首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
主要研究了磷酸铝(Al PO4)的加入量对氧化亚铁硫杆菌HX3培养液中铁矿物形成的影响,并对相应沉淀产物进行了结构表征分析。结果表明,Al PO4的加入对细菌培养过程中Fe2+的氧化无明显影响,但可促进Fe3+的水解和初始铁矿物相的形成,也可加速黄钾铁矾的转化形成。Al/Fe(摩尔比)为0. 04~1的培养液中主要形成产物为施威特曼石和黄钾铁矾; Al/Fe为0. 4和1时另有磷酸铁矿形成。较高的Al/Fe比值和磷酸根含量有利于磷酸铁矿的形成。  相似文献   

2.
普遍存在环境中的低分子有机酸盐对氧化亚铁硫杆菌的矿化产物(施氏矿和黄钾铁矾等铁矿物)会产生影响,从而导致环境中有毒重金属迁移转化发生变化。本文探讨了低分子有机酸钠盐对铁细菌HX3成长过程中代谢产物铁矿物的影响,并利用XRD、FTIR、FESEM和EDS对形成的铁矿物进行了表征与分析。研究结果表明,低浓度低分子有机酸钠盐的加入对细菌氧化Fe~(2+)的影响不明显,但可加速黄钾铁矾的形成;苹果酸钠的加入较柠檬酸钠和草酸钠更利于施氏矿向黄钾铁矾转变。高浓度低分子有机酸钠盐(苹果酸钠、柠檬酸钠和草酸钠依次为20、40和40mmol/L)的加入对细菌培养过程中Fe~(2+)的氧化有抑制作用;抑制影响从大到小的顺序为:苹果酸钠柠檬酸钠草酸钠。该研究结果可为含氧化亚铁硫杆菌等铁细菌的酸性矿山废水中铁矿物的形成转化和生物矿化机理提供理论参考。  相似文献   

3.
Growth zoning in jarosite, an Fe3+-bearing sulfate mineral, can generally be characterized by variation of Na+ for K+ in the crystallographic A site or by Al3+ for Fe3+ in the octahedral (B) site. Growth zoning in a sample from Post Pit, NV, however, is more complicated than has been observed in other jarosite samples examined in this study and by previous work, and is characterized by varying Ba, Sr, P, and As. In this sample, these elements define a coupled substitution in which Ba2+ and Sr2+ substitute for K+ in the crystallographic A site, and are balanced by the substitution of P5+ and As5+ for S6+ in the tetrahedral (X) site. The Post Pit sample also exhibits a high concentration of V, which does not appear to participate in the aforementioned coupled substitution. Analysis of mineral stoichiometry and charge balance reveal that V is likely tetravalent, and represents a charge excess in the B site. The occurrence of V-bearing goethite in this sample records fluctuating fluid pH, resulting in the alternating stability of jarosite and goethite. Measurement of the REEs in jarosite by SIMS, indicate that Ce is trivalent in the Post Pit sample; reduced relative to Ce4+ found in the remainder of the sample suite. The presence of V4+ and Ce3+ indicate that the Post Pit sample was deposited in a less oxidizing environment than the remainder of the sample suite. This study illustrates how jarosite crystal chemistry can be used to place relative constraints on fluid conditions (pH, Eh, chemistry, etc.) in the terrestrial environment, and characterizes possible major and trace element coupled substitutions into the jarosite crystal structure. Furthermore, this study provides a framework for future studies to examine mineral-fluid partition coefficients (D values) which may place more absolute constraints on fluid chemistry in the jarosite depositional environment.  相似文献   

4.
The behaviour of trace amounts of arsenate coprecipitated with ferrihydrite, lepidocrocite and goethite was studied during reductive dissolution and phase transformation of the iron oxides using [55Fe]- and [73As]-labelled iron oxides. The As/Fe molar ratio ranged from 0 to 0.005 for ferrihydrite and lepidocrocite and from 0 to 0.001 for goethite. For ferrihydrite and lepidocrocite, all the arsenate remained associated with the surface, whereas for goethite only 30% of the arsenate was desorbable. The rate of reductive dissolution in 10 mM ascorbic acid was unaffected by the presence of arsenate for any of the iron oxides and the arsenate was not reduced to arsenite by ascorbic acid. During reductive dissolution of the iron oxides, arsenate was released incongruently with Fe2+ for all the iron oxides. For ferrihydrite and goethite, the arsenate remained adsorbed to the surface and was not released until the surface area became too small to adsorb all the arsenate. In contrast, arsenate preferentially desorbs from the surface of lepidocrocite. During Fe2+ catalysed transformation of ferrihydrite and lepidocrocite, arsenate became bound more strongly to the product phases. X-ray diffractograms showed that ferrihydrite was transformed into lepidocrocite, goethite and magnetite whereas lepidocrocite either remained untransformed or was transformed into magnetite. The rate of recrystallization of ferrihydrite was not affected by the presence of arsenate. The results presented here imply that during reductive dissolution of iron oxides in natural sediments there will be no simple correlation between the release of arsenate and Fe2+. Recrystallization of the more reactive iron oxides into more crystalline phases, induced by the appearance of Fe2+ in anoxic aquifers, may be an important trapping mechanism for arsenic.  相似文献   

5.
This study focused on the ferric sulfate precipitates formed during the culture of Acidithiobacillus ferrooxidans (A. ferrooxidans) in a modified 9K medium by applying a potential control on the electrode. X-ray diffraction (XRD), environmental scanning electron microscope (ESEM), Raman spectroscopy (Raman) and Fourier Transform Infrared spectroscopy (FTIR) were carried out to characterize and identify the precipitates which were formed, respectively, in the electrochemical cultivation with a fixed cathode potential (bias-experiment) and in the conventional batch cultivation without cathode potential control (no-bias-experiment). The results indicated that K-jarosite presented in both experiments while NH4-jarosite and schwertmannite were only found in the no-bias-experiment. The formation of different precipitates could be attributed to the different growth statuses and rates of A. ferrooxidans and the different concentrations of Fe3+. In the bias-experiment, external electrons reproduced Fe2+ and promoted the growth of A. ferrooxidans, thus resulting in the low Fe3+ concentration and the rapid depletion of NH4 + as the nitrogen source, in which K-jarosite was preferentially formed. In the no-bias-experiment, the lower concentration of A. ferrooxidans was observed, which was due to the continuous consumption of Fe2+ by bacteria, thus resulting in the relatively higher Fe3+ and the NH4 + concentration in culture. The high concentration of Fe3+ favored the precipitation of the solid solution of K-NH4-H3O jarosite, and led to the formation of schwertmannite after K+ and NH4 + were depleted.  相似文献   

6.
The minerals of the jarosite group, including the jarosite-beudantite-segnitite and jarosite-beaverite-osarizawaite isomorphic series, were studied with M?ssbauer spectroscopy. All the samples were collected from the oxidation zones of the South Urals sulfide deposits. In contrast to the jarosite containing one Fe3+ doublet in the M?ssbauer spectrum, the Pb-bearing members of the jarosite group—beudantite and beaverite—have two doublets in their spectra. Fe3+ is distributed at two sites with similar isomer shifts and different quadrupole splitting. The quantitative ratio of those doublets in the structure is roughly equal. The M?ssbauer spectra of the intermediate jarosite-beudantite and beaverite-osarizawaite members are superpositions of the jarosite and beudantite spectrum types with a prevalent jarosite doublet and larger quadrupole splitting. An admixture of antimony increases the Fe3+ content in the doublet with smaller quadrupole splitting. The unequal Fe3+ distribution in those two sites may be related to the ordering of cations in octahedrons. The appearance of two different Fe3+ sites probably resulted from the local coordinating role of Pb rather than from isomorphic replacement in anion groups.  相似文献   

7.
Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored under dry conditions in different atmospheres. The air-wet experiments show evidence of pyrite re-precipitation from soluble ferric sulfates, with As retention in the jarosite phase. Extents of As and Fe oxidation were similar for samples having differing As substitution in pyrite, suggesting that environmental conditions outweigh the composition and amount of pyrite as factors influencing the oxidation rate of Fe sulfides in coal.  相似文献   

8.
The importance of the discovery of jarosite at the Meridiani Planum region of Mars is discussed. Terrestrial studies demonstrate that jarosite requires a unique environment for its formation, crystallizing from highly acidic (pH < 4) S-rich brines under highly oxidizing conditions. A likely scenario for jarosite formation on Mars is that degassing of shallow magmas likely released SO2 that reacted with aqueous solutions in shallow aquifers or on the martian surface. This interaction forms both H2SO4 and H2S. A martian oxidant must be identified to both oxidize H2S to produce the required acidity of the fluid, and to oxidize Fe2+ to Fe3+. We suggest that reactions involving both sulfur and the reduction of CO2 to CO may provide part of the answer. The jarosite crystal structure is truly remarkable in terms of its tolerance for the substitution of a large number of different cations with different ionic radii and charges. The structure accommodates hydrogen, oxygen, and sulfur, the stable isotope systematics of which are strong recorders of low-temperature fluid-rock-atmosphere interactions. Jarosite has been proven to be a robust chronometer for Ar-Ar and K-Ar dating techniques, and there is every reason to believe that U-Pb, Rb-Sr, and Nd-Sm techniques for older jarosite from Mars will also be robust. Although the discovery of jarosite on Mars alone, with no other analytical measurements on the phase, has given us insights to martian surficial processes, the true power of jarosite can not be exploited until jarosite is sampled and returned from Mars. Mars sample return is a long way off but, until then, we should be vigilant about examining martian meteorites for alteration assemblages that contain jarosite. A suite of jarosite samples representing a significant time span on Mars may hold the key to reading the record of martian atmospheric evolution.  相似文献   

9.
Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site in Raymond, New Hampshire, USA, showed evidence of locally enhanced As mobilization in relatively reducing (mixed oxic-anoxic to anoxic) conditions as determined by redox classification and other lines of evidence. Redox classification was determined from geochemical indicators based on threshold concentrations of dissolved oxygen (DO), nitrate (NO 3 ), iron (Fe2+), manganese (Mn2+), and sulfate (SO 4 2– ). Redox conditions were evaluated also based on methane (CH4), excess nitrogen gas (N2) from denitrification, the oxidation state of dissolved As speciation (As(III) and As(V)), and several stable isotope ratios. Samples from the residential-supply wells primarily exhibit mixed redox conditions, as most have long open boreholes (typically 50–100?m) that receive water from multiple discrete fractures with contrasting groundwater chemistry and redox conditions. The methods employed in this study can be used at other sites to gauge redox conditions and the potential for As mobilization in complex fractured crystalline-rock aquifers where multiple lines of evidence are likely needed to understand As occurrence, mobility, and transport.  相似文献   

10.
Published solubility data for amorphous ferric arsenate and scorodite have been reevaluated using the geochemical code PHREEQC with a modified thermodynamic database for the arsenic species. Solubility product calculations have emphasized measurements obtained under conditions of congruent dissolution of ferric arsenate (pH < 3), and have taken into account ion activity coefficients, and ferric hydroxide, ferric sulfate, and ferric arsenate complexes which have association constants of 104.04 (FeH2AsO42+), 109.86 (FeHAsO4+), and 1018.9 (FeAsO4). Derived solubility products of amorphous ferric arsenate and crystalline scorodite (as log Ksp) are −23.0 ± 0.3 and −25.83 ± 0.07, respectively, at 25 °C and 1 bar pressure. In an application of the solubility results, acid raffinate solutions (molar Fe/As = 3.6) from the JEB uranium mill at McClean Lake in northern Saskatchewan were neutralized with lime to pH 2-8. Poorly crystalline scorodite precipitated below pH 3, removing perhaps 98% of the As(V) from solution, with ferric oxyhydroxide (FO) phases precipitated starting between pH 2 and 3. Between pH 2.18 and 7.37, the apparent log Ksp of ferric arsenate decreased from −22.80 to −24.67, while that of FO (as Fe(OH)3) increased from −39.49 to −33.5. Adsorption of As(V) by FO can also explain the decrease in the small amounts of As(V)(aq) that remain in solution above pH 2-3. The same general As(V) behavior is observed in the pore waters of neutralized tailings buried for 5 yr at depths of up to 32 m in the JEB tailings management facility (TMF), where arsenic in the pore water decreases to 1-2 mg/L with increasing age and depth. In the TMF, average apparent log Ksp values for ferric arsenate and ferric hydroxide are −25.74 ± 0.88 and −37.03 ± 0.58, respectively. In the laboratory tests and in the TMF, the increasing crystallinity of scorodite and the amorphous character of the coexisting FO phase increases the stability field of scorodite relative to that of the FO to near-neutral pH values. The kinetic inability of amorphous FO to crystallize probably results from the presence of high concentrations of sulfate and arsenate.  相似文献   

11.
Chemical composition, unit cell parameters, and trace elements of tourmalines from Mesozoic gold-quartz-sulphide and gold-bearing copper-porphyry ore-magmatic systems of the Trans-Baikal area and Mongolia show that they belong to the specific schorl-dravite highly ferruginous oxytourmaline series. They are low in alumina (Al2O3 = 16–33%) and have MgO contents (up to 10%) and Fe2O3 (1%). There is a direct correlation of unit cell parameters (a,c,V) with total iron, which permits composition estimates from X-ray diffraction analyses. As a rule, these tourmalines contain high concentrations of Au, Pb and Cu, which are mainly hosted by inclusions of native gold and ore minerals. The highest As abundances are contained in the tourmalines of the copper-porphyry field.Two trends of isomorphic replacement are related to increasing Fe content of oxyferruginous tourmalines:(1) “Acid leaching” trend (less ferruginous part of the series) Mg + Fe2+ + 4Al + 40 4Fe3+ + 2 + 4(OH,F); and (2) “conjugate deposition” trend Mg + 1.5Fe2+ + 1.5Al + 4(OH,F) 4Fe3+ + 4O.These features distinguish tourmalines from gold-bearing systems from schorl-dravites of tin and rare-metal deposits. They may be used in metallogenic analyses, interpretation of the origin of primary and secondary anomalies, and assessment of the type and zonation of ore fields.  相似文献   

12.
A simple one-step synthetic approach using rice husk has been developed to prepare magnetic Fe3O4-loaded porous carbons composite (MRH) for removal of arsenate (As(V)). The characteristics of adsorbent were evaluated by transmission electron microscope, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and thermogravimetric analysis. On account of the combined advantages of rice husk carbons and Fe3O4 nanoparticles, the synthesized MRH composites showed excellent adsorption efficiency for aqueous As(V). The removal of As(V) by the MRH was studied as a function of contact time, initial concentration of As(V), and media pH. The adsorption kinetics of As(V) exhibited a rapid sorption dynamics by a pseudo-second-order kinetic model, implying the mechanism of chemisorption. The adsorption data of As(V) were fitted well to the Langmuir isotherm model, and the maximum uptake amount (q m ) was calculated as 4.33 mg g?1. The successive regeneration and reuse studies showed that the MRH kept the sorption efficiencies over five cycles. The obtained results demonstrate that the MRH can be utilized as an efficient and low-cost adsorbent for removal of As(V) from aqueous solutions.  相似文献   

13.
《Applied Geochemistry》1997,12(2):203-211
The metal attenuation capacities of secondary acid mine water precipitates is dependent upon such factors as pH, ionic strength, the presence of competing ions, and tailings mineralogy. At the abandoned Spenceville Cu mine in Nevada County, California, approximately 6800 m3 of jarosite overburden and 28,000 m3 of hematite residue are potential sources of heavy metals loading to infiltrating surface waters. A column study was performed to assess the ability of the overburden and the residue to attenuate heavy metals from acidic mine drainage. The study information was needed as part of a remedial design for the abandoned mine, and was designed to simulate a worst-case scenario to examine the plausibility of backfilling a large open pit with the waste materials. Ten pore volumes of acidic mine drainage were allowed to pass through the materials, and the column effluents were analyzed for dissolved Fe, Al, Ca, Mg, Na, K, Mn, Cu, Zn, Pb and Ni using ICP-AES. The oxidation-reduction potential (Eh) was measured with a combination PtAg/AgCl electrode and also calculated from Fe(II) and Fe(III) measurements using the Nernst equation. Ion activities in solution and saturation index (SI) values for various solid phases were calculated using the geochemical speciation model MINTEQA2, and mineralogical compositions of fine (< 2 mm) and coarse ( > 2 mm) fractions were determined by XRD. Geochemical modeling of the column effluent compositions indicate that goethite, jarosite, jurbanite and gypsum are potential solid phases that may control metal solubilities in the column effluents. Excellent agreement was observed between the measured Eh values and those calculated from the activity ratio of Fe2+(aq) to Fe3+(aq). The large attenuation capacities for Cu and Zn exhibited by the jarosite overburden also suggest that solid solution substitution plays a large role in controlling metal concentrations in the pore waters. Relatively little metal attenuation, however, was provided by the hematite residue.  相似文献   

14.
Tidal inundation is a new technique for remediating coastal acid sulfate soils (CASS). Here, we examine the effects of this technique on the geochemical zonation and cycling of Fe across a tidally inundated CASS toposequence, by investigating toposequence hydrology, in situ porewater geochemistry, solid-phase Fe fractions and Fe mineralogy. Interactions between topography and tides exerted a fundamental hydrological control on the geochemical zonation, redistribution and subsequent mineralogical transformations of Fe within the landscape. Reductive dissolution of Fe(III) minerals, including jarosite (KFe3(SO4)2(OH)6), resulted in elevated concentrations of porewater Fe2+ (> 30 mmol L?1) in former sulfuric horizons in the upper-intertidal zone. Tidal forcing generated oscillating hydraulic gradients, driving upward advection of this Fe2+-enriched porewater along the intertidal slope. Subsequent oxidation of Fe2+ led to substantial accumulation of reactive Fe(III) fractions (up to 8000 μmol g?1) in redox-interfacial, tidal zone sediments. These Fe(III)-precipitates were poorly crystalline and displayed a distinct mineralisation sequence related to tidal zonation. Schwertmannite (Fe8O8(OH)6SO4) was the dominant Fe mineral phase in the upper-intertidal zone at mainly low pH (3–4). This was followed by increasing lepidocrocite (γ-FeOOH) and goethite (α-FeOOH) at circumneutral pH within lower-intertidal and subtidal zones. Relationships were evident between Fe fractions and topography. There was increasing precipitation of Fe-sulfide minerals and non-sulfidic solid-phase Fe(II) in the lower intertidal and subtidal zones. Precipitation of Fe-sulfide minerals was spatially co-incident with decreases in porewater Fe2+. A conceptual model is presented to explain the observed landscape-scale patterns of Fe mineralisation and hydro-geochemical zonation. This study provides valuable insights into the hydro-geochemical processes caused by saline tidal inundation of low lying CASS landscapes, regardless of whether inundation is an intentional strategy or due to sea-level rise.  相似文献   

15.
Batch uptake experiments and X-ray element mapping and spectroscopic techniques were used to investigate As(V) (arsenate) uptake mechanisms by calcite, including adsorption and coprecipitation. Batch sorption experiments in calcite-equilibrated suspensions (pH 8.3; PCO2 = 10−3.5 atm) reveal rapid initial sorption to calcite, with sorption rate gradually decreasing with time as available sorption sites decrease. An As(V)-calcite sorption isotherm determined after 24 h equilibration exhibits Langmuir-like behavior up to As concentrations of 300 μM. Maximum distribution coefficient values (Kd), derived from a best fit to a Langmuir model, are ∼190 L kg−1.Calcite single crystals grown in the presence of As(V) show well-developed rhombohedral morphology with characteristic growth hillocks on surfaces at low As(V) concentrations (?5 μM), but habit modification is evident at As(V) concentrations ?30 μM in the form of macrostep development preferentially on the − vicinal surfaces of growth hillocks. Micro-X-ray fluorescence element mapping of surfaces shows preferential incorporation of As in the − vicinal faces relative to + vicinals. EXAFS fit results for both adsorption and coprecipitation samples confirm that As occurs in the 5+ oxidation state in tetrahedral coordination with oxygen, i.e., as arsenate. For adsorption samples, As(V) forms inner-sphere surface complexes via corner-sharing with Ca octahedra. As(V) coprecipitated with calcite substitutes in carbonate sites but with As off-centered, as indicated by two Ca shells, and with likely disruption of local structure. The results indicate that As(V) interacts strongly with the calcite surface, similar to often-cited analog phosphate, and uptake can occur via both adsorption and coprecipitation reactions. Therefore, calcite may be effective for partial removal of dissolved arsenate from aquatic and soil systems.  相似文献   

16.
The knowledge of mineralogy and molecular structure of As is needed to better understand the stability of As in wastes resulting from processing of gold ores. In this study, optical microscopy, scanning electron microscopy, electron microprobe, X-ray diffraction and X-ray absorption fine structure (XAFS) spectroscopy (including both XANES and EXAFS regimes) were employed to determine the mineralogical composition and local coordination environment of As in gold ores and process tailings from bench-scale tests designed to mimic a common plant practice. Arsenic-bearing minerals identified in the ores and tailings include iron (III) oxyhydroxides, scorodite (FeAsO4·2H2O), ferric arsenates, arseniosiderite (Ca2Fe3(AsO4)3O2·3H2O), Ca-Fe arsenates, pharmacosiderite (KFe4(AsO4)3(OH)4·6-7H2O), jarosite (K2Fe6(SO4)4(OH)12) and arsenopyrite (FeAsS). Iron (III) oxyhydroxides contain variable levels of As from trace to about 22 wt% and Ca up to approximately 9 wt%.Finely ground ore and tailings samples were examined by bulk XAFS and selected mineral grains were analyzed by microfocused XAFS (micro-EXAFS) spectroscopy to reconcile the ambiguities of multiple As sources in the complex bulk EXAFS spectra. XANES spectra indicated that As occurs as As5+in all the samples. Micro-EXAFS spectra of individual iron (III) oxyhydroxide grains with varying As concentrations point to inner-sphere bidentate-binuclear arsenate complexes as the predominant form of As. There are indications for the presence of a second Fe shell corresponding to bidentate-mononuclear arrangement. Iron (III) oxyhydroxides with high As concentrations corresponding to maximum adsorption densities probably occur as nanoparticles. The discovery of Ca atoms around As in iron (III) oxyhydroxides at interatomic distances of 4.14-4.17 Å and the coordination numbers suggest the formation of arseniosiderite-like nanoclusters by coprecipitation rather than simple adsorption of Ca onto iron (III) oxyhydroxides. Correlation of Ca with As in iron (III) oxyhydroxides as determined by electron microprobe analysis supports the coprecipitate origin for the presence of Ca in iron (III) oxyhydroxides.The samples containing higher abundances of ferric arsenates released higher As concentrations during the cyanidation tests. The presence of highly soluble ferric arsenates and Ca-Fe arsenates, and relatively unstable iron (III) oxyhydroxides with Fe/As molar ratios of less than 4 in the ore and process tailings suggests that not only the tailings in the impoundment will continue to release As, but also there is the potential for mobilization of As from the natural sources such as the unmined ore.  相似文献   

17.
Iron sulfide oxidation and the chemistry of acid generation   总被引:3,自引:0,他引:3  
Acid mine drainage, produced from the oxidation of iron sulfides, often contains elevated levels of dissolved aluminum (AI), iron (Fe), and sulfate (SO4) and low pH. Understanding the interactions of these elements associated with acid mine drainage is necessary for proper solid waste management planning. Two eastern oil shales were leached using humidity cell methods. This study used a New Albany Shale (4.6 percent pyrite) and a Chattanooga Shale (1.5 percent pyrite). The leachates from the humidity cells were filtered, and the filtrates were analyzed for total concentrations of cations and anions. After correcting for significant solution species and complexes, ion activities were calculated from total concentrations. The results show that the activities of Fe3+, Fe2+, Al3+, and SO4 2− increased due to the oxidation of pyrite. Furthermore, the oxidation of pyrite resulted in a decreased pH and an increased pe+pH (redox-potential). The Fe3+ and Fe2+ activities appeared to be controlled by amorphous Fe(OH)3 solid phase above a pH of 6.0 and below pe+pH 11.0. The Fe3+, Fe2+, and SO4 2− activities reached saturation with respect to FeOHSO4 solid phase between pH 3.0 and 6.0 and below pe+pH 11.0 Below a pH of 3.0 and above a pe+pH of 11.0, Fe2+, Fe3+, and SO4 2− activities are supported by FeSO4·7H2O solid phase. Above a pH of 6.0, the Al3+ activity showed an equilibrium with amorphous Al(OH)3 solid phase. Below pH 6.0, Al3+ and SO4 2− activities are regulated by the AlOHSO4 solid phase, irrespective of pe+pH. The results of this study suggest that under oxidizing conditions with low to high leaching potential, activities of Al and Fe can be predicted on the basis of secondary mineral formation over a wide range of pH and redox. As a result, the long-term chemistry associated with disposal environments can be largely predicted (including trace elements).  相似文献   

18.
A 44 m-thick lacustrine succession of silty-clay banded ochres and subordinated sandstones, and conglomerates (known as the Corral Amarillo Formation) is superbly exposed within the Famatina Belt (Central Andes of Argentina) after deep entrenchment by the present-day Amarillo river due to strong recent uplifting and consequent relative drop in base level. The unusual ochreous-rich succession was produced by natural damming (3.48–3.54 14C kyr BP) of an acid drainage system linked to the alteration cap of polymetallic deposits. Facies of silty-clay ochre (wet season) and banded ochre (dry season) from the paleolacustrine setting are composed of jarosite + goethite and goethite respectively. Geochemically, these layers record high concentrations of Fe2O3 (25–55 wt. %) and trace elements (Cu, Zn, Co, As, and Mo with mean concentrations of 2759; 2467; 109; 375 and 116 ppm, respectively). Their origin is inferred from a comparative analysis with the present-day Amarillo river, which has a pH of ∼3, (SO4)2− concentrations of ∼5000 mg/l, and jarosite as the dominant phase, in the upper catchments. Waters downstream have pH values of 3–4.5, (SO4)2− concentrations of ∼3000–480 mg/l, and schwertmannite as the dominant phase. Thus goethite in the paleolake facies is likely related to schwertmannite transformation by an aging process, whereas jarosite is probably transported from the river but could also be associated with post-depositional formation regulated by variations in grain size and the pore fluid chemistry. The Corral Amarillo Formation offers a Natural model, which may be employed to infer the effect on nature of acid drainage of mineralized areas.  相似文献   

19.
Ilvaite, Ca(Fe2+,Fe3+)Fe2+Si2O8(OH) shows two magnetic phase transitions, which have been studied by Mössbauer spectroscopy within the temperature range 120–4 K. The continued charge localization between Fe2+ and Fe3+ ions in octahedral A-sites causes the Fe2+-Fe3+ interaction to be ferromagnetic, although the overall magnetic order is antiferromagnetic. The thermal evolution of the hyperfine fields at the Fe2+ (A) and Fe3+ (A) sites indicates B hf: 328 and 523 kOe respectively at 0 K and T N1= 116K. The corresponding values for Fe2+ (B) site are: B hf 186 kOe and T N2=36K. An additional hyperfine field exists at the Fe2+(B) site within the temperature range 116–36K due to short-range order induced by the spin ordering in A sites. The considerable difference between the two magnetic transition temperatures is due to spin frustration, because the Fe2+ (B) site occurs on a corner common between two triangles with respect to two sets of Fe2+ (A) and Fe3+ (A) sites with opposite spin directions.  相似文献   

20.
To get deeper insight into the phase relations in the end-member system Fe2SiO4 and in the system (Fe, Mg)2SiO4 experiments were performed in a multi-anvil apparatus at 7 and 13 GPa and 1,000–1,200°C as a function of oxygen fugacity. The oxygen fugacity was varied using the solid oxygen buffer systems Fe/FeO, quartz–fayalite–magnetite, MtW and Ni/NiO. The run products were characterized by electron microprobe, Raman- and FTIR-spectroscopy, X-ray powder diffraction and transmission electron microscopy. At fO2 corresponding to Ni/NiO Fe-ringwoodite transforms to ferrosilite and spinelloid according to the reaction: 9 Fe2SiO4 + O2 = 6 FeSiO3 + 5 Fe2.40Si0.60O4. Refinement of site occupancies in combination with stoichiometric Fe3+ calculations show that 32% of the total Fe is incorporated as Fe3+ according to From the Rietveld refinement we identified spl as spinelloid III (isostructural with wadsleyite) and/or spinelloid V. As we used water in excess in the experiments the run products were also analyzed for structural water incorporation. Adding Mg to the system increases the stability field of ringwoodite to higher oxygen fugacity and the spinel structure seems to accept higher Fe3+ but also water concentrations that may be linked. At oxygen fugacity corresponding to MtW conditions similar phase relations in respect to the breakdown reaction in the Fe-end-member system were observed but with a strong fractionation of Fe into spl and Mg into coexisting cpx. Thus, through this strong fractionation it is possible to stabilize very Fe-rich wadsleyite with considerable Fe3+ concentrations even at an intermediate Fe–Mg bulk composition: assuming constant K D independent on composition and a bulk composition of x Fe = 0.44 this fractionation would stabilize spl with x Fe = 0.72. Thus, spl could be a potential Fe3+ bearing phase at P–T conditions of the transition zone but because of the oxidizing conditions and the Fe-rich bulk composition needed one would expect it more in subduction zone environments than in the transition zone in senso stricto.
M. Koch-MüllerEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号