian folds and thrusts in the Tabberabbera Zone are considered to be associated with these early oblique structures, although similar deformation in that zone probably continued into the Devonian. We term these ‘pre’‐ and ‘type’‐Benambran events as ‘early’ and ‘late’ for historical reasons, although we do not consider that they are necessarily related. Heat‐flow modelling suggests that burial of ‘average’ Ordovician turbidites during early Benambran deformation at 450–440 Ma, to form a 30 km‐thick crustal pile, cannot provide sufficient heat to induce mid‐crustal melting at ca 430 Ma by internal heat generation alone. An external, mantle heat source is required, best illustrated by the mafic ca 430 Ma, Micalong Swamp Igneous Complex in the S‐type Young Batholith. Modern heat‐flow constraints also indicate that the lower crust cannot be felsic and, along with petrological evidence, appears to preclude older continental ‘basement terranes’ as sources for the S‐type granites. Restriction of the S‐type batholiths into two discrete, oblique, linear belts in the central and east Lachlan Fold Belt supports a model of separate magmatic arc/subduction zone complexes, consistent with the existence of adjacent, structurally imbricated turbidite zones with opposite tectonic vergence, inferred by other workers to be independent accretionary prisms. Arc magmas associated with this ‘double convergent’ subduction system in the east Lachlan Fold Belt were heavily contaminated by Ordovician sediment, recently buried during the early Benambran deformation, causing the shift from mafic to silicic (S‐type) magmatism. In contrast, the central Lachlan Fold Belt magmatic arc, represented by the Wagga‐Omeo Zone, only began in the Early Silurian in response to subduction associated with the early Benambran northeast‐southwest shortening. The model requires that the S‐type and subsequent I‐type (Late Silurian — Devonian) granites of the Lachlan Fold Belt were associated with ongoing, subduction‐related tectonic activity.  相似文献   

2.
Evolution of the southeastern Lachlan Fold Belt in Victoria   总被引:2,自引:2,他引:0  
The Benambra Terrane of southeastern Australia is the eastern, allochthonous portion of the Lachlan Fold Belt with a distinctive Early Silurian to Early Devonian history. Its magmatic, metamorphic, structural, tectonic and stratigraphic histories are different from the adjacent, autochthonous Whitelaw Terrane and record prolonged orogen‐parallel dextral displacement. Unlike the Whitelaw Terrane, parts of the proto‐Benambra Terrane were affected by extensive Early Silurian plutonism associated with high T/low P metamorphism. The orogen‐parallel movement (north‐south) is in addition to a stronger component of east‐west contraction. Three main orogenic pulses deformed the Victorian portion of the terrane. The earliest, the Benambran Orogeny, was the major cratonisation event in the Lachlan Fold Belt and caused amalgamation of the components that comprise the Benambra Terrane. It produced faults, tight folding and strong cleavage with both east‐west and north‐south components of compression. The Bindian (= Bowning) Orogeny, not seen in the Whitelaw Terrane, was the main period of southward tectonic transport in the Benambra Terrane. It was characterised by the development of large strike‐slip faults that controlled the distribution of second‐generation cleavage, acted as conduits for syntectonic granites and controlled the deformation of Upper Silurian sequences. Strike‐slip and thrust faults form complex linked systems that show kinematic indicators consistent with overall southward tectonic transport. A large transform fault is inferred to have accommodated approximately 600 km of dextral strike‐slip displacement between the Whitelaw and Benambra Terranes. The Benambran and Bindian Orogenies were each followed by periods of extension during which small to large basins formed and were filled by thick sequences of volcanics and sediments, partly or wholly marine. Some of the extension appears to have occurred along pre‐existing fractures. Silurian basins were inverted during the Bindian Orogeny and Early Devonian basins by the Tabberabberan Orogeny. In the Melbourne Zone, just west of the Benambra Terrane, sedimentation patterns in this interval, in particular the complete absence of material derived from the deforming Benambra Terrane, indicate that the two terranes were not juxtaposed until just before the Tabberabberan Orogeny. This orogeny marked the end of orogen‐parallel movement and brought about the amalgamation of the Whitelaw and Benambra Terranes along the Governor Fault. Upper Devonian continental sediments and volcanics form a cover sequence to the terranes and their structural zones and show that no significant rejuvenation of older structures occurred after the Middle Devonian.  相似文献   

3.
Structural studies of Lower Permian sequences exposed on wave‐cut platforms within the Nambucca Block, indicate that one to two ductile and two to three brittle — ductile/brittle events are recorded in the lower grade (sub‐greenschist facies) rocks; evidence for four, possibly five, ductile and at least three brittle — ductile/brittle events occurs in the higher grade (greenschist facies) rocks. Veins formed prior to the second ductile event are present in some outcrops. Further, the studies reveal a change in fold style from west‐southwest‐trending, open, south‐southeast‐verging, inclined folds (F1 0) at Grassy Head in the south, to east‐northeast‐trending, recumbent, isoclinal folds (F1 0; F2 0) at Nambucca Heads to the north, suggesting that strain increases towards the Coffs Harbour Block. A solution cleavage formed during D1 in the lower grade rocks and cleavages defined by neocrystalline white mica developed during D1 and D2 in the higher grade rocks. South‐ to south‐southwest‐directed tectonic transport and north‐south shortening operated during these earlier events. Subsequently, north‐northeast‐trending, open, upright F3 2 folds and inclined, northwest‐verging, northeast‐trending F4 2 folds developed with poorly to moderately developed axial planar, crenulation cleavage (S3 and S4) formed by solution transfer processes. These folds formed heterogeneously in S2 throughout the higher grade areas. Later northeast‐southwest shortening resulted in the formation of en échelon vein arrays and kink bands in both the lower and higher grade rocks. Shortening changed to east‐northeast‐west‐southwest during later north‐northeast to northeast, dextral, strike‐slip faulting and then to approximately northwest‐southeast during the formation of east‐southeast to southeast‐trending, strike‐slip faults. Cessation of faulting occurred prior to the emplacement of Triassic (229 Ma) granitoids. On a regional scale, S1 trends east‐west and dips moderately to the north in areas unaffected by later events. S2 has a similar trend to S1 in less‐deformed areas, but is refolded about east‐west axes during D3. S3 is folded about east‐west axes in the highest grade, multiply deformed central part of the Nambucca Block. The deformation and regional metamorphism in the Nambucca Block is believed to be the result of indenter tectonics, whereby south‐directed movement of the Coffs Harbour Block during oroclinal bending, sequentially produced the east‐west‐trending structures. The effects of the Coffs Harbour Block were greatest during D1 and D2.  相似文献   

4.

Several Late Palaeozoic granites which intrude strata of the Silurian‐Devonian Hodgkinson Province, north Queensland, display pronounced west‐northwest‐east‐southeast orientations, as do a suite of brittle structures that have affected both the plutons and country rocks. These features define a 20 km‐wide, west‐northwest‐trending zone, here named the Desailly Structure, which traverses the Hodgkinson Province and extends west across the Palmerville Fault into the Proterozoic Yambo Inlier. Deformation within the Desailly Structure was heterogeneously partitioned into zones of west‐northwest‐east‐southeast faulting separated by tracts of competent country rock. The latter contain a pervasive north‐south‐trending structural grain which locally controlled pluton emplacement and resulted in a meridional orientation of many granitoid bodies. Initiation of the Desailly Structure is attributed to have occurred syn‐ to post‐D2 of the regional deformation history. It was reactivated in the Hunter‐Bowen Orogeny (D4), with the zone expressing an overall sinistral sense of displacement.  相似文献   

5.
The interpretation of Canberra's landforms as unexhumed survivals from Bowning faulting and mid‐Devonian vulcanicity is opposed. Some major faults are truncated whereas sharp scarps coincide with others. In the nearby Taemas area, the Canberra‐Yass Plains cut across Tabberabberan folds. Summit surface remnants surviving high in the A.C.T. Ranges and discordant river gorges are incompatible with extreme age of the relief. River nick‐points and steps between surfaces are some related and some unrelated to faults, with like import. Stripping of the Murrumbidgee Batholith, also of Bowning age, would have caused substantial filling of the Canberra Rift; during subsequent removal, erosion would not have entirely respected Silurian rocks similar in resistance to Devonian fill. Permian rocks to the east must in part derive from erosion of the Canberra area. Local rates of denudation of 5 cm/1000 y. are hard to reconcile with survival of high steep relief from the mid‐Devonian.

Alternative explanations are given for those characters of the Fyshwick Gravels which led them to be regarded as Permian glaciofluvials.

The same evidence supports Browne's standpoint that the relief is polycyclic through epeirogenic uplift at intervals, together with posthumous movement along some old faults.  相似文献   

6.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   

7.
Brittle and ductile deformation of alternating layers of Devonian sandstone and mudstone at Cape Liptrap, Victoria, Australia, resulted in upright folds with associated fold accommodation faults and multiple fracture sets. Structures were mapped at the Fold Stack locality at Cape Liptrap using high-resolution aerial photographs acquired by a digital camera mounted on an unmanned aerial vehicle (UAV). Subsequent photogrammetric modelling resulted in georeferenced spatial datasets (point cloud, digital elevation model and orthophotograph) with sub-cm resolution and cm accuracy, which were used to extract brittle and ductile structure orientation data. An extensive dataset of bedding measurements derived from the dense point cloud was used to compute a 3D implicit structural trend model to visualise along-strike changes of Devonian (Tabberabberan) folds at the Fold Stack locality and to estimate bulk shortening strain. This model and newly collected data indicate that first generation shallowly south-southwest plunging upright folds were gently refolded about a steeply plunging/subvertical fold axis during a Devonian low-strain north–south shortening event. This also led to the local tightening of first generation folds and possibly strike-slip movement along regional scale faults. In order to distinguish fractures associated with Devonian compression from those that formed during Cretaceous extension and later inversion, we compared the five fracture sets defined at Cape Liptrap to previously mapped joints and faults within the overlying sedimentary cover rocks of the Cretaceous Strzelecki Group (Gippsland Basin), which crop out nearby. An east-southeast trending fracture set that is not evident in the Strzelecki Group can be linked to the formation of Devonian folds. Additionally, hinge line traces extracted from the Fold Stack dataset are aligned parallel to a dominant fracture set within the overlying cover sediments. This suggests that basement structures (folds and coeval parallel faults) have an important influence on fault and joint orientations within Cretaceous cover rocks.  相似文献   

8.
The major tectonic zone that passes through the border regions of the Anhui, Zhejiang, and Jiangxi Provinces in southeast China has been commonly referred to as the Wan-Zhe-Gan fault zone. Geologically, this zone consists of several regional fault belts of various ages and orientations. We have categorized the faults into four age groups based on field investigations. The Neoproterozoic faults are northeast striking. They start from the northeast Jiangxi Province and extend northeastward to Fuchuan in Anhui Province, the same location of the northeast Jiangxi-Fuchuan ophiolite belt. The faults probably acted? during the Neoproterozoic as a boundary fault zone of a plate or a block suture with mélange along the faults. The nearly east-west- or east-northeast-striking faults are of Silurian ages (40Ar/39Ar age 429 Ma). This group includes the Qimen-Shexian fault and the Jiangwang-Jiekou ductile shear belt. They represent a major tectonic boundary in the basement because the two sides of the fault have clear dissimilarities. The third group of faults is north-northeast striking, having formed since the early-middle Triassic with 40Ar/39Ar ages of 230–254 Ma. They form a fault belt starting from Yiyang in northern Jiangxi and connect with the Wucheng as well as the Ningguo-Jixi faults. This fault belt is a key fault-magmatic belt controlling the formation of Jurassic-Cretaceous red basins, ore distribution, magmatic activity, and mineralization. When it reactivated during the late Cretaceous, the belt behaved as a series of reverse faults from southeast to northwest and composed the fourth fault group. Therefore, classifying the Wan-Zhe-Gan fault zone into four fault groups will help in the analysis of the tectonic evolution of the eastern segment of the Jiangnan orogen since the Neoproterozoic era.  相似文献   

9.
Linked fault systems identified in the northern portion of the onshore Perth basin comprise north‐striking normal faults, the dominant structures in the basin, and hard linkages—east‐striking transfer faults. The former are either divided into segments of distinctive character by, or terminate at, the transfer faults. The fault systems were initiated by west‐southwest‐east‐northeast extension in the Early Permian but were reactivated by subsequent rifting with approximately east‐west extension in the Jurassic. They were also reactivated by the oblique extension of northwest‐southeast orientation associated with Gondwana continental breakup in the Late Jurassic ‐ earliest Cretaceous. In addition to reactivation, older structures of the linked fault families controlled the development of younger fractures and folds. During the oblique extension, the linked fault systems define releasing bends, characterised by a rollover anticline in the hangingwall of the Mountain Bridge Fault, and restraining bends where contractional folds are sites of major commercial hydrocarbon fields in the basin.  相似文献   

10.
Recumbent folding in eastern Tasmania affected turbidites containing Lower to Middle Ordovician (Bendigonian Be1 to Darriwilian Da3) fossils, but not stratigraphically overlying turbidites containing Silurian (Ludlow) graptolites, and is of a timing consistent with Ordovician to Silurian Benambran orogenesis on the Australian mainland. Two subsequent phases of upright folding post‐date deposition of turbidites containing Devonian plant fossils but pre‐date intrusion of Middle Devonian granitoids, and are of Tabberabberan age. A closely spaced disjunctive cleavage (S2), associated with the first phase of Tabberabberan folding, everywhere cuts a slaty cleavage (S1) associated with the earlier formed recumbent folds. However, refolding associated with development of S2 is not always clear in outcrop and it is proposed that coincident tectonic vergence between the two events has resulted in reactivation of recumbent D1 structures during the D2 event. The transition to rocks not affected by recumbent folding coincides with a marked change in sedimentology from shale‐ to sand‐dominated successions. This contact does not outcrop but, from seismic data, appears to dip moderately to the east, and can only be explained as an unconformity. The current grouping of all pre‐Middle Devonian turbidites in eastern Tasmania into the one Mathinna Group is misleading in that the turbidite sequence can be subdivided into two distinct sedimentary packages separated by an orogenic event. It is proposed that the Mathinna Group be given supergroup status and existing formations placed into two new groups: an older Early to Middle Ordovician Tippogoree Group and a younger Silurian to Devonian Panama Group.  相似文献   

11.
In this paper we assess two competing tectonic models for the development of the Isa Superbasin (ca 1725–1590 Ma) in the Western Fold Belt of the Mt Isa terrane. In the ‘episodic rift‐sag’ tectonic model the basin architecture is envisaged as similar to that of a Basin and Range province characterised by widespread half‐graben development. According to this model, the Isa Superbasin evolved during three stages of the Mt Isa Rift Event. Stage I involved intracontinental extension, half‐graben development, the emergence of fault scarps and tilt‐blocks, and bimodal volcanism. Stage II involved episodic rifting and sag during intervening periods of tectonic quiescence. Stage III was dominated by thermal relaxation of the lithosphere with transient episodes of extension. Sedimentation was controlled by the development of arrays of half‐grabens bounded by intrabasinal transverse or transfer faults. The competing ‘strike‐slip’ model was developed for the Gun Supersequence stratigraphic interval of the Isa Superbasin (during stage II and the beginning of stage III). According to this model, sinistral movements along north‐northeast‐orientated strike‐slip faults took place, with oblique movements along northwest‐orientated faults. This resulted in the deposition of southeast‐thickening ramp sequences with local sub‐basin depocentres forming to the west and north of north‐northeast‐ and northwest‐trending faults, respectively. It is proposed that dilation zones focused magmatism (e.g. Sybella Granite) and transfer of strike‐slip movement resulted in transient uplift along the western margin of the Mt Gordon Arch. Our analysis supports the ‘episodic rift‐sag’ model. We find that the inferred architecture for the strike‐slip model correlates poorly with the observed structural elements. Interpretation is made difficult because there has been significant modification and reorientation of fault geometry during the Isan Orogeny and these effects need to be removed before any assertion as to the basin structure is made. Strike‐slip faulting does not explain the regional‐scale pattern of basin subsidence. The ‘episodic rift‐sag’ model explains the macroscopic geometry of the Isa Superbasin and is consistent with the detailed sedimentological analysis of basin facies architecture, and the structural history and geometry.  相似文献   

12.
In the late Silurian, the Lachlan Orogen of southeastern Australia had a varied paleogeography with deep-marine, shallow-marine, subaerial environments and widespread igneous activity reflecting an extensional backarc setting. This changed to a compressional–extensional regime in the Devonian associated with episodic compressional events, including the Bindian, Tabberabberan and Kanimblan orogenies. The Early Devonian Bindian Orogeny was associated with SSE transport of the Wagga–Omeo Zone that was synchronous with thick sedimentation in the Cobar and Darling basins in central and western New South Wales. Shortening has been controlled by the margins of the Wagga–Omeo Zone with partitioning along strike-slip faults, such as along the Gilmore Fault, and inversion of pre-existing extensional basins including the Limestone Creek Graben and the Canbelego–Mineral Hill Volcanic Belt. Shortening was more widespread in the late Early Devonian to Middle Devonian Tabberabberan Orogeny, with major deformation in the Melbourne Zone, Cobar Basin and eastern Lachlan Orogen. In the eastern Melbourne Zone, structural trends have been controlled by the pre-existing structural grain in the adjacent Tabberabbera Zone. Elsewhere Tabberabberan deformation involved inversion of pre-existing rifts resulting in a variation in structural trends. In the Early Carboniferous, the Lachlan Orogen was in a compressional backarc setting west of the New England continental margin arc with Kanimblan deformation most evident in Upper Devonian units in the eastern Lachlan Orogen. Kanimblan structures include major thrusts and associated fault-propagation folds indicated by footwall synclines with a steeply dipping to overturned limb adjacent to the fault. Ongoing deformation and sedimentation have been documented in the Mt Howitt Province of eastern Victoria. Overall, structural trends reflect a combination of controls provided by reactivation of pre-existing contractional and extensional structures in dominantly E–W shortening operating intermittently from the earliest Devonian to Early Carboniferous.  相似文献   

13.
The structures across the Lambian Unconformity near Taralga show evidence of two, and possibly three, significant episodes of folding. The first, Early to Middle Silurian folding is poorly defined, but may be responsible for initial dips that are reflected in the more complex deformation patterns in the Late Ordovician than in the overlying younger rocks. The second, mid‐Devonian folding produced upright folds trending 10° west of north, and the last, latest Devonian to Early Carboniferous folding produced the meridional Cookbundoon Synclinorium and the regional cleavage. No cleavage was associated with the first two episodes of folding in the area studied. The angular discordance across the Lambian Unconformity caused by mid‐Devonian folding is much greater than in the northeastern Lachlan Fold Belt, and reflects the increasing intensity of mid‐Devonian folding southward. The tight, slightly overturned profile of the Cookbundoon Synclinorium reflects an intensity of latest Devonian to Early Carboniferous folding similar to that found in the northeastern Lachlan Fold Belt, but the intensity of this folding decreases further south.  相似文献   

14.
The timing of Svalbard's assembly in relation to the mid‐Paleozoic Caledonian collision between Baltica and Laurentia remains contentious. The Svalbard archipelago consists of three basement provinces bounded by N–S‐trending strike–slip faults whose displacement histories are poorly understood. Here, we report microstructural and mineral chemistry data integrated with 40Ar/39Ar muscovite geochronology from the sinistral Vimsodden‐Kosibapasset Shear Zone (VKSZ, southwest Svalbard) and explore its relationship to adjacent structures and regional deformation within the circum‐Arctic. Our results indicate that strike–slip displacement along the VKSZ occurred in late Silurian–Early Devonian and was contemporaneous with the beginning of the main phase of continental collision in Greenland and Scandinavia and the onset of syn‐orogenic sedimentation in Silurian–Devonian fault‐controlled basins in northern Svalbard. These new‐age constraints highlight possible links between escape tectonics in the Caledonian orogen and mid‐Paleozoic terrane transfer across the northern margin of Laurentia.  相似文献   

15.
黔南坳陷及邻区盆地演化和海相沉积的后期改造   总被引:1,自引:0,他引:1       下载免费PDF全文
黔南坳陷是扬子克拉通内由3组不同方向的断裂围限的一个相对稳定的区块。分4个阶段(新元古代,早古生代,晚古生代—三叠纪,侏罗纪—古近纪)重塑了贵州南部及邻区与周边造山作用耦合的盆地演化。广西运动形成北东向构造,是海相沉积建造阶段中的一次重要改造。印支运动使贵阳—镇远断裂和紫云—罗甸断裂反转,奠定了其成为黔南坳陷的北界和西南界断裂的基础。中侏罗世后的逆掩—冲断可分为两期:早期称燕山运动,以北东走向的断裂向北西逆冲和扩展为特征;晚期称燕山末期—喜马拉雅运动,区域上表现为北北东走向的断裂向南东东逆冲,铜仁—三都断裂成为黔南坳陷的东界,印支运动形成的近南北向—北北东向断层向西(偏北)逆冲,构成铜仁—三都断裂的背冲构造。近南北向断层上盘发育的开阔背斜是黔南坳陷内海相油气勘探的最有利靶区。  相似文献   

16.
Randel Tom Cox   《Tectonophysics》2009,474(3-4):674-683
Mesoscale structures in Paleozoic rocks of the Ozark plateaus reveal four Pennsylvanian deformation episodes in midcontinent North America. The two earliest episodes can be assigned to progressive northwestward docking of the Ouachita terrane with North America. Early extensional structures (Event 1) indicate a northwest/southeast maximum horizontal stress (Hmax) during Early Pennsylvanian Ouachita terrane advance. Event 2 extensional and strike-slip structures indicate Hmax across the Ozark plateaus that varies systematically from north-northwest/south-southeast in the south to northeast/southwest in the north. This suggests development of a slip-line deformation field in response to minor northeastward lateral escape of lithospheric blocks away from the northwestward-moving Ouachita terrane's leading edge, which acted as an indenter in western Arkansas, southeastern Oklahoma, and Texas. Younger contractional and strike-slip structures of Event 3 indicate northeast/southwest Hmax across the entire Ozark plateaus, and deformation orientation and intensity are not readily assigned to Ouachita foreland deformation and may be related to Middle Pennsylvanian Ancestral Rockies contractional deformation. Finally, Event 4 contractional structures indicate northwest/southeast Hmax consistent with southern Appalachian late stage convergence.Deformation episodes are localized along basement fault zones, particularly at major bends, suggesting minor restraining-bend uplifts along strike-slip faults. Geometries of conjugate normal fault and hybrid shear joint arrays indicate localized areas of high differential stress consistent with basement block uplift at these bends. High-angle faults reactivated in a reverse sense and bedding-parallel veins suggest tensile minimum stresses and pore fluid pressures exceeding lithostatic stress, consistent with brine pulses driven into the midcontinent during Late Paleozoic orogeny (as proposed by other authors).  相似文献   

17.
Calculations of the angular discordance between the Upper Devonian Lambie/Catombal Groups and underlying Lower Devonian formations at 130 separate locations in six areas in the northeastern Lachlan Fold Belt show that the unconformity is of a low angle except for one locality, near Limekilnes (100°). Fewer than 3% of the calculated angular discordances exceed 30°, and 73%” are less than 20°. Attempts to discover a mid‐Devonian fold direction from the restored orientation of the Lower Devonian beds, after the Upper Devonian beds have been rotated to horizontal, have been unsuccessful. Scatter of the restored bedding poles, either primary, or introduced by deformation or imprecision inherent in the measurement technique, camouflages any consistent mid‐Devonian fold axis.

Although there was demonstrable uplift, tilting, and erosion in the mid‐Devonian, limb dips on any mid‐Devonian folds do not exceed 30°. From consideration of our data, and the interpretation of angular unconformities, we conclude that there is insufficient evidence in the northeastern Lachlan Fold Belt to support an orogenic scheme in which the intense meridional deformation is synchronous with the major mid‐Devonian facies change, and part of a terminal orogeny. Only when the structures above, below and across unconformities have been mapped in some detail, will it be possible to define the nature and extent of any diastrophism that accompanied the formation of the unconformities.  相似文献   

18.
The moderately metamorphosed and deformed rocks exposed in the Hampden Synform, Eastern Fold Belt, in the Mt Isa terrane, underwent complex multiple deformations during the early Mesoproterozoic Isan Orogeny (ca 1590–1500 Ma). The earliest deformation elements preserved in the Hampden Synform are first‐generation tight to isoclinal folds and an associated axial‐planar slaty cleavage. Preservation of recumbent first‐generation folds in the hinge zones of second‐generation folds, and the approximately northeast‐southwest orientation of restored L1 0 intersection lineation suggest recumbent folding occurred during east‐west to northwest‐southeast shortening. First‐generation folds are refolded by north‐south‐oriented upright non‐cylindrical tight to isoclinal second‐generation folds. A differentiated axial‐planar cleavage to the second‐generation fold is the dominant fabric in the study area. This fabric crenulates an earlier fabric in the hinge zones of second‐generation folds, but forms a composite cleavage on the fold limbs. Two weakly developed steeply dipping crenulation cleavages overprint the dominant composite cleavage at a relatively high angle (>45°). These deformations appear to have had little regional effect. The composite cleavage is also overprinted by a subhorizontal crenulation cleavage inferred to have developed during vertical shortening associated with late‐orogenic pluton emplacement. We interpret the sequence of deformation events in the Hampden Synform to reflect the progression from thin‐skinned crustal shortening during the development of first‐generation structures to thick‐skinned crustal shortening during subsequent events. The Hampden Synform is interpreted to occur within a progressively deformed thrust slice located in the hangingwall of the Overhang Shear.  相似文献   

19.
In this paper we tried to identify the main tectonic lineaments in Eastern Iran including Lut block and Sistan suture zone from the airborne geomagnetic data together with tilt filter. As the map of obtained lineaments from airborne geomagnetic data has been studied, four distinct set of lineaments has been identified: (i) north–south, (ii) east–west, (iii) northeast–southwest, and (iv) northwest–southwest that are concurrently with structural zones and area’s big faults. New faults which have been identified in this investigation are lineaments with trend northeast–southwest and east–west. The depth of these lineaments has been calculated through Euler modeling. Magnetic lineaments trending east–west have the most depth, so these lineaments are related to basement faults.  相似文献   

20.
The Bunga beds are bounded by faults adjacent to which are fanglomerates that form part of an early Late Devonian volcanic rift basin. Some cross‐faults acted as precursors for later regional deformation that kinked the Ordovician basement and gently folded the basin sediments in a northwest‐southeast direction. Details of the faulted junction at Picnic Point and orientation of cleavage microstructures in the fanglomerates support the dating of the north‐south regional F2 deformation as Middle Devonian or older and the northwest‐southeast F3 kinking as post‐early Late Devonian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号