首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is the second part of the series of two articles which consider the effect of Compton scattering of the photospheric radiation on fast electrons of the coronal suprathermal streams. As compared to the previous part, a more realistic height-dependent model problem is treated. The results of numerical calculations for the mean frequency change and the proper cross-section for both the sunward and antisunward directed beams of electrons are given as a function of height and the slope angle. It is concluded that, depending on the angle between directions of the initial outburst and magnetic field, the scattering on the beams moving away the Sun may produce measurable drifts in frequency to shortwave as well as to longwave domains of the spectrum. At the same time, the sunward directed beams result only in an increase in the photon energy.  相似文献   

2.
The angular distribution of low-frequency radiation after a single scattering by relativistic electrons with an isotropic velocity distribution differs markedly from the Rayleigh angular function. In particular, the scattering by an ensemble of ultrarelativistic electrons is described by the law p=1?cosα, where α is the scattering angle. Thus, photons are mostly scattered backward. We discuss some consequences of this fact for astrophysical problems. We show that a hot atmosphere of scattering electrons is more reflective than a cold one: the fraction of incident photons reflected after a single scattering can be larger than that in the former case by up to 50%. This must affect the photon exchange between cold accretion disks and hot coronae (or advective flows) near relativistic compact objects, as well as the rate of cooling (through multiple inverse-Compton scattering of the photons supplied from outside) of optically thick clouds of relativistic electrons in compact radio sources. Scattering asymmetry also causes the spatial diffusion of photons to proceed more slowly in a hot plasma than in a cold one, which affects the shapes of Comptonization spectra and the time delay in the detection of soft and hard radiation from variable X-ray sources.  相似文献   

3.
Compton scattering of electromagnetic radiation in pulsar magnetospheres   总被引:2,自引:0,他引:2  
We have considered the spontaneous Compton scattering of radiation in the magnetic field by both a single ultra-relativistic electron and a system of electrons with the power-law energy distribution. The degree of radiation anisotropy was assumed arbitrary. Parameters of the scattering-generated radiation for the entire range of post-scattering photon energies are given in the paper for all possible scattering modes.  相似文献   

4.
It is usually assumed that the ions of cosmic rays contribute nothing to the observable electromagnetic radiation. However, this is true only when these ions are moving in a vacuum or a quiet (nonturbulent) plasma. In the case of fast ions in a turbulent plasma, there is an effective nonlinear mechanism of radiation which is discussed in this paper. The fast ion (relativistic or nonrelativistic) moving in the plasma creates a polarization cloud around itself which also moves with the particles. The turbulent plasma waves may scatter on the moving electric field of this polarization cloud. In the process of this scattering an electromagnetic wave with frequency (2.7) is generated. Let 1 and k1 be the frequency and wave vector of turbulent plasma waves,V is the velocity of the ion, and is the angle between the wave vector of electromagnetic radiation and the direction of the ion velocity. The method of calculating the probability of the conversion of plasma waves (k1) into electromagnetic waves (k) by scattering on an ion with velocityV is described in detal in Section 2 (Equation (2.14)).The spectral coefficients of spontaneous radiation in the case of scattering of plasma waves on polarization clouds created by fast nonrelativistic ions are given in (3.6) for an ion energy distribution function (3.4) and in (3.8) for more general evaluations. The Equations (3.9)–(3.13) describe the spectral coefficients of spontaneous emission for different modes of plasma turbulence (Langmuir (3.9), electron cyclotron in a weak (3.10) or strong (3.11) magnetic field and ion acoustic (3.12)–(3.13) waves). The coefficients of reabsorption or induced emission are given by Equations (3.14) and (3.16)–(3.19). There is a maser effect in the case of scattering of plasma waves on a stream of ions. The effective temperature of the spontaneous emission is given by Equation (3.15). The spectral coefficients of radiation due to scattering of plasma waves on relativistic ions are calculated in the same manner (Equations (4.14)–(4.15)). The total energy loss due to this radiation is given in Equations (4.23)–(4.25). The coefficients of induced emission are given in (4.26)–(4.28).The results are discussed in Section 5. It is shown that the loss of energy by nonlinear plasma radiation is much smaller than the ionization loss. However, the coefficients of synchrotron radiation of electrons and nonlinear radiation of ions under cosmic conditions may be comparable in the case of a weak magnetic field and fairly low frequencies (5.5)–(5.6). Usually the spectrum of nonlinear plasma radiation is steeper than in the case of synchroton radiation. Equation (5.10) gives the condition for nonlinear radiation to prevail over thermal radiation.Translated by D. F. Smith.  相似文献   

5.
It is proposed that the region containing fast particles, electrostatic and electromagnetic fields, around active galactic nuclei is responsible for generating electromagnetic emissions from -rays to radio waves. The electrons are accelerated by Langmuir turbulence originating through the process of Raman forward scattering (RFS). The radiation mechanism is stimulated Raman backward scattering (RBS) where the fast electron beam loses energy by scattering over spatially periodic magnetic field. The spatially periodic magnetic field results from the magnetic modulational instability of the Langmuir waves. This model accounts well for the large luminosities observed in active galactic nuclei over -rays to radio waves and in addition it relates physically the emission regions at different wavelengths.  相似文献   

6.
The resonant inverse Compton scattering (RICS) of relativistic electrons in intense magnetic fields is an efficient mechanism for producing the highenergy γ-rays. In our previous work it is suggested that the early-stage γ-ray radiation of γ-ray bursts (GRBs) may be mainly produced by this mechanism. By using this mechanism, some puzzles in the study of GRBs can be clarified, e.g., the origin of the Amati relation obtained from the statistics of observations, the formation of the observed two-segment (broken) power-law spectra, the relevant “deadline problem”, the polarization property, etc. Herein our discussion will be focused on the formation of the broken power-law spectra. Based on the formula of the RICS spectral power of individual fast electrons, we have derived the simplified analytical formula of the collective RICS radiation spectrum (RICS spectral luminosity) produced by the assembly of relativistic electrons in an intense magnetic field when they pass through the ambient low-frequency radiation field, and applied it to several typical low-frequency radiation fields (e.g., the black-body radiation field, power-law radiation field and thermal bremsstrahlung field) around the central neutron star, for the convenience of comparison with the observed spectra. Our calculations indicate that the RICS radiation mechanism has a very high efficiency in the hard X-ray and γ-ray wavebands, if the matching condition (i.e., the condition approximate to resonance) is satisfied, and that independent of the ambient radiation field, the produced spectra are commonly the two-segment power-law spectra. Additionally, it is suggested that the RICS mechanism might be an ideal highly-efficient radiation mechanism for the high-energy emissions (hard X-rays and γ-rays) of the GRBs, soft γ-ray repeated bursts (SGRs) and γ-ray pulsars (GRPs).  相似文献   

7.
The inverse Compton scattering of high energy electrons by photons is discussed and a simple derivation of the total power radiated is presented. The derivation is completely classical and exhibits clearly why similar formulas are applicable in the case of inverse compton scattering and synchroton radiation.  相似文献   

8.
Z. Osmanov 《New Astronomy》2010,15(4):351-355
We investigate the role of centrifugal acceleration of electrons in producing the very high energy (VHE) radiation from the BL Lac object 1ES 0806+524, recently detected by VERITAS. The efficiency of the inverse Compton scattering (ICS) of the accretion disk thermal photons against rotationally accelerated electrons is examined. By studying the dynamics of centrifugally induced outflows and by taking into account a cooling process due to the ICS, we estimate the maximum attainable Lorentz factors of particles and derive corresponding energetic characteristics of the emission. Examining physically reasonable parameters, by considering the narrow interval of inclination angles (0.7–0.95°) of magnetic field lines with respect to the rotation axis, it is shown that the centrifugally accelerated electrons may lead to the observational pattern of the VHE emission, if the density of electrons is in a certain interval.  相似文献   

9.
The electron distribution functions measured at 1 AU in an electron stream passing the ISEE-3 spacecraft (Lin et al., 1981) are used as input data to a programme which simulates in a one-dimensional model the interaction between fast electrons and plasma waves (quasi-linear relaxation) together with the plasma wave scattering off the background ions. While the computed spectral energy density of the plasma waves excited in resonance with the streaming of electrons is below Zakharov's threshold of strong turbulence, it is sufficiently high to undergo a fast induced scattering off the background ions. The resulting spectrum is concentrated around the wave vector k = 0. Some simple analytic considerations show that this stage leads necessarily to the crossing of Zakharov's threshold and therefore this indirect excitation of strong turbulence seems to play an essential role in understanding the Langmuir turbulence generated by the motion of fast electron beams in the interplanetary plasma.  相似文献   

10.
Numerical analysis has been carried out on the one-dimensional quasi-linear relaxation of a group of fast electrons travelling through the plasma. It is demonstrated that the electron velocity distribution of fast electrons tends to be a plateau form exciting the electron plasma waves and that the plasma waves are almost completely reabsorbed later by electrons arriving later. Both the velocity range and time interval in which quasi-plateau distribution is formed increase with distance from the origin of the fast electrons. There is no net energy loss of the electron cloud during the travel through the plasma if we neglect both the collisional losses and the scattering of plasma waves. Although the present computation is preliminary and limited to rather low beam density, we can see that the characteristics of both the electron beam and the plasma waves tend, with distance, to those of the analytical solution given by Ryutov and Sagdeev; though a modification to set a low velocity cutoff on the plasma waves due to the thermal electrons is necessary.  相似文献   

11.
本文认为强磁场中的逆Compton散射可能是γ射线爆的主要辐射机制.其能谱是由源区质子产生的低频光子经强磁场中非热电子的Compton散射形成的.我们利用非相对论情形(B/B_(cr)≤1,hv_i/m_ec~2≤1)下强磁场中的Compton散射微分截面,导出了上述Compton散射的辐射谱公式,由此很好地拟合了典型γ射线爆GB811016的观测能谱.  相似文献   

12.
We have studied the effects of irradiation from an extended surface of the secondary component on the atmosphere of the primary. We have considered an isothermal and purely scattering medium. The resultant radiation field due to irradiation from an extended surface and self-radiation is different from that due to irradiation from a point source and self-radiation. In the case of the point source the middle layers of the exposed part of the atmosphere show maximum reflection while in the former case the reflection gradually decreases from the centre of the component towards the surface of the outermost layers of the atmosphere. The reflection effect appears to be strongly dependent on the density distribution of the electrons.  相似文献   

13.
The multipole expansion coefficients for electromagnetic scattering by a stratified core-mantle sphere, suitable for fast and accurate evaluation of the radiation scattering parameters, have been recast.  相似文献   

14.
It is generally believed that the complexity and variability of the light curves of gamma-ray bursts (GRBs) are caused by the internal shocks, which would occur when a rapid shell catches up a slower one and collides with it. The electrons in the shock layer are heated by the shocks and radiate via the mechanisms of synchrotron radiation and inverse Compton scattering. Based on relativistic kinematics, a relation between the photon number of the emission from the rapidly moving shock layer and the number of the photons received by an observer is derived. Then, employing the angular spreading of the internal shock emission, the curve equation and profile of a single pulse are obtained, and the shape is typically in the shape of a fast rise and exponential decline. Furthermore, by using the model of the successive collisions of multiple shells under the condition of reasonable parameters, the observed light curves are fitted with a rather good effect. Therefore, by this means, more different types of light curves of GRBs can be explained.  相似文献   

15.
IMP-6 spacecraft observations of low frequency radio emission, fast electrons, and solar wind plasma are used to examine the dynamics of the fast electron streams which generate solar type-III radio bursts. Of twenty solar electron events observed between April, 1971 and August, 1972, four were found to be amenable to detailed analysis. Observations of the direction of arrival of the radio emission at different frequencies were combined with the solar wind density and velocity measurements at 1 AU to define an Archimedean spiral trajectory for the radio burst exciter. The propagation characteristics of the exciter and of the fast electrons observed at 1 AU were then conpared. We find that: (1) the fast electrons excite the radio emission at the second harmonic; (2) the total distance travelled by the electrons was between 30 and 70% longer than the length of the smooth spiral defined by the radio observations; (3) this additional distance travelled is the result of scattering of the electrons in the interplanetary medium; (4) the observations are consistent with negligible true energy loss by the fast electrons.  相似文献   

16.
Conclusions The observations of flares of UV Ceti stars give direct evidence for the existence in these eruptive processes of fast electrons.The photometric, colorimetric, and x-ray characteristics of the flares of the red dwarf stars which are regarded by Gurzadyan as observational confirmations of the fast-electron hypothesis are in reality not such confirmations.Independent data — colorimetric, infrared, and x-ray properties of the flares of UV Ceti stars — demonstrate the incorrectness of Gurzadyan's idea, according to which all manifestations of the activity of flare stars are due ultimately to only Compton radiation and nonthermal bremsstrahlung of fast electrons.Crimean Astrophysical Observatory. Translated from Astrofizika, Vol. 16, No. 2, pp. 375–381, April–June, 1980.  相似文献   

17.
We investigate a scenario of photon scattering by electrons within a relativistic outflow. The outflow is composed of discrete shells with different speeds. One shell emits radiation for a short duration. Some of this radiation is scattered by the shell(s) behind. We calculate in a simple two-shell model the observed scattered flux density as a function of the observed primary flux density, the normalized arrival time delay between the two emission components, the Lorentz factor ratio of the two shells and the scattering shell's optical depth. Thomson scattering in a cold shell and inverse Compton scattering in a hot shell are both considered. The results of our calculations are applied to the gamma-ray bursts and the afterglows. We find that the scattered flux from a cold slower shell is small and likely to be detected only for those bursts with very weak afterglows. A hot scattering shell could give rise to a scattered emission as bright as the X-ray shallow decay component detected in many bursts, on a condition that the isotropically equivalent total energy carried by the hot electrons is large, ∼1052–1056 erg. The scattered emission from a faster shell could appear as a late short γ-ray/MeV flash or become part of the prompt emission depending on the delay of the ejection of the shell.  相似文献   

18.
We study the spectral distortions of the cosmic microwave background radiation induced by the effect in clusters of galaxies when the target electrons have a modified Maxwell-Boltzmann distribution with a high-energy nonthermal tail. Bremsstrahlung radiation from this type of electron distribution may explain the suprathermal X-ray emission observed in some clusters such as the Coma Cluster and A2199 and serve as an alternative to the classical but problematic inverse Compton scattering interpretation. We show that the Sunyaev-Zeldovich effect can be used as a powerful tool to probe the electron distribution in clusters of galaxies and discriminate among these different interpretations of the X-ray excess. The existence of a nonthermal tail can have important consequences for cluster-based estimators of cosmological parameters.  相似文献   

19.
The inverse Compton (IC) scattering of ultrarelativistic electrons accelerated at the pulsar wind termination shock is generally believed to be responsible for TeV gamma-ray signal recently reported from the binary system PSR B1259-63/SS2883. In such a system the acceleration takes place in the presence of a dense radiation field provided by a companion Be2-type star. Thus it is natural to expect an orbital phase dependence of the acceleration efficiency in the system. The HESS collaboration reported the tendency of reduction of TeV γ-rays around the periastron. In this paper we study a possible explanation of this effect by the “early” (sub-TeV) cutoffs in the energy spectrum of accelerated electrons due to the enhanced rate of Compton losses close to the periastron.  相似文献   

20.
The February 5, 1986 flare-related radio continuum depression is studied, compared with other noise storm depression events and discussed in the framework of current type I storm models. The influence of flare plasma flow or shocks and of superthermal electrons on noise storm radiation is considered. The presence of fast drifting emission features just before and during the decrease of the intensity, the association between the depression onset and the microwave burst maximum, the simultaneous appearance of the intensity minimum over a broad spectral range as well as preflare evidence of an interconnection of the flare site and the noise storm source are arguments for a preference of the role of beams of superthermal electrons. We distinguish abrupt and slow depressions (Figure 5). The abrupt depressions are in agreement with Melrose's (1980) predictions. Slow depressions can only be understood by invoking the diffusion of super-thermal electrons through the magnetic field carrying the storm source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号