首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article discusses the Meso–Cenozoic thermal history, thermal lithospheric thinning, and thermal structure of the lithosphere of the Bohai Bay Basin, North China. The present-day thermal regime of the basin features an average heat flow of 64.5 ± 8.1 mW m–2, a lithospheric thickness of 76–102 km, and a ‘hot mantle but cold crust’-type lithospheric thermal structure. The Meso–Cenozoic thermal history experienced two heat flow peaks in the late Early Cretaceous and in the middle to late Palaeogene, with heat flow values of 82–86 mW m?2 and 81–88 mW m?2, respectively. Corresponding to these peaks, the thermal lithosphere experienced two thinning stages during the Cretaceous and Palaeogene, reaching a minimum thickness of 43–61 km. The lithospheric thermal structure transformed from the ‘hot crust but cold mantle’ type in the Triassic–Jurassic to the ‘cold crust but hot mantle’ type in the Cretaceous–Cenozoic, according to the ratio of mantle to surface heat flow (qm/qs). The research on the thermal history and lithospheric thermal structure of sedimentary basins can effectively reveal the thermal regime at depth in the sedimentary basins and provide significance for the study of the basin dynamics during the Meso–Cenozoic.  相似文献   

2.
The geothermal field is mainly controlled by the regional tectonic framework characterized by alternationsof uplifted and depressed basement. and exhibits a similar zoned distribution of temperatures. In the upliftedarea the geothermal gradient (G) and terrestrial heat flow value(q) of the Cenozoic sedimentary cover are rela-tively high, with G=3.5-5.0℃/100m and q=63-84mW/m~2; whereas in the depressions they are rela-tively low, with G=2.7-3.5℃/100m and q=46-59mW/m~2. In the whole region, G=3.58℃/100m and q=61.5±13.4nW/m~2, indicating a comparatively high geothermal background and the presence of localgeothermal anomalies. A comparison of the results of mathematical simulation of the geothermal field with themeasured values shows a good agrecment between them. The geothermal difference between various tectonicunits is caused chiefly by the lateral and vertical variation of thermal properties of shallow crustal rocks. Thisphenomenon can be regarded as the result of redistribution of relatively uniform heat flows from the deep crustin the surficial part of the crust in the process of their upward conduction.  相似文献   

3.
An updated analysis of geothermal data from the highland area of eastern Brazil has been carried out and the characteristics of regional variations in geothermal gradients and heat flow examined. The database employed includes results of geothermal measurements at 45 localities. The results indicate that the Salvador craton and the adjacent metamorphic fold belts northeastern parts of the study area are characterized by geothermal gradients in the range of 6–17°C/km. The estimated heat flow values fall in the range of 28–53 mW/m2, with low values in the cratonic area relative to the fold belts. On the other hand, the São Francisco craton and the intracratonic São Francisco sedimentary basin in the southwestern parts are characterized by relatively higher gradient values, in the range of 14–42°C/km, with the corresponding heat flow values falling in the range of 36–89 mW/m2. Maps of regional variations indicate that high heat flow anomaly in the São Francisco craton is limited to areas of sedimentary cover, to the west of the Espinhaço mountain belt. Crustal thermal models have been developed to examine the implications of the observed intracratonic variations in heat flow. The thermal models take into consideration variation of thermal conductivity with temperature as well as change of radiogenic heat generation with depth. Vertical distributions of seismic velocities were used in obtaining estimates of radiogenic heat production in crustal layers. Crustal temperatures are calculated based on a procedure that makes simultaneous use of the Kirchoff and Generalized Integral Transforms, providing thereby analytical solutions in 2D and 3D geometry. The results point to temperature variations of up to 300°C at the Moho depth, between the northern Salvador and southern São Francisco cratons. There are indications that differences in rheological properties, related to thermal field, are responsible for the contrasting styles of deformation patterns in the adjacent metamorphic fold belts.  相似文献   

4.
Exploration of Perth's geothermal potential has been performed by the Western Australian Geothermal Centre of Excellence (WAGCoE). Detailed vertical temperature and gamma ray logging of 17 Western Australia Department of Water's (DoW) Artesian Monitoring (AM) wells was completed throughout the Perth Metropolitan Area (PMA). In addition, temperature logs from 53 DoW AM wells measured in the 1980s were digitised into LAS format. The logged data are available in the WAGCoE Data Catalogue.

Analysis of the gamma ray logs yielded the first estimates of radiogenic heat production in Perth Basin formations. Values by formation ranged between 0.24 and 1.065 μW m?3. The temperature logs provide a picture of true formation temperatures within shallow sediments in the Perth Basin. A three-dimensional model of the temperature distribution was used to produce maps of temperature at depth and on the top of the Yarragadee aquifer.

The temperature data were interpreted with a one-dimensional conductive heat model. Significant differences between the model and the observations was indicative of heat moving via non-conductive mechanisms, such as advection or convection. Evidence of non-conductive or advective heat flow is demonstrated in most formations in the region, with significant effects in the aquifers. Average conductive geothermal gradients range from 13°C km?1 to 39°C km?1, with sandstone formations exhibiting average gradients of approximately 25°C km?1, while insulating silt/shale formations show higher average gradients of over 30°C km?1.

To produce preliminary heat flow estimates, temperature gradients were combined with thermal conductivities measured elsewhere. The geometric mean heat flow estimates range between 64 mW m?2 to 91 mW m?2, with the standard deviation of the arithmetic mean heat flow ranging between 15 and 23 mW m?2.

The study characterises the shallow temperature regime in the Perth Metropolitan Area, which is of direct relevance towards developing commercial geothermal projects.  相似文献   

5.
Temperature measurements carried out on 9 hydrocarbon exploration boreholes together with Bottom Simulating Reflectors (BSRs) from reflection seismic images are used in this study to derive geothermal gradients and heat flows in the northern margin of the South China Sea near Taiwan. The method of Horner plot is applied to obtain true formation temperatures from measured borehole temperatures, which are disturbed by drilling processes. Sub-seafloor depths of BSRs are used to calculate sub-bottom temperatures using theoretical pressure/temperature phase boundary that marks the base of gas hydrate stability zone. Our results show that the geothermal gradients and heat flows in the study area range from 28 to 128 °C/km and 40 to 159 mW/m2, respectively. There is a marked difference in geothermal gradients and heat flow beneath the shelf and slope regions. It is cooler beneath the shelf with an average geothermal gradient of 34.5 °C/km, and 62.7 mW/m2 heat flow. The continental slope shows a higher average geothermal gradient of 56.4 °C/km, and 70.9 mW/m2 heat flow. Lower heat flow on the shelf is most likely caused by thicker sediments that have accumulated there compared to the sediment thickness beneath the slope. In addition, the continental crust is highly extended beneath the continental slope, yielding higher heat flow in this region. A half graben exists beneath the continental slope with a north-dipping graben-bounding fault. A high heat-flow anomaly coincides at the location of this graben-bounding fault at the Jiulong Ridge, indicating vigorous vertical fluid convection which may take place along this fault.  相似文献   

6.
Heat flow has been determined by combining temperature measurements in 7 boreholes with thermal conductivity measurements in the Upper Vindhyan sedimentary rocks of Shivpuri area, central India. The boreholes are distributed at 5 sites within an area of 15 × 10 km2; their depths range from 174 to 268 m. Geothermal gradients estimated from borehole temperature profiles vary from 8.0–12.7 mK m−1 in the sandstone-rich formations to 25.5–27.5 mK m−1 in the shale-rich formations, consistent with the contrast in thermal conductivities of the two rock types. Heat flow in the area ranges between 45 and 61 mW m−2, with a mean of 52±6 mW m−2. The heat flow values are similar to the >50 mW m−2 heat flow observed in other parts of the northern Indian shield. The heat flow determinations represent the steady-state heat flow because, the thermal transients associated with the initial rifting, convergence and sedimentation in the basin as well as the more recent Deccan volcanism that affected the region to the south of the basin would have decayed, and therefore, the heat flow is in equilibrium with the radiogenic heat production of the crust and the heat flow from the mantle. The present study reports the heat flow measurements from the western part of the Vindhyan basin and provides heat flow information for the Bundhelkhand craton for the first time. Radioelement (Th, U and K) abundances have been measured both in the sedimentary rocks exposed in the area as well as in the underlying basement granite-gneiss of Bundelkhand massif exposed in the adjacent area. Radioactive heat production, estimated from those abundances, indicate mean values of 0.3 μW m−3 for sandstone with inter-bands of shale and siltstone, 0.25 μW m−3 for sandstone with inter-bands siltstone, 0.6 μW m−3 for quartzose sandstone, and 2.7 μW m−3 for the basement granitoids. With a total sedimentary thickness not exceeding a few hundred metres in the area, the heat production of the sedimentary cover would be insignificant. The radioactive heat contribution from the basement granitoids in the upper crust is expected to be large, and together with the heat flow component from the mantle, would control the crustal thermal structure in the region.  相似文献   

7.
The radioactivity due to 238U and 234U in three aquifer systems occurring within the Paraná sedimentary basin, South America, has been investigated. Uranium is much less dissolved from fractured igneous rocks than from the porous sedimentary rocks as indicated by the U-mobility coefficients between 7.6 × 10?6 and 1.2 × 10?3 g cm?3. These values are also compatible with the U preference ratios relative to Na, K, Ca, Mg and SiO2, which showed that U is never preferentially mobilized in the liquid phase during the flow occurring in cracks, fissures, fractures and faults of the igneous basaltic rocks. Experimental dissolution of diabase grains on a time-scale laboratory has demonstrated that the U dissolution appeared to be a two-stage process characterized by linear and second-order kinetics. The U dissolution rate was 8 × 10?16 mol m?2 s?1 that is within the range of 4 × 10?16–3 × 10?14 mol m?2 s?1 estimated for other rock types. The 234U/238U activity ratio of dissolved U in solutions was higher than unity, a typical result expected during the water–rock interactions when preferential 234U-leach from the rock surfaces takes place. Some U-isotopes data allowed estimating 320 ka for the groundwater residence time in a sector of a transect in São Paulo State. A modeling has been also realized considering all U-isotopes data obtained in Bauru (35 samples), Serra Geral (16 samples) and Guarani (29 samples) aquifers. The results indicated that the Bauru aquifer waters may result from the admixture of waters from Guarani (1.5 %) and Serra Geral (98.5 %) aquifers.  相似文献   

8.
The numerical results of thermal modeling studies indicate that the lithosphere is cold and strong beneath the Black Sea basin.The thermal lithospheric thickness increases southward from the eastern Pontides orogenic belt(49.4 km) to Black Sea basin(152.2 km).The Moho temperature increases from 367℃in the trench to 978℃in the arc region.The heat flow values for the Moho surface change between 16.4 mW m-2 in the Black Sea basin and 56.9 mW m-2 in the eastern Pontides orogenic belt. Along the southern Black Sea coast,the trench region has a relatively low geothermal potential with respect to the arc and back-arc region.The numerical studies support the existence of southward subduction beneath the Pontides during the late Mesozoic-Cenozoic.  相似文献   

9.
华北平原新生界盖层地温梯度图及其简要说明   总被引:6,自引:1,他引:6       下载免费PDF全文
陈墨香  邓孝 《地质科学》1990,(3):269-277
本文报道新编比例尺为1:1500000的华北平原新生界盖层地温梯度图。该图以近4000口钻井的温度资料和对地温场控制因素的分析为基础,并结合地温场数学模拟计算结果编制而成。圈定全区地温梯度G>4℃/100m及大地热流q>62mw/m2的局部地热异常区44片,总面积为25000km2,为地热能勘探、开发远景规划提供了重要的科学依据。  相似文献   

10.
Owing to the lack o f terrestrial heat flow data, studying lithospheric thermal structure and geodynamics of the Yingen-Ejinaqi Basin in Inner Mongolia is limited. In this paper, the terrestrial heat flow o f the Chagan sag in the YingenEjinaqi Basin were calculated by 193 system steady-state temperature measurements of 4 wells, and newly measuring 62 rock thermal conductivity and 20 heat production rate data on basis o f the original 107 rock thermal conductivity and 70 heat production data. The results show that the average thermal conductivity and heat production rate are 2.11 ±0.28 W/(m.K) and2.42±0.25 nW/m~3 in the Lower Cretaceous o f the Chagan sag. The average geothermal gradient from the Lower Suhongtu 2 Formation to the Suhongtu 1 Fonnation is 37.6 °C/km, and that o f the Bayingebi 2 Formation is 27.4 °C/km. Meanwhile, the average terrestrial heat flow in the Chagan sag is 70.6 mW/m~2. On the above results, it is clear that there is an obvious negative correlation between the thermal conductivity o f the stratum and its geothermal gradient. Moreover, it reveals that there is a geothermal state between tectonically stable and active areas. This work may provide geothermal parameters for further research o f lithospheric thermal structure and geodynamics in the Chagan sag.  相似文献   

11.
Geothermal gradients and present day heat flow values were evaluated for about seventy one wells in parts of the eastern Niger delta, using reservoir and corrected bottom–hole temperatures data and other data collected from the wells. The results showed that the geothermal gradients in the shallow/continental sections in the Niger delta vary between 10 - 18° C/km onshore, increasing to about 24° C/km seawards, southwards and eastwards. In the deeper (marine/paralic) section, geothermal gradients vary between 18 - 45° C/km. Heat flow values computed using Petromod 1–D modeling software and calibrated against corrected BHT and reservoir temperatures suggests that heat flow variations in this part of the Niger delta range from 29–55 mW/m2 (0.69–1.31 HFU) with an average value of 42.5 mW/m2 (1.00 HFU). Heat flow variations in the eastern Niger delta correspond closely to variations in geothermal gradients. Geothermal gradients increase eastwards, northwards and seawards from the coastal swamp. Vertically, thermal gradients in the Niger delta show a continuous and non-linear relationship with depth, increasing with diminishing sand percentages. As sand percentages decrease eastwards and seawards, thermal gradient increases. Lower heat flow values (< 40 mW/m2) occur in the western and north central parts of the study area. Higher heat flow values (40 - 55 mW/m2) occur in the eastern and northwestern parts of the study area. A significant regional trend of eastward increase in heat flow is observed in the area. Other regional heat flow trends includes; an eastwards and westwards increase in heat flow from the central parts of the central swamp and an increase in heat flow from the western parts of the coastal swamp to the shallow offshore. Vertical and lateral variations in thermal gradients and heat flow values in parts of the eastern Niger delta are influenced by certain mechanisms and geological factors which include lithological variations, variations in basement heat flow, temporal changes in thermal gradients and heat flow, related to thicker sedmentary sequence, prior to erosion and evidenced by unconformities, fluid redistribution by migration of fluids and different scales of fluid migration in the sub-surface and overpressures.  相似文献   

12.
A review of coupled groundwater and heat transfer theory is followed by an introduction to geothermal measurement techniques. Thereafter, temperature-depth profiles (geotherms) and heat discharge at springs to infer hydraulic parameters and processes are discussed. Several studies included in this review state that minimum permeabilities of approximately 5?×?10?17?<?k min <10?15?m2 are required to observe advective heat transfer and resultant geotherm perturbations. Permeabilities below k min tend to cause heat-conduction-dominated systems, precluding inversion of temperature fields for groundwater flow patterns and constraint of permeabilities other than being <k min. Values of k min depend on the flow-domain aspect-ratio, faults and other heterogeneities, anisotropy of hydraulic and thermal parameters, heat-flow rates, and the water-table shape. However, the k min range is narrow and located toward the lower third of geologic materials, which exhibit permeabilities of 10?21?<?k?<?10?7?m2. Therefore, a wide range of permeabilities can be investigated by analyzing subsurface temperatures or heat discharge at springs. Furthermore, temperature is easy and economical to measure and because thermal material properties vary far less than hydraulic properties, temperature measurements tend to provide better-constrained groundwater flow and permeability estimates. Aside from hydrogeologic insights, constraint of advective/conductive heat transfer can also provide information on magmatic intrusions, metamorphism, ore deposits, climate variability, and geothermal energy.  相似文献   

13.
Abstract The metamorphic history of the Middle to Upper Jurassic volcanic and hypabyssal rocks exposed in the Klamath Mountains and Sierra Nevada of California is related, in part, to the rifting of a volcano-plutonic arc. The Callovian to Kimmeridgian rocks exposed in the region consist of, from north-west to south-east, a back-arc ophiolite, a rifted volcanic arc and a volcanic arc complex. All of these units have been metamorphosed and contain various combinations of the phases chlorite, amphibole, epidote, prehnite and pumpellyite. Projection of coexisting phases onto the composition plane MgO/(MgO + FeO) and Al2O3+ Fe2O3 - 0.75 CaO - Na2O through quartz, water, albite and epidote results in consistent mineralogical compatibilities within each region, but crossing tie-lines between regions. This suggests that the volcanic and hypabyssal rocks from each region have equilibrated under different intensive conditions. The back-arc ophiolite in the north has suffered subseafloor high-T/P hydrothermal metamorphism with geothermal gradients on the order of 100° C km?1. The rifted volcanic arc has undergone synchronous burial, hydrothermal and contact metamorphism. Metamorphic field gradients in the region pass through the prehnite-pumpellyite and greenschist facies suggesting geothermal gradients on the order of 30° C km?1. The southernmost volcanic arc complexes contain metavolcanics of the pumpellyiteactinolite and greenschist facies suggesting moderate- to high-P/T metamorphism and geothermal gradients on the order of 20° C km?1. The apparent increase in rifting and calculated geothermal gradients from south-east to north-west suggest that the observed very low- and low-grade metamorphism may be a response to enhanced thermal gradients during extension of the volcanic arc. This correlation between the extent of rifting and metamorphism is consistent with a model of diastathermal metamorphism of a propagating rift along the western margin of North America during the Late Jurassic. The plate tectonic setting may be analogous to the present-day Andaman Sea region.  相似文献   

14.
The bottom of the magnetized crust determined from the spectral analysis of magnetic anomaly is interpreted as a level of the Curie point isotherm. A spectral analysis technique was used to estimate the depth of the magnetic anomalies sources (Curie point depth analysis) of the eastern shore of the Gulf of Suez, Egypt. The depth to the tops and centers of the magnetic anomalies are calculated by azimuthally averaged power spectrum method for the whole area. The results obtained suggests from this study showed that the average depth to the top of the crustal block ranges between 1.15 and 1.9 km, whereas the average depth to the center of the deepest crustal block ranges between 9.1 and 12.7 km. Curie point depths in the study area range between 14.5 km in the northwestern part of the study area and 26 km in the southeastern part of the study area. The results imply a high geothermal gradient (34.7 °C/km) and corresponding high heat flow value (72.87 mW/m2) in the northwestern part of the study area. The southeastern part of the study area displays a low geothermal gradient (24.26 °C/km) and low heat flow value (50.9 mW/m2). These results are consistent with the existence of the possible promising geothermal reservoir in the eastern shore of the Gulf of Suez especially at Hammam Faraun area.  相似文献   

15.
A hydrostructural domain approach was tested and validated in fractured bedrock aquifers of the Gulf Islands, British Columbia (BC), Canada. Relative potential hydraulic properties for three hydrostructural domains in folded and faulted sedimentary rocks were derived using stochastically generated fracture data and hybrid discrete fracture network-equivalent porous media (DFN-EPM) modelling. Model-derived relative potential transmissivity values show good spatial agreement with transmissivity values obtained from pumping tests at selected sites. A spatial pattern of increasing transmissivity towards the southeast along the island chain is consistent between both datasets. Cluster analysis on relative potential permeability values obtained from a larger dataset for the region identified four clusters with geometric means of 9?×?10?13, 4?×?10?13, 2?×?10–13, and 3?×?10–14 m2. The general trend is an increase in relative potential permeability toward the southeast, emulating the trends identified in the site-specific analyses. Relative potential permeability values increase with proximity to the hinge line of a regional northwest-trending asymmetric fault propagation fold structure, and with proximity to superimposed high-angle north- and northeast-trending brittle faults. The results are consistent with documented patterns of structurally controlled fluid flow and show promise for use in regional characterization of fractured bedrock aquifers.  相似文献   

16.
Temperature distribution in karst systems: the role of air and water fluxes   总被引:3,自引:0,他引:3  
A better understanding of heat fluxes and temperature distribution in continental rocks is of great importance for many engineering aspects (tunnelling, mining, geothermal research, etc.). This paper aims at providing a conceptual model of temperature distribution in karst environments which display thermal ‘anomalies’ as compared with other rocks. In temperate regions, water circulation is usually high enough to ‘drain‐out’ completely the geothermal heat flux at the bottom of karst systems (phreatic zone). A theoretical approach based on temperature measurements carried out in deep caves and boreholes demonstrates, however, that air circulation can largely dominate water infiltration in the karst vadose zone, which can be as thick as 2000 m. Consequently, temperature gradients within this zone are similar to the lapse rate of humid air (~0.5 °C 100 m?1). Yet, this value depends on the regional climatic context and might present some significant variations.  相似文献   

17.
A conceptual hydrogeological model of the Viterbo thermal area (central Italy) has been developed. Though numerous studies have been conducted on its geological, geochemical and geothermal features, there is no generalized picture defining the origin and yield of the hydrothermal system. These latter aspects have therefore become the objectives of this research, which is based on new hydrogeological and geochemical investigations. The geological setting results in the coexistence of overlapped interacting aquifers. The shallow volcanic aquifer, characterized by fresh waters, is fed from the area around the Cimini Mountains and is limited at its base by the semiconfining marly-calcareous-arenaceous complex and low-permeability clays. To the west of Viterbo, vertical upflows of thermal waters of the sulphate-chloride-alkaline-earth type with higher gas contents, are due to the locally uplifted carbonate reservoir, the reduced thickness of the semiconfining layer and the high local geothermal gradient. The hot waters (30–60°C) are the result of deep circulation within the carbonate rocks (0.5–1.8 km) and have the same recharge area as the volcanic aquifer. The upward flow in the Viterbo thermal area is at least 0.1 m3/s. This flow feeds springs and deep wells, also recharging the volcanic aquifer from below.  相似文献   

18.
古潜山地热资源具备岩溶孔隙发育程度高、热储面积厚度大、地热水储量大的优点。冀中坳陷内古潜山分布密集且地热资源丰富, 河间潜山位于冀中坳陷饶阳凹陷中东部, 具有良好的地热地质条件, 开发潜力巨大。本文基于河间潜山及其周缘地区测井资料、岩石热物性并进行了计算, 发现其地温梯度为29.8 ℃/km到44.5 ℃/km之间, 平均值为40.7 ℃/km。大地热流值介于64.8~80.6 mW/m2之间, 平均值为 73.4 mW/m2。通过水热耦合模拟方法模拟选定的地热资源有利区的温度变化, 结果发现河间潜山合理的开采井距为800 m, 合理开采量为60 L/s, 回灌温度为35 ℃, 总可开采量为6.32×1016 J, 单年可开采量为 6.32×1014 J, 可供暖面积为1.22×106 m2, 对于冀中坳陷潜山地热资源的开发利用具有一定的指导意义。  相似文献   

19.
Comprehensive data on the chemical composition of reservoir rocks and geothermal brines from the geothermal well doublet Groβ Schönebeck (North German Basin) drilled into a Rotliegend sedimentary and Permo-Carboniferous volcanic rock reservoir were sampled over the past years. They were characterized with respect to their major and minor elemental composition including various isotope ratios. The study considered the impact of drilling and reservoir operations on fluid composition and aimed at determining fluid–rock interactions to gain information on fluid origin and hydraulic pathways.The highly saline fluids (up to 265 g/L TDS) show δ 18O and δD of water (2.7–5.6 and −3.1–15, respectively) as well as δ 34S of sulfate (3.6–5), and 87Sr/86Sr ratios (0.715–0.716) that resemble Rotliegend brines from an area located around 200 km in the west (the Altmark). Halogen ratios indicated that brines developed predominantly by evaporation of meteoric water (primary brine) together with halite dissolution brine (secondary brine). Indication for mixing with Zechstein brine or with younger meteoric water was not found.No geochemical distinction was possible between fluids deriving from different rock formations (dacites or sedimentary rocks, respectively). This is due to the evolution of the sediments from the effusive rocks resulting in a similar mineralogical and chemical composition and due to a hydraulic connectivity between the two types of rock. This connection existed probably already before reservoir stimulation as indicated by a set of faults identified in the area that could connect the Rotliegend formation with both, the volcanic rocks and the lower units of the Zechstein. Additional geochemical indication for a hydraulic connectivity is given by (1) the very high heavy metal contents (mainly Cu and Pb) in fluids and scaling that derive from the volcanic rocks and were that were also found in increased amounts up at the Zechstein border (Kupferschiefer formation). (2) The 87Sr/86Sr isotope ratios of fluid samples correspond to the ratios determined for the sedimentary rocks indicating that initially the fluids developed in the sedimentary rocks and circulated later, when faults structures were created by tectonic events into the volcanic rocks.  相似文献   

20.
Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz‐adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein‐centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10?3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27–0.06 × 10?3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10?3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号