首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the three flood seasons following the Wenchuan earthquake in 2008, two catastrophic groups of debris flow events occurred in the earthquake-affected area: the 2008-9-24 debris flow events, which had a serious impact on rebuilding; and the 2010-8-13/14 debris flow events, which destroyed much of the progress made in rebuilding. The Wenjia gully is a typical post-earthquake debris flow gully and at least five debris flows have occurred there. As far as the 2010-8-13 debris flow is concerned, the deposits of the Wenjia gully debris flow reached a volume of 3.1 × 106 m3 in volume and hundreds of newly built houses were buried. This study took the Wenjia gully debris flow as an example and discussed the formation and characteristics of post-earthquake debris flow on the basis of field investigations and a remote sensing interpretation. The conclusions drawn from the investigation and analysis were as follows: (1) Post-earthquake debris flows were a joint result of both the earthquake and heavy rainfall. (2) Gully incision and loose material provision are key processes in the initiation and occurrence of debris flows and a cycle can be presented as the following process: runoff—erosion—collapse—engulfment—debris flow—further erosion—further collapse—further engulfment—debris flow enlargement. (3) The amount of rainfall that triggered debris flows from the Wenjia gully was significantly less than the average daily rainfall, while the intraday rainfall threshold decreased by at least 23.3%. (4) The occurrence mechanism of Wenjia gully debris flow was an erosion type and there was a positive relationship between debris flow magnitude and rainfall, which fitted an exponential model. (5) There were five representative characteristics of Wenjia gully debris flow: the long duration of the occurring process; the long distance of deposition chain conversion during the process of damage; magnification in the scale of debris flow; and the high frequency of debris flow events.  相似文献   

2.
甘肃省舟曲8.7特大泥石流调查研究   总被引:21,自引:0,他引:21  
本文通过对甘肃省舟曲县城后山三眼峪沟和罗家峪沟特大泥石流灾害的现场调查,从泥石流形成的地形、地质和降雨条件入手,分析了特大泥石流灾害的特征与成因:三眼峪沟和罗家峪沟泥石流形成区在2010年8月7日23~24时的1h降雨量达77.3mm,暴雨形成强大洪水依次冲毁两条沟内的天然堆石坝和人工拦挡坝,形成规模巨大的高容重黏性泥石流,泥石流冲出总量和泥沙总量分别为 144.2104m3和97.7104m3; 泥石流携带具有强大冲击力的巨石冲毁房屋5500余间; 在白龙江内形成长约550m,宽约70m,高约10m的堰塞坝并形成堰塞湖,堰塞湖回水长3km,使县城一半被淹; 泥石流造成1744人死亡和失踪。分析研究表明,三眼峪沟和罗家峪沟泥石流如果在近期遭遇强降雨还会暴发泥石流,但规模比87特大泥石流小;如果强降雨发生在数年后,暴发的泥石流规模比87特大泥石流略小;在20a或更长的时期内,没有发生新的地震影响下,在三眼峪沟和罗家峪沟经历一次大规模泥石流暴发后,泥石流的规模将回到汶川地震前的水平。  相似文献   

3.
In August 2010, extreme rainfall affected the north of the Czech Republic and caused regional floods and landslides. Three torrential debris flows originated in the Jizerské hory Mts., close to Bílý Potok on the north slope of the Smědavská hora Mt. The rainfall situation which triggered the debris flow was analyzed and compared with the rainfall situation in 1958 when a debris flow occurred in the same area. The rainfall data were obtained from rain gauges of the Czech Hydrometeorological Institute. Four rain gauges were chosen close to the Smědavská hora Mt. with data of daily amounts from 1983 to 2013 and 10-min intensity or hourly amounts from the specific period. The data from 1958 were available from three different rain gauges (only daily amounts). The data series were not complete so linear regression was applied to interpolate them. A number of analyses were carried out including daily rainfall, 2-day/3-day moving values, antecedent precipitation index (API) of 5/10/30 days, 10-min intensity, and hourly amounts, and the trigger factor of the debris flow in the study area was also investigated. It was determined that for the triggering of debris flows, both high API values as well as high-intensity short-duration rainfall is needed. It was documented that in cases of solely high API indices or high-intensity short-duration rainfalls, no debris flows were initiated.  相似文献   

4.
A dramatic increase in debris flows occurred in the years after the 2008 Wenchuan earthquake in SW China due to the deposition of loose co-seismic landslide material. This paper proposes a preliminary integrated model, which describes the relationship between rain input and debris flow run-out in order to establish critical rain thresholds for mobilizing enough debris volume to reach the basin outlet. The model integrates in a simple way rainfall, surface runoff, and concentrated erosion of the loose material deposited in channels, propagation, and deposition of flow material. The model could be calibrated on total volumes of debris flow materials deposited at the outlet of the Shuida catchment during two successive rain events which occurred in August 2011. The calibrated model was used to construct critical rainfall intensity-duration graphs defining thresholds for a run-out distance until the outlet of the catchment. Model simulations show that threshold values increase after successive rain events due to a decrease in erodible material. The constructed rainfall intensity-duration threshold graphs for the Shuida catchment based on the current situation appeared to have basically the same exponential value as a threshold graph for debris flow occurrences, constructed for the Wenjia catchment on the basis of 5 observed triggering rain events. This may indicate that the triggering mechanism by intensive run-off erosion in channels in this catchment is the same. The model did not account for a supply of extra loose material by landslips transforming into debris flow or reaching the channels for transportation by run-off. In August 2012, two severe rain events were measured in the Shuida catchment, which did not produce debris flows. This could be confirmed by the threshold diagram constructed by the model.  相似文献   

5.
About 127 debris flow gullies have been identified, and debris flows have been an important type of geological hazards in Luding County, affecting cities, towns, rural areas, scenic spots and human’s engineering projects, such as mining and waterpower utilizing equipments. In this summary paper, recent two catastrophic debris flow events occurred on June 30, 2005, in Chuni town, in the central of the county, and on August 11, 2005, in Hailuogou scenic spot, in the southwest of the county, respectively, are reviewed. The debris flow events are introduced on the basis of field investigation and RS interpretation and the triggering factors for flow occurrence are identified. Furthermore, the rainfall related to flow occurrence including antecedent rainfall and intraday rainfall is analyzed, and a power-law function which can be used as a basic warning line is established based on both antecedent effective rainfall and intraday rainfall. Then dynamic parameters such as flow velocity and flow discharge are calculated, respectively. Through comparison and discussion, some conclusions are made including (1) The antecedent rainfall played an important role for debris flows which generated predominately based on the slope-instability due to the saturated loose sediments; (2) Despite slower flow velocity and smaller magnitude, the slope-type debris flows just like 2005-6-30 debris flows usually lead to serious damages for the difficulty to forecast and to prevent; (3) The mistaken recognition on debris flow hazards and lack of prevention consciousness strengthen the hazard and damage degree. This research is of certain significance for the prevention and mitigation of debris flow hazards and for the planning of the town building and tourism development in the future.  相似文献   

6.
Riedel  Jon L.  Sarrantonio  Sharon M. 《Natural Hazards》2021,106(3):2519-2544

We examine the magnitude, frequency, and precipitation threshold of the extreme flood hazard on 37 low-order streams in the lower Stehekin River Valley on the arid eastern slope of the North Cascades. Key morphometric variables identify the magnitude of the hazard by differentiating debris flood from debris flow systems. Thirty-two debris flow systems are fed by basins?<?6 km2 and deposited debris cones with slopes?>?10°. Five debris flood systems have larger drainage areas and debris fans with slopes 7–10°. The debris flood systems have Melton ruggedness ratios from 0.42–0.64 compared to 0.78–3.80 for debris flow basins. We record stratigraphy at seven sites where soil surfaces buried by successive debris flows limit the age of events spanning 6000 years. Eighteen radiocarbon ages from the soils are the basis for estimates of a 200 to1500-year range in recurrence interval for larger debris flows and a 450?±?50-year average. Smaller events occur approximately every 100 years. Fifteen debris flows occurred in nine drainage systems in the last 15 years, including multiple flows on three streams. Summer storms in 2010 and 2013 with peak rainfall intensities of 7–9 mm/h sustained for 8–11 h triggered all but one flow; the fall 2015 event on Canyon Creek occurred after 170 mm of rain in 78 h. A direct link between fires and debris flows is unclear because several recent debris flows occurred in basins that did not burn or burned at low intensity, and basins that burned at high intensity did not carry debris flows. All but one of the recent flows and fires occurred on the valley’s southwest-facing wall. We conclude that fires and debris flows are linked by aspect at the landscape scale, where the sunny valley wall has flashy runoff due to sparse vegetation from frequent fires.

  相似文献   

7.
On Monday, May 12, 2008, a devastating mega-earthquake of magnitude 8.0 struck the Wenchuan area, northwestern Sichuan Province, China. The focal mechanism of the earthquake was successive massive rock fracturing 15 km in depth at Yingxiu. Seismic analysis confirms that the major shock occurred on the Beichuan–Yingxiu Fault and that aftershocks rapidly extended in a straight northeast–southeast direction along the Longmenshan Fault zone. Fatalities approaching a total of 15,000 occurred, with a significant number resulting from four types of seismically triggered geohazards—rock avalanches and landslides, landslide-dammed lakes (“earthquake lakes”), and debris flows. China Geological Survey has identified 4,970 potentially risky sites, 1,701 landslides, 1,844 rock avalanches, 515 debris flows, and 1,093 unstable slopes. Rock avalanches and landslides caused many fatalities directly and disrupted the transportation system, extensively disrupting rescue efforts and thereby causing additional fatalities. Landslide-dammed lakes not only flooded human habitats in upstream areas but also posed threats to potentially inundated downstream areas with large populations. Debris flows become the most remarkable geohazards featured by increasing number, high frequency, and low triggering rainfall. Earthquake-triggered geohazards sequentially induced and transformed to additional hazards. For example, debris flows occurred on rock avalanches and landslides, followed by landslide-dammed lakes, and then by additional debris flows and breakouts of the landslide-dammed lakes and downstream flooding. Earthquake-induced geohazards occurred mainly along the fault zone and decreased sharply with distance from the fault. It can be anticipated that post-earthquake geohazards, particularly for debris flows, will continue for 5–10 years and even for as long as 20 years. An integrated strategy of continuing emergency response and economic reconstruction is required. The lesson from Wenchuan Earthquake is that the resulted geohazards may appear in large number in active fault regions. A plan for geohazard prevention in the earthquake-active mountainous areas is needed in advance.  相似文献   

8.
A rainfall-induced debris flow warning is implemented employing real-time rain gauge data. The pre-warning for the time of landslide triggering derives the threshold or critical rainfall from historical events involving regional rainfall patterns and geological conditions. In cases of debris flow, the time taken cumulative runoff, to yield abundant water for debris triggering, is an important index that needs monitoring. In gathered historical cases, rainfall time history data from the nearest rain gauge stations to debris-flow sites connected to debris flow are used to define relationships between the rainfall intensity and duration. The effects by which the regional rainfall patterns (antecedent rainfall, duration, intensity, cumulative rainfall) and geological settings combine together to trigger a debris-flow are analyzed for real-time monitoring. The analyses focused on 61 historical hazard events with the timing of debris flow initiation and rainfall duration to burst debris-flow characteristics recorded. A combination of averaged rainfall intensity and duration is a more practical index for debris-flow monitoring than critical or threshold rainfall intensity. Because, the outburst timing of debris flows correlates closely to the peak hourly rainfall and the forecasting of peak hourly rainfall reached in a meteorological event could be a valuable index for real-time debris-flow warning.  相似文献   

9.
The Clapar landslide induced debris flow consisted of the Clapar landslide occurred on 24 March 2017 and the Clapar debris flow occurred on 29 March 2017. The first investigation of the Clapar landslide induced debris flow was carried out two months after the disaster. It was followed by UAV mapping, extensive interviews, newspaper compilation, visual observation and field measurements, and video analysis in order to understand chronology and triggering mechanism of the landslide induced debris flow in Clapar. The 24 March 2016 landslide occurred after 5 hours of consecutive rainfall (11,2 mm) and was affected by combination of fishponds leak and infiltration of antecedent rain. After five days of the Clapar landslide, landslide partially mobilized to form debris flow where the head scarp of debris flow was located at the foot of the 24 March 2016 landslide. The Clapar debris flow occurred when there was no rainfall. It was not generated by rainstorm or the surface erosion of the river bed, but rather by water infiltration through the crack formed on the toe of the 24 March 2016 landslide. Supply of water to the marine clay deposit might have increased pore water pressure and mobilized the soil layer above. The amount of water accumulated in the temporary pond at the main body of the 24 March 2016 landslide might have also triggered the Clapar debris flow. The area of Clapar landslide still shows the possibility of further retrogression of the landslide body which may induce another debris flow. Understanding precursory factors triggering landslides and debris flows in Banjarnegara based on data from monitoring systems and laboratory experiments is essential to minimize the risk of future landslide.  相似文献   

10.
In September 1998 tropical storm “Earl” swept southern Mexico, producing intense rainfall in the states of Oaxaca and Chiapas. Among the most devastated cities was Motozintla, located in the drainage basin of the Allende, La Mina and Xelajú Grande Rivers. The rainfall from the tropical storm totaled 175 mm on September 8 and 130 mm on September 9, duplicating in two days the average monthly precipitation in the region. Numerous landslides occurred in the vicinity of Motozintla, depositing large volumes of material into the Xelajú Grande stream. Much of this sediment was subsequently remobilized, yielding debris flows, hyperconcentrated flows, and sediment-laden flows that inundated most sections of Motozintla city. The flows covered an approximate area of 3.15 km2 with a minimum volume of 4.4 × 106 m3 of sediment. Communication of Motozintla with the rest of the Chiapas State was interrupted for about a month, as was the supply of potable water, food, electricity, and fuel. The geologic record around Motozintla indicates that the Xelajú Grande River has been a pathway for similar large floods during the last 6000 years. The oldest deposit yielded a radiocarbon age of 5320 ± 100 14C years. B.P. At least two historic floods have occurred during the last 100 years, a time period defined by a stratigraphically distinct tephra of 1902. Frequency analysis of the historical record of daily rainfall in the Motozintla area suggests that events like that of September, 1998, have a recurrence interval of about 25 years. After the catastrophic flows of 1998, the mitigation measures by Municipal Authorities were made without regard to geological and environmental factors, or to taking into consideration the flow magnitude and appropriate hazard-mitigation techniques, with the result that Motozintla remains at serious risk for future floods. Unfortunately, prior to the publication of this study, in early October 2005, Motozintla was seriously damaged again by intense rain provoked by Hurricane Stan.  相似文献   

11.
Bin Yu 《Natural Hazards》2011,58(1):391-406
The accurate prediction of debris flows occurrence that will allow the reduction or prevention of economic losses and human casualties is presently the most difficult aspect of debris flows studies but also the aspect that receives most attention. Most prediction methods are based on rainfall as the basic parameter, with the moment of occurrence as only result, and without a prediction of debris flow travel time and size. This paper takes Jiangjia Gully in Dongchuan of Yunnan Province as an example, and considers, on the basis of the fulfillment of the essential condition: the abundant availability of loose materials, the conditions for the formation of debris flows. Based on the mechanism of the initiation of debris flows in channels and the volume of rainfall in the basin, this paper also gives a systematic analysis on the travel time and size of the debris flow and suggests that the hydrological condition for forming debris flow is the unit discharge of the flood ≥0.35 m3/s.m. It uses the 10-min rainfall intensity to calculate both the run-off of the rainfall and the unit discharge caused by the run-off, thus predicting the occurrence of debris flows. The velocity and the travel time of a debris flow can also be determined using the unit discharge of the run-off. The total volume of debris flows can be calculated using the 10-min intensity of rainfall and the total volume of the run-off, together with the volume concentration of the sediment in a debris flow.  相似文献   

12.
降雨因子对湖北省山地灾害影响的分析   总被引:2,自引:0,他引:2  
毛以伟  周月华  陈正洪  谌伟  金琪  王仁乔  王珏 《岩土力学》2005,26(10):1657-1662
根据湖北省1950~2003年726个山洪地质灾害样本,分析了其时空分布特征。滑动t-检验显示,逐年灾害数在1974年、1988年前后出现两次显著性突变增多(其中山洪、滑坡增多最明显),逐年降雨量也相应有两次增加,二者相关系数可达0.3。表明我省年降雨量趋势性增加是灾害增多的主要诱因。进一步分析表明,暴雨以上强降雨是山洪、滑坡、泥石流、塌陷的主要诱因,连阴雨是崩塌的主要诱因,同时对滑坡、泥石流、塌陷有重要影响,对山洪灾害影响则较小。  相似文献   

13.
汶川震区文家沟泥石流成灾机理与特征   总被引:4,自引:0,他引:4  
文家沟位于绵竹市清平乡,属于5·12汶川Ms8.0级地震极重灾区.地震发生后的3个汛期内,文家沟曾先后发生5次典型泥石流灾害,其中以2010年8月13日泥石流灾害最为严重,规模与灾情巨大,社会影响深远.在对文家沟泥石流跟踪调查的基础上,探讨了泥石流的成灾机理和特征.研究表明:(1)文家沟泥石流是地震和强降雨共同作用的结...  相似文献   

14.
Characteristics analysis for the flash flood-induced debris flows   总被引:2,自引:1,他引:1  
Typhoon Haitang caused landfall on Taiwan during 15–21 July, 2005 and brought 2,279 mm of maximum cumulative rain with a maximum intensity of 176 mm/h. The torrential rain was mainly distributed from the central mountain range to southern Taiwan and triggered 222 slopeland-related hazards. Among the hazard events, there were 17 debris flows, 157 cases of traffic cut-off, three large-magnitude deep-seated landslides, and 10 villages isolated in the off-track mountainous areas. The debris flows initiated in southern Taiwan were associated with torrential rain, short channel length (<2 km), and small basin area (<3 km2), and were speculated to be induced by flash flood. These flash flood-induced debris flows have a higher rainfall intensity-duration threshold for initiation than in other areas. The deep-seated landslides, isolated villages due to traffic cut-off in off-track mountain areas, and recurrent hazards in areas affected by the ML 7.6 Chi-Chi earthquake in 1999 are characteristics of slopeland hazards in Taiwan in recent years. One of the most urgently needed mitigation strategies in response to slopeland hazards is the plan for enhancing self-rescue disaster resistance in off-track mountainous villages in Taiwan.  相似文献   

15.
The post-earthquake debris flows in the Wenjia Gully led to the exposure of the shortcomings in the design of the original conventional debris flow mitigation system. A predicament for the Wenjia mitigation system is a large amount of loose material (est. 50 × 106 m3) that has been deposited in the gully by the co-seismic landslide, providing abundant source material for debris flows under saturation. A novel design solution for the replacement mitigation system was proposed and constructed, and has exhibited excellent performance and resilience in subsequent debris flows. The design was governed by the three-phase philosophy of controlling water, sediment, and erosion. An Early Warning System (EWS) for debris flow that uses real-time field data was developed; it issues alerts based on the probabilistic and empirical correlations between rainfall and debris flows. This two-fold solution reduces energy of the debris flow by combining different mitigation measures while minimizing the impact through event forecasting and rapid public information sharing. Declines in the number and size of debris flows in the gully, with increased corresponding rainfall thresholds and mean rainfall intensity-duration (I-D) thresholds, indicate the high efficacy of the new mitigation system and a lowered debris flow susceptibility. This paper reports the design of the mitigation system and analyzes the characteristics of rainfall and debris flow events that occurred before and after implementation of the system; it evaluates the effectiveness of one of the most advanced debris flow mitigation systems in China.  相似文献   

16.
Using 3·5 kHz high-resolution seismic data, gravity cores and side-scan sonar imagery, the flow behaviour of submarine, glacigenic debris flows on the Bear Island Trough Mouth Fan, western Barents Sea was studied. During their downslope movement, the sediments within the uppermost part of the debris flows (<3 m) are inferred to have been deformed as a result of the shear stress at the debris–water interface. Thus, the uppermost part of the flow did not move downslope as a rigid plug. If present, a rigid part of the flow was located at least some metres below the surface. At c . 1000 to at least 1600 m water depth, the debris flows eroded and probably incorporated substrate debris. Further downslope, the debris flows moved passively over substrate sediments. The hypothesis of hydroplaning of the debris flow front may explain why the debris flows moved across the lower fan without affecting the underlying sediments. Detailed morphological information from the surface of one of the debris flow deposits reveals arcuate ridges. These features were probably formed by flow surge. Hydroplaning of the debris flow front may also explain the formation of flow surge. The long runout distance of some of the large debris flows could be due to accretion of material to the base of the debris flow, thereby increasing in volume during flow, and/or to hydroplaning suppressing deceleration of the flow.  相似文献   

17.
Engineered (structural) debris-flow mitigation for all creeks with elements at risk and subject to debris flows is often outside of the financial capability of the regulating government, and heavy task-specific taxation may be politically undesirable. Structural debris-flow mitigation may only be achieved over long (decadal scale) time periods. Where immediate structural mitigation is cost-prohibitive, an interim solution can be identified to manage residual risk. This can be achieved by implementing a debris-flow warning system that enables residents to reduce their personal risk for loss of life through timely evacuation. This paper describes Canada??s first real-time debris-flow warning system which has been operated for 2 years for the District of North Vancouver. The system was developed based on discriminant function analyses of 20 hydrometric input variables consisting of antecedent rainfall and storm rainfall intensities for a total of 63 storms. Of these 27 resulted in shallow landslides and subsequent debris flows, while 36 storms were sampled that did not reportedly result in debris flows. The discriminant function analysis identified as the three most significant variables: the 4-week antecedent rainfall, the 2-day antecedent rainfall, and the 48-h rainfall intensity during the landslide-triggering storm. Discriminant functions were developed and tested for robustness against a nearby rain gauge dataset. The resulting classification functions provide a measure for the likelihood of debris-flow initiation. Several system complexities were added to render the classification functions into a usable and defensible warning system. This involved the addition of various functionality criteria such as not skipping warning levels, providing sufficient warning time before debris flows would occur, and hourly adjustment of actual rainfall vs. predicted rainfall since predicted rainfall is not error-free. After numerous iterations that involved warning threshold and cancelation refinements and further model calibrations, an optimal solution was found that best matches the actual debris-flow data record. Back-calculation of the model??s 21-year record confirmed that 76% of all debris flows would have occurred during warning or severe warning levels. Adding the past 2 years of system operation, this percentage increases marginally to 77%. With respect to the District of North Vancouver boundaries, all debris flows occur during Warning and Severe Warnings emphasizing the validity of the system to the area for which it was intended. To operate the system, real-time rainfall data are obtained from a rain gauge in the District of North Vancouver. Antecedent rainfall is automatically calculated as a sliding time window for the 4-week and 2-day periods every hour. The predicted 48-h storm rainfall data are provided by the Geophysical Disaster Computational Fluid Dynamics Centre at the Earth and Ocean Science Department at the University of British Columbia and is updated every hour as rainfall is recorded during a given storm. The warning system differentiates five different stages: no watch, watch level 1 (the warning level is unlikely to be reached), watch level 2 (the warning level is likely to be reached), warning, and severe warning. The debris-flow warning system has operated from October 1, 2009 to April 30, 2010 and October 1, 2010 and April 30, 2011. Fortunately, we were able to evaluate model performance because the exact times of debris flows during November 2009 and January 2010 were recorded. In both cases, the debris flows did not only occur during the warning level but coincided with peaks in the warning graphs. Furthermore, four debris flows occurred during a warning period in November 2009 in the Metro Vancouver watershed though their exact time of day is unknown. The warning level was reached 13 times, and in four of these cases, debris flows were recorded in the study area. One debris flow was recorded during watch II level. There was no severe warning during the 2 years of operation. The current warning level during the wet season (October to April) is accessible via District of North Vancouver??s homepage (www.dnv.org) and by automated telephone message during the rainy season.  相似文献   

18.
汶川震区暴雨泥石流激发雨型特征   总被引:1,自引:0,他引:1  
汶川地震后暴雨诱发的泥石流不断增加,通过收集整理降雨资料,分析汶川震区不同地域泥石流暴发的激发雨强及前期有效累计降雨量变化过程,揭示震区暴雨泥石流的激发雨型特征,为暴雨泥石流的预报提供科学依据。研究结果表明,汶川震区的暴雨泥石流激发雨型可分为短期突然降雨型、中期持续降雨型和长期间断降雨型3种类型,主要表现为引发泥石流的激发雨强及前期有效累计降雨量的不同。暴雨泥石流的形成机制体现为降雨导致流域内松散土体渗透、饱和及侵蚀移动的过程。激发雨型与激发雨强及前期有效累计降雨量存在相关关系,短期突然降雨型的激发雨强最大,前期有效累计降雨量最少;中期持续降雨型的激发雨强居中,前期有效累计降雨量最多;长期间断降雨型的激发雨强最小,前期有效累计降雨量居中。对四川茂县叠溪镇新磨村突发山体高位垮塌碎屑流进行验证,初步判定是由长期间断降雨型引发岩体抗剪强度降低而引起的。对不同激发雨型特征的研究能够为汶川震区泥石流监测预警提供科学依据。  相似文献   

19.
A global database of 2,626 rainfall events that have resulted in shallow landslides and debris flows was compiled through a thorough literature search. The rainfall and landslide information was used to update the dependency of the minimum level of rainfall duration and intensity likely to result in shallow landslides and debris flows established by Nel Caine in 1980. The rainfall intensity–duration (ID) values were plotted in logarithmic coordinates, and it was established that with increased rainfall duration, the minimum average intensity likely to trigger shallow slope failures decreases linearly, in the range of durations from 10 min to 35 days. The minimum ID for the possible initiation of shallow landslides and debris flows was determined. The threshold curve was obtained from the rainfall data using an objective statistical technique. To cope with differences in the intensity and duration of rainfall likely to result in shallow slope failures in different climatic regions, the rainfall information was normalized to the mean annual precipitation and the rainy-day normal. Climate information was obtained from the global climate dataset compiled by the Climate Research Unit of the East Anglia University. The obtained global ID thresholds are significantly lower than the threshold proposed by Caine (Geogr Ann A 62:23–27, 1980), and lower than other global thresholds proposed in the literature. The new global ID thresholds can be used in a worldwide operational landslide warning system based on global precipitation measurements where local and regional thresholds are not available..  相似文献   

20.
On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 p.m., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 p.m. Both debris flows caused significant disruption and damage to local communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号