首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tanneries located in an industrial development area of Ranipet (India) manufactured chromate chemicals during 1976?C1996. A large quantity of associated hazardous solid wastes has been stacked about 5-m high above ground level, spread over 3.5?ha inside one of the factory premises. The study area receives an average annual rainfall of 1,100?mm. The granitic formation in the northern part of Palar River catchment has high infiltration rates and has resulted in fast migration of the contamination to the water table. Chromium levels in the groundwater were found up to 275?mg/l. The available hydrogeological, geophysical and groundwater quality data bases have been used to construct a groundwater flow and mass transport model for assessing the groundwater contamination and it has been calibrated for the next 30?years. The migration has been found to be very slow, with a groundwater velocity of 10?m/year. This is the first field-scale study of its kind in this industrial area. The findings are of relevance to addressing the groundwater pollution due to indiscriminate disposal practices of hazardous waste in areas located on the phreatic aquifer. Further, it has been reported that the untreated effluent discharge adjacent to the chromium dump site is most influential in the migration of contaminants.  相似文献   

2.
3.
The purpose of this research is to evaluate the groundwater quality in Dindugal district of Tamil Nadu based on the water quality index by geographic information system (GIS) and statistical analysis. This area consists of 80 functional tanneries around Dindigul town with a capacity to process about 200 Mt of hides and skins as leather. In 13 villages, as many as 1090 houses were damaged by tannery contamination. A total of 66 groundwater samples were collected to identify the geochemical sources and contamination. The order of major cations is Na > Ca > Mg > K, while that of anions is Cl > SO4 > HCO3 > F > PO4. CaCl2, MgCl2, and (CaHCO3)2 types suggested that the mixing of high-salinity water was caused by irrigation return flow, domestic wastewater, and septic tank effluents, with existing water followed by ion exchange reactions. Moreover, Gibbs plots indicated that groundwater contamination was derived from the weathering of granitic gneisses as well as the leaching of evaporated and crystallized ions from agricultural and industrial effluents. The water quality index (WQI) exhibited 8 % of the groundwater samples were not suitable for drinking purpose. The GIS maps showed that the poor water quality decreased toward the southern part of the study area. WQI of TDS, fluoride, sodium, potassium, and bicarbonate were high in groundwater. Multivariate statistical analyses (principal component analysis (PCA), factor analysis (FA)) suggested that the groundwater chemistry was changed by the weathering of source rocks ion exchange and leaching of inorganic components and addition from anthropogenic effluents. Finally, it is thought that the monitoring and assessment works are very useful to understand the degree and sources of groundwater contamination.  相似文献   

4.
Natural intensity, susceptibility, and Koenigsberger ratio were determined and studies of Rayleigh loops, and high field hysteresis, and variation of susceptibility with temperature from ?196° C to Curie temperature were made on a number of magnetite-quartzite and pyroxene, granulite samples from Tamil Nadu. FeO, Fe2O3, and TiO2 proportions were estimated and cell dimensions were determined. From the magnetic studies it is inferred that in general the samples contain predominantly multidomain grains. In a few cases single-domain particles are detected, while in a few other samples a mixture of superparamagnetic particles and single domain states could be inferred. The relative remanence ratio is found to increase with coercive force. The ferromagnetic mineral in magnetite-quartzites is pure magnetite with a little alteration to hematite while in pyroxene granulites it is a titaniferous magnetite with a small percentage of TiO2. It is probable that the cell dimensions are dependent on oxidation in magnetites, and on the content of TiO2 in titaniferous magnetites.  相似文献   

5.
6.
The quality of groundwater was assessed by determining the physicochemical parameters (pH, EC, TDS and TH) and major ions concentration (HCO3, Cl, FSO4, Ca, Mg, Na and K) around Dindigul district, Tamil Nadu, India. The groundwater samples were collected from 59 bore wells covering the entire study area and analyzed using standard methods. The GIS mapping technique were adopted to highlight the spatial distribution pattern of physicochemical parameters and major ion concentration in the groundwater. Gibbs diagram reveals that the source of major ions is predominantly derived from rock–water interaction and evaporation dominance process. The salt combinations of the aquifers are dominated by CaHCO3, mixed CaMgCl, mixed CaMgHCO3 and CaCl facies type due to leaching and dissolution process of weathered rocks. The Canadian Council of Ministers of Environment Water Quality Index (CCMEWQI) suggests that most of the groundwater quality falls under good to marginal category. The statistical analysis indicates that the presence of major ions and physicochemical parameters are chiefly controlled by rock–water interaction and residence time of the groundwater. However, the major nutrient like nitrite in the groundwater probably comes from anthropogenic process. Based on the groundwater quality standards, majority of the samples are suitable for drinking purposes except few in the study area.  相似文献   

7.
The present study investigates the hydrogeochemical characteristics of groundwater quality in Agas- theeswaram taluk of Kanyakumari district, Tamil Nadu, India. A total of 69 groundwater samples were collected during pre- and post-monsoon periods of 2011-2012. The groundwater quality assessment has been carried out by evaluating the physicochemical parameters such as pH, EC, TDS, HCO3, Cl, SO42-, Ca2+, Mg2+, Na+ and K+ for both the seasons. Based on these parameters, groundwater has been assessed in favor of its suitability for drinking and irrigation purpose. Dominant cations for both the seasons are in the order of Na+〉 Ca2+〉 Mg2+ 〉 K+ while the dominant anions for post monsoon and pre monsoon have the trends of CI 〉 HCO3 〉 SO42- and HCO3- 〉 CI 〉 SO42-, respectively. Analytical results observed from various indices reveal that the groundwater quality is fairly good in some places. Analytical results of few samples show that they are severely polluted and incidentally found to be near the coasts, estuaries and salt pans in the study area. The Gibbs plot indicates that the majority of groundwater samples fall in rock dominant region, which indicates rock water interaction in the study area. The United States salinity (USSL) diagram shows that the groundwater is free from sodium hazards but the salinity hazard varies from low to very high throughout the study area. This reveals that the groundwater is moderately suitable for agricultural activities. The observed chemical variations in pre-monsoon and post-monsoon seasons may be the effect to rock-water interactions, ion-exchange reactions, and runoff of fertilizers from the surrounding agricultural lands.  相似文献   

8.
9.
Groundwater is the major source of fresh water in regions where there is inadequate surface water resources. Forty-seven groundwater samples were collected from Lower Ponnaiyar basin, Cuddalore District, south India, during the premonsoon (PRM) and postmonsoon (POM) seasons of 2005. Out of 47 groundwater samples, 15 samples showing higher nitrate concentration were those collected during PRM 2005. Microbial analysis of these samples was carried out by employing 16S rRNA gene sequence tool. Detailed analysis was conducted to determine the hydrogeochemical processes and microbial contamination responsible for deterioration of quality. The abundance of the ions during PRM and POM are in the following order: Na?>?Ca?>?Mg?>?K?=?Cl?>?HCO3?>?SO4?>?CO3. The dominant water types in PRM are in the order of NaCl?>?CaMgCl?>?mixed CaNaHCO3, whereas during POM NaCl?>?CaMgCl?>?mixed CaNaHCO3, and CaHCO3. However, NaCl and CaMgCl are major water types in the study area. The quality of groundwater in the study area is mainly impaired by surface contamination sources, mineral dissolution, ion exchange and evaporation. Groundwater chemistry was used to assess quality to ensure its suitability for drinking and irrigation, based on BIS and WHO standards. Suitability for irrigation was determined on the basis of the diagram of US Salinity Laboratory (USSL), sodium absorption ratio (SAR), residual sodium carbonate (RSC), and Na%. According to SAR and USSL classification, 27.66% (PRM) and 40.43% (POM) of samples fall under C3S2 category, indicating high salinity and medium sodium hazard, which restrict its suitability for irrigation. Microbiological analysis and its effects on the water quality were also addressed. The 16S rRNA gene sequences of 11 bacterial contaminants exhibited five groups with 11 operational taxonomic units with aerobic and facultatively anaerobic organisms. The presence of aerobic organisms in the groundwater samples reflects the active conversion of ammonia to nitrite by Nitrosomonas sp. which is further converted to nitrates by other organisms. Further the presence of nitrate reducers could also play a role in the process of conversion of nitrate to ammonia and nitrate to molecular nitrogen.  相似文献   

10.
This article presents the results of a study of natural processes influencing the formation of Palaeolithic sites, in a ferricrete landscape, in the Kortallayar basin, Tamil Nadu, South India. The principal points discussed here include the Quaternary geomorphology and Palaeolithic archaeology of the region and the methodology used for the study of site taphonomy. As a result of this research, Palaeolithic sites were categorized into several types based on their sedimentary context, artefact spatial distribution, and morphology and degree of integrity. This work is the first of its kind in establishing a methodology for the study of Palaeolithic sites in ferricrete landscapes in India. The results of this research may be relevant to understanding the study of formation processes at sites in similar contexts elsewhere in the Subcontinent. © 1999 John Wiley & Sons, Inc.  相似文献   

11.
The first exploratory well Arani–A was drilled in the Palar basin to a depth of 2400m and terminated within the granitic basement.This well offered the first ever opportunity to understand biostratigraphy, sedimentation history and depositional environment of the entire sedimentary column based on arenaceous foraminifera, spores, pollen and dinoflagellate cyst assemblages. Previous studies on few scattered outcrops around Sriperumbudur, Chengalpattu and Sathyavedu areas have documented palynofossil assemblage of Neocomian–Aptian age. The present study reveals the presence of middle Jurassic (Bajocian-Callovian) sediments (2360-1725 m) resting on the granitic basement. The sediments are interpreted to have deposited under lacustrine/estuarine conditions with high tides providing occasional marine influence. The middle Jurassic sediments are conformably overlain by late Jurassic (Oxfordian–Tithonian) sediments (1725 - 950 m). The late Jurassic sediments have been inferred to have got deposited under fluctuating near shoremarginal marine conditions. There is a 55m thick boulder bed (950 - 895 m) separating the overlying Valanginian sediments. Early Cretaceous (Valanginian-Early Albian) sediments are developed in the interval from 895-50m. The boulder bed possibly corresponds to the missing Berriasian stage of the earliest Cretaceous representing an unconformity of the order of ~5 Ma across Jurassic-Cretaceous boundary. These sediments are inferred to have deposited under shallow inner neritic conditions. The sediments from 50m to surface consist mainly of lateritic sandstone and alluvium. The sedimentary history of Palar basin began in Bajocian stage of middle Jurassic (170-168 Ma) and ended in early Albian stage of early Cretaceous (113-105 Ma). The late Albian marine transgression which facilitated huge sedimentation in Cauvery and Krishna-Godavari basins has bypassed the Palar basin thus adversely affecting the hydrocarbon potential.  相似文献   

12.
13.
14.
A multiple-deformation sequence is established for different types of gneisses, mafic-paleosomes and banded magnetite quartzites (BMQ) exposed within the area. In gneisses, the basin-shaped map pattern represents the type-i interference structure formed due to the overprinting of F3 folds with ENE striking axial planes on F2 folds with axial planes striking NNW. The BMQ band occurring as an enclave within the gneissic country, represents a large scale F1 fold with relatively smaller scale F2 folds developed on its limbs. Mafic-paleosomes within the streaky-charnockitic-gneisses exhibit structures formed due to the interference of more than two phases of folding (F1,Fla,F2,F3). It is shown that the deformation plan in these rocks is consistent with the generalized deformation scheme for Granite-greenstone belts. The difference in the map pattern of Granite-greenstone belts and Granulite-charnockite terrains is ascribed to the variance in Theological properties, layerthickness ratios and local displacement directions during different phases of folding. These differences apart, both the Granite-greenstone and Granulite-charnockite provinces in South India are deformed by an early isoclinal folding which is successively overprinted by folding on NNW and ENE striking axial planes.  相似文献   

15.
Since last decade, the value per barrel of potable groundwater has outpaced the value of a barrel of oil in many areas of the world. Hence, proper assessment of groundwater potential and management practices are the needs of the day. Establishing relationship between remote sensing data and hydrologic phenomenon can maximize the efficiency of water resources development projects. Present study focuses on groundwater potential assessment in Salem district, Tamil Nadu to investigate groundwater resource potential. At the same, all thematic layers important from ground water occurrence and movement point of view were digitized and integrated in the GIS environment. The weights of different parameters/themes were computed using weighed index overlay analysis (WIOA), analytic hierarchy process (AHP) and fuzzy logic technique. Through this integrated GIS analysis, groundwater prospect map of the study area was prepared qualitatively. Field verification at observation wells was used to verify identified potential zones and depth of water measured at observation wells. Generated map from weighed overlay using AHP performed very well in predicting the groundwater surface and hence this methodology proves to be a promising tool for future.  相似文献   

16.
17.
本介绍了地球物理方法在我国高放废物处置库场址特性评价中的作用,即查明研究区内断裂的位置,宽度,倾向,倾角及其含水性和确定预选区内花岗岩底板的埋深,此项研究成果显示了该方法在我国干旱地区的深部地质环境及水资源分布研究中的有利应用前景。  相似文献   

18.
The study of groundwater hydrogeochemistry of a hard rock aquifer system in Thoothukudi district has resulted in a large geochemical data set. A total of 100 water samples representing various lithologies like Hornblende Biotite Gneiss, Alluvium Marine, alluvium Fluvial, Quartzite, Charnockite, Granite and Sandstone were collected for two different seasons and analyzed for major ions like Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ?, PO4 ?, F? and H4SiO4. Statistical analysis of the data has been attempted to unravel the hidden relationship between ions. Correlation analyses and factor analyses were applied to classify the groundwater samples and to identify the geochemical processes controlling groundwater geochemistry. Factor analysis indicates that sea water intrusion followed by leaching of secondary salts, weathering and anthropogenic impacts are the dominant factors controlling hydrogeochemistry of groundwater in the study area. Factor score overlay indicate major active hydrogeochemical regimes are spread throughout the Eastern, Northwestern and Southeastern parts of the study area. The dominant ions controlling the groundwater chemistry irrespective of season are Cl?, Na+, Mg2+, Ca2+, SO4 2?, K+ and NO3 ?. An attempt has also been made to note the seasonal variation of the factor representations in the study area. This study also illustrates the usefulness of statistical analysis to improve the understanding of groundwater systems and estimates of the extent of salinity/salt water intrusion.  相似文献   

19.
Hydrogeochemical investigations are carried out in and around Perumal Lake, Cuddalore district, South India in order to assess its suitability in relation to domestic and agricultural uses. The water samples (surface water = 16; groundwater = 12) were analyzed for various physicochemical attributes like pH, electrical conductivity (EC), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl), bicarbonate (HCO3 ), sulfate (SO4 2−), phosphate (PO4), silica (H4SiO4) and total dissolved solids (TDS). Major hydrochemical facies were identified using Piper trilinear diagram. Hydrogeochemical processes controlling the water chemistry are water–rock interaction rather than evaporation and precipitation. Interpretation of isotopic signatures reveals that groundwater samples recharged by meteoric water with few water–rock interactions. A comparison of water quality in relation to drinking water quality standard proves that the surface water samples are suitable for drinking purpose, whereas groundwater in some areas exceeds the permissible limit. Various determinants such as sodium absorption ratio (SAR), percent sodium (Na%), residual sodium carbonate (RSC) and permeability index (PI) revealed that most of the samples are suitable for irrigation.  相似文献   

20.
Amphibolite facies metamorphic grade gives way southward to the granulite grade in southern Karnataka, as acid gneisses develop charnockite patches and streaks and basic enclaves develop pyroxenes. Petrologic investigations in the transitional zone south of Mysore have established the following points:
  1. The transition is prograde. Amphibole-bearing gneisses intimately associated with charnockite at Kabbal and several similar localities are not retrogressive after charnockite, as proved by patchy obliteration of their foliation by transgressive, very coarse-grained charnockite, high fluorine content of biotite and amphibole in gneisses, and high large-ion lithophile element contents in gneisses and charnockites. These features are in contrast to very low fluorine in retrogressive amphiboles and biotites, very low large-ion lithophile element contents, and zonal bleaching of charnockite, in clearly retrogressive areas, as at Bhavani Sagar, Tamil Nadu.
  2. Metamorphic temperatures in the transitional areas were 700°–800° C, pressures were 5–7 kbar, and H2O pressures were 0.1–0.3 times total pressures, based on thermodynamic calculations using mineral analyses. Dense CO2-rich fluid inclusions in the Kabbal rocks confirm the low H2O pressures at the first appearance of orthopyroxene. Farther to the south, in the Nilgiri Hills and adjacent granulite massif areas, peak metamorphic temperatures were 800°–900° C, pressures were 7–9 kbar, and water pressures were very low, so that primary biotites and amphiboles (those with high F contents) are rare.
  3. The incipient granulite-grade metamorphism of the transitional areas was introduced by a wave of anatexis and K-metasomatism. This process was arrested by drying out under heavy CO2 influx. Charnockites so formed are hybrids of anatectic granite and metabasite, of metabasite and immediately adjacent gneiss, or are virtually isochemical with pre-existing gneiss despite gross recrystallization to granulite mineralogy. These features show that partial melting and metasomatism are attendant, rather than causative, in charnockite development. Copious CO2 from a deep-crustal or mantle source pushed ahead of it a wave of more aqueous solutions which promoted anatexis. Granulite metamorphism of both neosome and paleosome followed. The process is very similar to that deduced for the Madras granulites by Weaver (1980). The massif charnockites, for the most part extremely depleted in lithophile minor elements, show many evidences of having gone through the same process.
A major problem remaining to be solved is the origin of the large amount of CO2 needed to charnockitize significant portions of the crust. The most important possibilities include CO2 from carbonate minerals in a mantle “hot spot” or diapir, from emanations from a crystallizing basaltic underplate, or from shelf sediments trapped at the continent-continent interface in continental overthrusting. Ancient granulite massifs may be such suture zones of continental convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号