首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time behavior of the foF2 and hmF2 values at the time moment T(ss + 2 h) 2 h after sunset is considered. It is assumed that at this moment, the horizontal winds in the thermosphere in the strongest way influence hmF2 and, therefore, foF2. It is found that a fairly well pronounced and statistically significant change (trend) is observed for the foF2(ss + 2)/foF2(14) ratio, the sign of the change being different for different stations and even different seasons at the same station. A similar picture is obtained for the value of hmF2(ss + 2). It is shown that a positive correlation between the trends of these two values is observed. This confirms the initial concept of the paper that the foF2 and hmF2 trends are caused by long-term trends in the thermospheric dynamics.  相似文献   

2.
This article considers sparse available data on variations in the main parameters of the ionospheric F2 layer foF2(ss + 2) and hmF2(ss + 2) at the end of the 1990s and the beginning of 2000s. It is shown that the monotonous behavior of hmF2(ss + 2) obtained in earlier publications for the period after 1980 is violated. The hmF2(ss + 2) behavior obtains a more complicated nature by time with a tendency towards a decrease in hmF2(ss + 2) at the beginning of a new century. A statistically significant relationship between foF2(ss + 2) and hmF2(ss + 2) is discovered confirming the Rishbeth statement that during the first hours after sunset, the critical frequency foF2 is governed by dynamical processes via changes in the F2-layer height. It is found that at the end of the interval in question, there is a tendency towards deviations from the above-mentioned dependence. The latter could be a manifestation of the fact that changes in the aeronomical parameters caused by the general cooling and contraction of the thermosphere begin influencing the foF2 value. It is found that in the summer months, the foF2(ss + 2) value demonstrated a systematic decline tendency from the “boundary date” towards the beginning of the 2000s.  相似文献   

3.
The variability degree of the F 2-layer height, hmF2, from the 1950s–1960s to the 1990s has been analyzed based on the vertical sounding data for a series of midlatitude ionospheric stations. It has been found that the scatter of the hmF2 values (standard deviation) abruptly increases from the earlier decades to the later ones. This increase is more evident in the spring period of the year and is independent of geomagnetic activity. An increase in the scatter of hmF2 apparently indicates systematic changes (trends) in the thermospheric dynamics, the existence of which was suggested in the recent publications of the authors.  相似文献   

4.
Results of statistical analysis of the properties of variability of F2-layer maximum parameters (critical frequency foF2 and the height hmF2) in quiet midlatitude ionosphere under low solar activity in the daytime (1000–1500 LT) and nighttime (2200–0300 LT) hours are presented on the basis of Irkutsk station data for 2007–2008. It is found that the distribution density of δfoF2 could be presented as consisting of two distinctly different normal laws of this distribution, one of which corresponds to weak (|δfoF2| < 10%) fluctuations in foF2 and the other corresponds to strong (30% > |δfoF2| > 10%) fluctuations. Weak fluctuations in foF2 to a substantial degree are related to ionospheric variability at times less of than 1–3 h and determine the δfoF2 variability in the daytime hours. Strong fluctuations in foF2 are mainly related to day-to-day variability of the ionosphere at a fixed local time, the variability increasing by approximately a factor of 3 during the transition from day to night and determining the δfoF2 variability in the nighttime hours. The distribution density of ΔhmF2 is close to the normal distribution law. An interpretation of the different character of the distribution densities of δfoF2 and ΔhmF2 is given.  相似文献   

5.
We present an uncertainty analysis of ecological process parameters and CO2 flux components (R eco, NEE and gross ecosystem exchange (GEE)) derived from 3 years’ continuous eddy covariance measurements of CO2 fluxes at subtropical evergreen coniferous plantation, Qianyanzhou of ChinaFlux. Daily-differencing approach was used to analyze the random error of CO2 fluxes measurements and bootstrapping method was used to quantify the uncertainties of three CO2 flux components. In addition, we evaluated different models and optimization methods in influencing estimation of key parameters and CO2 flux components. The results show that: (1) Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian) distribution. (2) Different optimization methods result in different estimates of model parameters. Uncertainties of parameters estimated by the maximum likelihood estimation (MLE) are lower than those derived from ordinary least square method (OLS). (3) The differences between simulated Reco, NEE and GEE derived from MLE and those derived from OLS are 12.18% (176 g C·m−2·a−1), 34.33% (79 g C·m−2·a−1) and 5.4% (92 g C·m−2·a−1). However, for a given parameter optimization method, a temperature-dependent model (T_model) and the models derived from a temperature and water-dependent model (TW_model) are 1.31% (17.8 g C·m−2·a−1), 2.1% (5.7 g C·m−2·a−1), and 0.26% (4.3 g C·m−2·a−1), respectively, which suggested that the optimization methods are more important than the ecological models in influencing uncertainty in estimated carbon fluxes. (4) The relative uncertainty of CO2 flux derived from OLS is higher than that from MLE, and the uncertainty is related to timescale, that is, the larger the timescale, the smaller the uncertainty. The relative uncertainties of Reco, NEE and GEE are 4%−8%, 7%−22% and 2%−4% respectively at annual timescale. Supported by the National Natural Science Foundation of China (Grant No. 30570347), Innovative Research International Partnership Project of the Chinese Academy of Sciences (Grant No. CXTD-Z2005-1) and National Basic Research Program of China (Grant No. 2002CB412502)  相似文献   

6.
The work presents statistical methods for estimating the distribution parameters of rare, strong earthquakes. Using the two main theorems of extreme value theory (EVT), the distribution of T-maximum (the maximum magnitude over the time period T). Two methods for estimating the parameters of this distribution are proposed using the Generalized Pareto Distribution (GPD) and the General Extreme Value Distribution (GEV). In addition, the that allow the determination of the distribution of the T-maximum for an arbitrary value of T are proposed. The approach being used clarifies the nature of the instability of the widely accepted M max parameter. In the work, instead of unstable values of the M max parameter, the robust parameter Q T (q), the q level quantile for the distribution of the T-maximum, is proposed to be used. The described method has been applied to the Harvard Catalogue of Seismic Moments of 1977–2006 and to the Magnitude Catalogue for Fennoscandia in 1900–2005. Moreover, the estimates of parameters of the corresponding GPD and GEV distributions, in particular, the most interesting shape parameter and the values of the M max and Q T (q) parameters are given.  相似文献   

7.
On the basis of Parry’s method (1986), an improved method was established to determine the molar volume (Vm) and compositions (X) of the NaCl-H2O-CO2 (NHC) system inclusion. To use this method, the determination of Vm-X only requires three microthermometric data of a NHC inclusion: partial homog-enization temperature (Th ,CO2), salinity (S) and total homogenization temperature (Th). Theoretically, four associated equations are needed containing four unknown parameters: X CO2, XNaCl, Vm and F (volume fraction of CO2 phase in total inclusion when occurring partial homogenization). When they are released, the Vm-X are determined. The former three equations, only correlated with Th ,CO2, S and F, have simplified expressions:XCO2=f1(Th,CO2,S,F),XNaCl=f2(Th,CO2,S,F),Vm=f3(Th,CO2,S,F). The last one is the thermodynamic relationship of X CO2, XNaCl, Vm and Th:f4(XCO2,XNaCl,Vm,Th)=0.Since the above four associated equations are complicated, it is necessary to adopt iterative technique to release them. The technique can be described by:(i) Freely input a F value (0≤F≤1),with Th ,CO2 and S, into the former three equations. As a result,X CO 2,XNaCl and the molar volume value recorded as Vm1 are derived. (ii) Input the X CO2 and XNaCl gotten in the step above into the last equation, and another molar volume value recorded as Vm2 is determined. (iii) If Vm1 is unequal to Vm2, the calculation will be restarted from “(i)”. The iteration is completed until Vm1 is equal to Vm2, which means that the four associated equations are released. Compared to Parry’s (1986) solution method, the improved method is more convenient to use, as well as more accurate to determine X CO 2. It is available for a NHC inlusion whose partial homogenization temperature is higher than clatherate melting temperature and there are no solid salt crystals in the inclusion at parital homogenization.  相似文献   

8.
The static closed chamber technique is used in the study on the CH4 and N2O fluxes from the soils of primeval Abies fabri forest, the succession Abies fabri forest and the clear-cut areas of mid-aged Abies fabri forest in the Gongga Mountain from May 1998 to September 1999. The results indicate the following: (i) The forest soil serves as the source of atmospheric N2O at the three measurement sites, while the fluxes of CH4 are all negative, and soil is the sink of atmospheric CH4. The comparative relations of N2O emissions between the three sites are expressed as primeval Abies fabri forest < clear-cut areas < succession Abies fabri forest, and those of CH4 consumption fluxes are primeval Abies fabri forest < succession Abies fabri forest < clear-cut areas, (ii) Significant seasonal variations of N2O emission at various sites were observed, and two emission peaks of N2O occurr during summer (July—August) and spring (February—March), whereas N2O emission is relatively low in winter and spring (mid March—April). Seasonal variations of CH4 consumption at each measurement site fluctuate drastically with unclear regularities. Generally, CH4 consumption fluxes of succession Abies fabri forest and clear-cut areas are higher from mid May to late July but lower in the rest of sampling time, while the CH4 flux keeps a relatively high value even up to September in primeval Abies fabri forest. In contrast to primeval Abies fabri forest, the CH4 absorbabilities of succession Abies fabri forest and clear-cut areas of mid-aged Abies fabri forest are weaker. Particularly, the absorbability of the clear-cut areas is even weaker as compared with the other two sites, for the deforestation reduces the soil absorbability of atmospheric CH4. (iii) Evident diurnal variation regularity exists in the N2O emissions of primeval Abies fabri forest, and there is a statistic positive correlation between the fluxes of N2O and air temperature (R=0.95, n=11, α· 0.01), and also the soil temperature of 5-cm layer (R=0.81, n=11, α> 0.01), whereas the CH4 diurnal variation regularities are unclear and have no significant correlation with the soil temperature of 5-cm layer and air temperature.  相似文献   

9.
Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.  相似文献   

10.
This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LMI toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 El Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.  相似文献   

11.
Source rock extracts and crude oils from the Songliao Basin were analyzed by high-temperature gas chromatography (HTGC), gas chromatography-mass spectrometry (HTGC-MS) and gas chromatography-isotope ratio-mass spectrometry (GC-IRMS), for high molecular-weight alkanes. The distributions of n-alkanes in the Nenjiang Formation extracts are in the C14―C63 range; a bimodal distribution occurs in the C-21 and C21―40 regions. The C30―C37 n-alkanes are accompanied by C29―C35 hopanes, whereas the high molecular-weight C45―C47 n-alkanes co-occur with abundant isoalkanes, alkylcyclohexanes and alkylcyclopentanes. The high δ 13C values of the n-alkanes and the microscopic maceral compositions indicate a highly diversified organic source input for the Nenjiang Formation source rocks, ranging from aquatic plants, blue alge-bacteria, to land plant material. In contrast, n-alkanes in the rock extracts of the Qingshankou Formation are characterized by a single modal distribution, with relatively low abundances of C29―C35 hopanes, but high molecular-weight isoalkanes, alkylcyclohexanes and alkylcyclopentanes. The relatively low δ 13C values of C22―C44 n-alkanes and organic material compositions indicate that the source rocks in the Qingshankou Formation contain dominantly type I algal organic matter. The relative abundance of C 40 compounds in source rocks changes little at low maturity stage, but decreases drastically at higher maturity levels, with a concurrent reduction in the odd/even carbon predominance. In crude oils, in contrast, the relative abundance of C 40 compounds appears to relate closely with the oil source and oil viscosity.  相似文献   

12.
The structure and dynamics of the ionosphere and plasmasphere at high solar activity under quiet geomagnetic conditions of June 2–3, 1979, and January 5–6, 1980, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The plasma drift velocity, determined by comparing the calculated and measured heights of the F 2 layer maximum (hmF2), and the correction of [N2] and [O2], found in the NRLMSISE-00 model, make it possible to coordinate the electron densities (NmF2) calculated at the hmF2 height and the measured anomalous variations in NmF2 over the Argentine Islands ionosonde as well as the calculated and measured NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that, if the interference of the diffusion velocities of O+(4S) and H+ ions is taken into account, the additional heating of plasmaspheric electrons leads to an increase in the flux of O+(4S) ions from the topside ionosphere to lower F 2 layer altitudes, as a result of which an anomalous nighttime increase in NmF2 6, observed on January 6, 1980, over Millstone Hill station, is mainly produced. The second component of the formation of anomalous night-time NmF2 is the plasma drift along the magnetic field caused by the neutral wind, which shifts O+(4S) ions to higher altitudes where the recombination rate of O+(4S) with N2 and O2 is lower and slows down a decrease in NmF2 in the course of time. It has been shown that the influence of electronically excited O+ ions and vibrationally excited N2 and O2 molecules on electron density (N e ) considerably differs under winter and summer conditions. This difference forms significant part of the winter anomaly in N e at heights of the F 2 region and topside ionosphere over Millstone Hill station.  相似文献   

13.
The change in the dependence of the F2-layer critical frequency on its height hmF2 is considered based on two sources of initial data used earlier by the authors. It is found that the slope k of the foF2 dependence on hmF2 systematically decreases from the earlier (“etalon”) period, 1958–1980, to the later periods of 1988–2010, 1998–2010, and 1998–2014. Since the foF2 value depends on the atomic oxygen concentration in the F region much more strongly than hmF2, the found decrease in k confirms the concept of a decrease in the atomic oxygen concentration in the thermosphere with time previously formulated by the authors.  相似文献   

14.
A new modified magnitude scale M S (20R) is elaborated. It permits us to extend the teleseismic magnitude scale M S (20) to the regional epicenter distances. The data set used in this study contains digital records at 12 seismic stations of 392 earthquakes that occured in the northwest Pacific Ocean in the period of 1993–2008. The new scale is based on amplitudes of surface waves of a narrow range of the periods (16–25 s) close to the period of 20 s, for distances of 80–3000 km. The digital Butterworth filter is used for processing. On the basis of the found regional features concerning distance dependence for seismic wave attenuation, all the stations of the region have been subdivided into two groups, namely, “continental” and “island-arc.” For each group of stations, its own calibration function is proposed. Individual station corrections are used to compensate for the local features.  相似文献   

15.
The structure and dynamics of the ionosphere and plasmasphere at low solar activity under quiet geomagnetic conditions on January 15–17, 1985, and July 10–13, 1986, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The detected correction of the model input parameters makes it possible to coordinate the measured and calculated anomalous variations in the electron density NmF2 at the height hmF2 of the ionospheric F2 layer over Argentine Islands ionosonde as well as the calculated and measured values of NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that vibrationally excited N2 and O2 molecules almost do not influence the formation of the winter anomaly under the conditions of low solar activity. A difference between the influence of electronically excited O+ on N e ions under winter and summer conditions forms not more than 11% of the N e winter anomaly event in the F 2 layer and topside ionosphere. The model without electronically excited O+ ions reduces the duration of the N e winter anomaly event. It has been shown that the seasonal variations in the composition of the neutral atmosphere form mainly the NmF2 winter anomaly event over the Millstone Hill radar at low solar activity.  相似文献   

16.
We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.  相似文献   

17.
Atmospheric carbon dioxide is an important kind of greenhouse gas which influences global temperature. Its concentration variation could indicate the distribution of human and natural activities in various regions. Through the non-dispersive infrared method, flask sampling of atmospheric CO2 concentration was measured weekly at four national background stations including Waliguan, Shangdianzi, Lin’an, and Longfengshan. Based on the data collected from September 2006 to August 2007, along with the Waliguan station’s experience on in situ observational data processing, the selection methods for sampling data through the atmospheric background CO2 concentration analysis were preliminarily discussed. On the basis of this result, the variation features of the four typical regions’ atmospheric background CO2 concentration was analyzed for the first time. The results show that the atmospheric CO2 concentration at Waliguan, Shangdianzi, Lin’an, and Longfengshan is 383.5, 385.9, 387.8, and 384.3 ppm, respectively. During the research period, CO2 concentration at the Waliguan station changed slightly. However, the CO2 concentration changed sharply at the Shangdianzi and the Lin’an stations due to the great influence of human activities in the Jingjinji and the Changjiang Delta economic zones, and changed regularly with seasons at Longfengshan station under dual influences of human activities and plant photosynthesis. The results from this study can lay the foundation for more profound studies on atmospheric CO2 concentration level of different areas in China, and could be used to improve the understanding of carbon source and sink distribution.  相似文献   

18.
Soil H2 and CO2 surveys were carried out along seven active faults and around the aftershock region of the 2000 Tottori-ken Seibu earthquake in Japan. Diffuse CO2 effluxes were also measured along one fault and around the 2000 aftershock region. The results show highly variable H2 concentration in space and time and it seems that the maximum H2 concentration at each active fault correlates with fault activity as exemplified by the time of the latest big earthquakes. Even though observed H2 concentrations in four faults were markedly lower than those collected previously in the latter half of the 1970s, it is evident that the higher H2 concentrations in this study are due to the addition of the fault gases. Comparing the chemical composition of trapped gases (H2: 5–20% and CO2/H2: 0.5–12) in fractured rocks of drill cores bored at the Nojima fault, a soil gas sample with the highest H2 concentration showed large amounts of the trapped fault gas, diluted with atmospheric component. The profile experiment across a fracture zone at the Yamasaki fault showed higher H2 concentrations and lower CO2/H2 ratios as was observed in soil gas from the fracture zone. A few days after the 2000 Tottori-kei Seibu earthquake, no CO2 effluxes related to the occurrence of earthquakes were observed at the aftershock region. However, only above the epicenter zone, relatively high H2 concentrations in soil gases were observed.  相似文献   

19.
We use 576 earthquakes of magnitude, M w, 3.3 to 6.8 that occurred within the region 33° N–42.5° N, 19° E–30° E in the time period 1969 to 2007 to investigate the stability of the relation between moment magnitude, M w, and local magnitude, M L, for earthquakes in Greece and the surrounding regions. We compare M w to M L as reported in the monthly bulletins of the National Observatory of Athens (NOA) and to M L as reported in the bulletins of the Seismological Station of the Aristotle University of Thessaloniki. All earthquakes have been analyzed through regional or teleseismic waveform inversion, to obtain M w, and have measured maximum trace amplitudes on the Wood–Anderson seismograph in Athens, which has been in operation since 1964. We show that the Athens Wood–Anderson seismograph performance has changed through time, affecting the computed by NOA M L by at least 0.1 magnitude units. Specifically, since the beginning of 1996, its east–west component has been recording systematically much larger amplitudes compared to the north–south component. From the comparison between M w and M L reported by Thessaloniki, we also show that the performance of the sensors has changed several times through time, affecting the calculated M L’s. We propose scaling relations to convert the M L values reported from the two centers to M w. The procedures followed here can be applied to other regions as well to examine the stability of magnitude calculations through time.  相似文献   

20.
Variations in carbon isotopic ratios (δ 13C) of C3 plants and distribution of C4 plants were investigated along an altitudinal transect on the eastern slope of Mount Gongga, and the environmental effects on them were discussed. It is shown that plants with C4 photosynthetic pathway mainly occur at altitudes below 2100 m a.s.l., suggesting that the low summer temperature is responsible for the distributional pattern. In addition, δ 13C of C3 plants increases with elevation at the region above 2000 m a.s.l. with the characteristics of humid climate, and the increase rate in δ 13C for C3 plants is about 1.3% per kilometer. Temperature determines the altitudinal trend of δ 13C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号