首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

2.
Most of the countries around the North Indian Ocean are threatened by storm surges associated with severe tropical cyclones. The destruction due to the storm surge flooding is a serious concern along the coastal regions of India, Bangladesh, Myanmar, Pakistan, Sri Lanka, and Oman. Storm surges cause heavy loss of lives and property damage to the coastal structures and losses of agriculture which lead to annual economic losses in these countries. About 300,000 lives were lost in one of the most severe cyclones that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated part of the eastern coast of India, killing about 10,000 persons in November 1977. More recently, the Chittagong cyclone of April 1991 killed 140,000 people in Bangladesh, and the Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15,000 people besides enormous loss to the property in the region. These and most of the world’s greatest natural disasters associated with the tropical cyclones have been directly attributed to storm surges. The main objective of this article is to highlight the recent developments in storm surge prediction in the Bay of Bengal and the Arabian Sea.  相似文献   

3.
Classifying inundation limits in SE coast of India: application of GIS   总被引:1,自引:0,他引:1  
A study on the possible inundation limit in SE coast of India was carried out using various physical, geological and satellite imageries. The coastal inundation hazard map was prepared for this particular region as it was affected by many cyclones, flooding, storm surge and tsunami waves during the last six decades. The results were generated using various satellite data (IRS-P6 LISS3; LANDSAT ETM; LANDSAT-5 ETM; LANDSAT MSS) and digital elevation models (ASTER GLOBAL DEM), and a coastal vulnerability index was generated for the entire coastal stretch of Nagapattinam region in SE coast of India. The coastal area which will be submerged totally due to a 1–5 m rise in water level due to any major natural disaster (tsunami or cyclone) indicates that 56–320 km2 will be submerged in this particular region. The results suggest that nearly 7 towns and 69 villages with 667,477 people will be affected and indicate that proper planning needs to be done for future development.  相似文献   

4.
Hazards associated with tropical cyclones are long-duration rotatory high-velocity winds, very heavy rain and storm tide. India has a coastline of about 7,516?km of which 5,400?km is along the mainland. The entire coast is affected by cyclones with varying frequency and intensity. The India Meteorological Department (IMD) is the nodal government agency that provides weather services related to cyclones in India. However, IMD has not identified cyclone-prone districts following any specific definition though the districts for which cyclone warnings are issued have been identified. On the other hand, for the purpose of better cyclone disaster management in the country, it is necessary to define cyclone proneness and identify cyclone-prone coastal districts. It is also necessary to decide degree of hazard proneness of a district by considering cyclone parameters so that mitigation measures are prioritised. In this context, an attempt has been made to prepare a list of cyclone hazard prone districts by adopting hazard criteria. Out of 96 districts under consideration, 12, 45, 31 and 08 districts are in very high, high, moderate and low categories of proneness, respectively. In general, the coastal districts of West Bengal, Orissa, Andhra Pradesh and Tamil Nadu are more prone and are in the high to very high category. The cyclone hazard proneness factor is very high for the districts of Nellore, East Godawari, and Krishna in Andhra Pradesh; Yanam in Puducherry; Balasore, Bhadrak, Kendrapara and Jagatsinghpur in Orissa; and South and North 24 Parganas, Medinipur and Kolkata in West Bengal. The results give a realistic picture of degree of cyclone hazard proneness of districts, as they represent the frequency and intensity of land falling cyclones along with all other hazards like rainfall, wind and storm surge. The categorisation of districts with degree of proneness also tallies with observed pictures. Therefore, this classification of coastal districts based on hazard may be considered for all the required purposes including coastal zone management and planning. However, the vulnerability of the place has not been taken into consideration. Therefore, composite cyclone risk of a district, which is the product of hazard and vulnerability, needs to be assessed separately through detailed study.  相似文献   

5.
The present study investigates the impact of wave energy and littoral current on shorelines along the south-west coast of Kanyakumari, Tamil Nadu, India. The multi-temporal Landsat TM, ETM+ images acquired from 1999 to 2011 were used to demarcate the rate of shoreline shift using GIS-based Digital Shoreline Analysis System. The statistical analysis such as net shoreline movement and end point rate were determined from the multi-temporal shoreline layers. Moreover, the wave energy and seasonal littoral current velocity were calculated for each coastal zone using mathematical equations. The results reveal that the coastal zones, which include Kanyakumari, Kovalam, Manavalakurichi and Thengapattinam coasts, consisting of maximum wave energy along with high velocity of littoral current, have faced continuous erosion processes. The estimated wave energy along these zones ranges from 6.5 to 8.5 kJ/km2 and the observed current velocity varies from 0.22 to 0.32 m/s during south-west and north-east monsoons. The cumulative effect of these coastal processes in the study area leads to severe erosion that is estimated as 300.63, 69.92, 54.12 and 66.11 m, respectively. However, the coastal zones, namely Rajakkamangalam, Ganapathipuram, Muttam and Colachel, have experienced sediment deposits due to current movement during the north-east monsoon. However, the trend changes during the south-west monsoon as a result of sediment drift through backwash. The spatial variation of shoreline and its impact on wave energy and the littoral current have been mapped using the geo-spatial technology. This study envisages the impact of coastal processes on site-specific shorelines. Hence, the study will be effective for sustainable coastal zone management.  相似文献   

6.

Remote sensing images of AD 1991–2011 and field observations help evaluate shoreline changes (erosion and accretion) in Puducherry and Tamil Nadu states of southeastern India. A minor harbor was constructed during AD 1986–1989 in the coast of Puducherry, and it initiated the gradual process of shoreline modification. In the subsequent years, beaches located toward the north of the harbor suffered erosion (?0.12–?4.19 m/year) and there was accretion (0.27–7.25 m/year) in the southern beaches. However, the man-made structures (seawall and groin) have reduced the shoreline changes after AD 2004. In the last two decades, the rate of erosion area-wise gradually decreased (0.24–0.013 km2/year) and accretion remained constant (0.019 km2/year). Our results suggest that accretion happened in the southern side of the breakwaters and erosion occurred in the northern part. Presence of groins structures in the region in the northern part has also provoked accretion in the south and erosion in the northern side close to the State of Tamil Nadu.

  相似文献   

7.
8.
The Indian Ocean Tsunami of December 26, 2004 devastated coastal ecosystems across South Asia. Along the coastal regions of South India, increased groundwater levels (GWL), largely caused by saltwater intrusion, infiltration from inundated land, and disturbance of freshwater lenses, were reported. Many agencies allocated funding for restoration and rehabilitation projects. However, to streamline funding allocation efforts, district-level groundwater inundation/recession data would have been a useful tool for planners. Thus, to ensure better preparedness for future disaster relief operations, it is crucial to quantify pre- and post-tsunami groundwater levels across coastal districts in India. Since regional scale GWL field observations are not often available, this study instead used space gravimetry data from NASA’s Gravity Recovery and Climate Experiment (GRACE), along with soil moisture data from the Global Land Data Assimilation Systems (GLDAS), to quantify GWL fluctuations caused by the tsunami. A time-series analysis of equivalent groundwater thickness was developed for February 2004–December 2005 and the results indicated a net increase of 274 % in GWLs along coastal regions in Tamil Nadu following the tsunami. The net recharge volume of groundwater due to the tsunami was 16.8 km3, just 15 % lower than the total annual groundwater recharge (19.8 km3) for the state of Tamil Nadu. Additionally, GWLs returned to average within 3 months following the tsunami. The analysis demonstrated the utility of remotely sensed data in predicting and assessing the impacts of natural disasters.  相似文献   

9.
According to the latest UNFA Report on state of world population 2007, unleashing the potential of urban growth by 2030, the urban population will rise to 5 billion or 60?% of the world population. Liquefaction in urban areas is dangerous phenomenon, which cause more damage to buildings and loss of human lives. Chennai, the capital city of the State Tamil Nadu in India, is one of the densely populated cities in the country. The city has experienced moderate magnitude earthquakes in the past and also categorized under moderate seismic hazard as per the Bureau of Indian Standards (BIS in Criteria for earthquake resistant design of structures; Bureau of Indian Standards, New Delhi, 1893 2001). A study has been carried out to evaluate the liquefaction potential of Chennai city using geological and geomorphological characteristics. The subsurface lithology and geomorphological maps were combined in the GIS platform for assessing the liquefaction potential. The liquefaction hazard broadly classified into three categories viz., liquefaction likely, possible and not likely areas. Mainly, the liquefaction likely areas spread along the coastal areas and around the river beds. The rest of the areas are liquefaction not likely and possible. The present map can be used as first-hand information on regional liquefaction potential for the city, and it will be help to the scientists, engineers and planners who are working for future site-specific studies of the city.  相似文献   

10.
Coastal flooding induced by storm surges associated with tropical cyclones is one of the greatest natural hazards sometimes even surpassing earthquakes. Although the frequency of tropical cyclones in the Indian seas is not high, the coastal region of India, Bangladesh and Myanmar suffer most in terms of life and property caused by the surges. Therefore, a location-specific storm surge prediction model for the coastal regions of Myanmar has been developed to carry out simulations of the 1975 Pathein, 1982 Gwa, 1992 Sandoway and 1994 Sittwe cyclones. The analysis area of the model covers from 8° N to 23° N and 90° E to 100° E. A uniform grid distance of about 9 km is taken along latitudinal and longitudinal directions. The coastal boundaries in the model are represented by orthogonal straight line segments. Using this model, numerical experiments are performed to simulate the storm surge heights associated with past severe cyclonic storms which struck the coastal regions of Myanmar. The model results are in agreement with the limited available surge estimates and observations.  相似文献   

11.
Densely populated coastal zones of India are highly exposed to natural environment. These are impacted by episodic natural events, continuous coastal process, gradually rising sea levels and coexisting human interventions. The present study is an attempt to assess the implication of the sea level rise and coastal slope in the coastal erosion for entire mainland of India. In this regard, two methods were employed to estimate the shoreline change rate (SCR): (1) satellite-derived SCR using the Landsat TM and ETM+ acquired during 1989–2001 and (2) SCR derived by Bruun Rule using the parameters coastal slope and sea level trend derived from satellite altimetry. Satellite-derived SCR has been compared with the shoreline change estimated based on Bruun Rule, revealing a better agreement with each other in terms of trend. Peaks of shoreline retreat calculated using Bruun model and satellite-observed SCR offset by 25–50 km. Offset in these peaks was observed due to net drift towards north in the east coast and south in the west coast of India, revealing the applicability of the Bruun Rule along the Indian coast. The present study demonstrates that coastal slope is an additional parameter responsible for the movement of shoreline along with sea level change. The results of satellite-derived SCR reveal the highest percentage of erosion along West Bengal coast with 70% followed by Kerala (65%), Gujarat (60%) and Odisha (50%). The coastlines of remaining states recorded less than 50% of coasts under erosion. Results of this study are proving critical inputs for the coastal management.  相似文献   

12.
The study area is 56-km coastal zone of Chennai district of the Tamil Nadu state, southeast coast of India. The coastline, which includes tourist resorts, ports, hotels, fishing villages, and towns, has experienced threats from many disasters such as storms, cyclones, floods, tsunami, and erosion. This was one of the worst affected area during 2004 Indian Ocean tsunami and during 2008 Nisha cyclone. The present study aims to develop a Coastal Vulnerability Index for the Chennai coast using eight relative risk variables to know the high and low vulnerable areas, areas of inundation due to future SLR, and land loss due to coastal erosion. Both conventional and remotely sensed data were used and analyzed with the aid of the remote sensing and geographic information system tools. Zones of vulnerability to coastal natural hazards of different magnitude (high, medium, and low) are identified and shown on a map. Coastal regional elevation, near-shore bathymetry, and socio-economic conditions have been considered as additional important variables. This study revealed that 11.01?km of the coastline has low vulnerability, 16.66?km has medium vulnerability, and 27.79?km is highly vulnerable in the study area, showing the majority of coastline is prone to erosion. The map prepared for the Chennai coast can be used by the state and district administration involved in the disaster mitigation and management plan and also as a tool in planning a new facility and for insurance purpose.  相似文献   

13.
The physiographic setting of Kerala State, India, is unique. A narrow strip of the state contains a chain of lagoons and estuaries with a very high population density. The strip is subjected to severe coastal erosion during the monsoon season. A number of other problems are also associated with the coastal zone of Kerala, such as irregular dredging of black sands from the beaches, coastal flooding, hazards due to developmental activities, etc. A Coastal Zone Management Programme was developed and administered by the Centre for Earth Science Studies, Trivandrum, to provide efficient coastal management and solve some of these problems. Various programmes included under the Coastal Zone Management are the following: (1) Sedimentological, bathymetric, and geochemical studies of lagoons and estuaries; (2) monitoring of planimetric changes of beaches by profiling beaches during different seasons all along the coast; (3) studies of the nature, distribution, and provenance of black sand deposits from beaches; (4) studies of the peculiar occurrence of patchy, calm, turbid areas of water in the offshore containing high suspended sediment concentrate known as mud banks; (5) wave studies involving continuous monitoring of wave data all along the coast in order to understand wave climate and erosion; (6) sediment movement studies using fluorescent tracer to aid in the development of ports and harbors; (7) studies on various aspects of offshore. The outlines of the various programmes discussed in this article will help other states and countries to develop a coastal zone management programme according to the needs of the state or country and the nature of the problem occurring in the coastal zone.  相似文献   

14.
The tsunami sediments deposited after the December 2004 tsunami were sampled immediately in the coastal environment of Tamil Nadu State on the southeast coast of India. Fifty-four sediment samples were collected and 14 representative samples were selected to identify the level of metal contamination in tsunami sediments. The results indicate that the sediments are mainly of fine to medium-grained sand and contain significantly high contents of dissolved salts in sediments (Na+, K+, Ca+2, Mg+2, Cl) in water-soluble fraction due to seawater deposition and evaporation. Correlation of acid leachable trace metals (Cr, Cu, Ni, Co, Pb, Zn) indicate that Fe-Mn oxyhydroxides might play an important role in controlling their association between them. Enrichment of trace metals is observed in all the locations with reference to the background samples. High values of trace metals in the southern part of the study area are due to the large-scale industries along the coast, and they are probably anthropogenic in nature and of marine origin, which could cause serious environmental problems.  相似文献   

15.
Anthropogenic pollution of shallow groundwater resources due to industrial activities is becoming a cause of concern in the east coastal belt of the state of Tamil Nadu, India. Integrated hydrogeological, geophysical and tracer studies were carried out in the coastal region encompassing an industrial complex. The objective has been to gain knowledge of aquifer characteristics, ascertaining groundwater movement and its flow direction, which would in turn reveal the possibility of contamination of groundwater regime and its better management. The results of multi-parameters and model study indicate that the velocity of groundwater flow ranges from 0.013 m/d to 0.22m/d in and around the industrial complex in upstream western part of the catchment and 0.026 m/d to 0.054m/d in the downstream eastern part, near the coast. These parameters are vital for the development of groundwater management scheme.  相似文献   

16.
The Indian Ocean Tsunami of December 2004 caused inundation of seawater along the Northern coast of Tamil Nadu, India, resulting in loss of 8,000 people with extensive damage to properties. The paper describes the inundation of seawater in two northern districts, namely Kancheepuram and Villupuram districts, which showed distinct patterns of inundation of seawater and run-up levels due to variations in geomorphic features. TUNAMI N2 model was used to predict the seawater inundation for earthquakes occurred in 1881 at Car Nicobar, Sumatra 2004 and a worst-case scenario. The coastal areas with beaches having gentle slope showed more inundation compared with coastal areas having varied slope and habited by sand dunes and coastal vegetation. Appreciable inundation of seawater with tsunami simulated for 1881 Car Nicobar indicated that proximity to the source plays a major role besides earthquake parameters in causing inundation. The worst-case scenario generated from subduction zone of Car Nicobar using Sumatra 2004 earthquake parameters revealed extreme vulnerability of coasts of both the districts to giant tsunamis.  相似文献   

17.
Bay of Bengal cyclone extreme water level estimate uncertainty   总被引:4,自引:3,他引:1  
  相似文献   

18.
Meteorological tsunamis are frequently observed in different tide stations at the southeastern coast of South America. They are associated with the occurrence of atmospheric gravity waves during the passages of cold fronts over the Buenos Aires Province continental shelf. On the other hand, storm surges are also frequent in the region, and they are associated with strong and persistent southerlies, which are also frequent during cold front passages. The impact of meteorological tsunamis in coastal erosion and in the statistics of storm surge trends is discussed in this paper. For this study, fifteen meteorological tsunamis (with maximum wave heights higher than 0.20 m), seven of them simultaneous to the occurrence of storm surge events (with extreme levels higher than |±0.60 m|), are selected from April 2010 to January 2013. The impact of meteorological tsunamis in the storm erosion potential index (SEPI) is evaluated. Not significant differences are obtained between SEPI calculated with and without filtering the meteorological tsunami signal from the storm surge data series. Moreover, several experiments are carried out computing SEPI from synthetic sea level data series, but very low changes (lower than 4 %) are also obtained. It is concluded that the presence of moderate meteorological tsunamis on sea level records would not enhance this index at the Buenos Aires Province coast. On the other hand, taking into account that meteorological tsunamis can reach up the 20–30 % of the storm surge height, it was concluded that the statistics of storm surge trends (and their uncertainties) should be revised for Mar del Plata data series.  相似文献   

19.
J. Shaji 《Natural Hazards》2014,73(3):1369-1392
The densely populated coastline of Thiruvananthapuram district of Kerala, along the southwest coast of India, is sensitive to sea surge and severe coastal erosion. The December 2004 Indian Ocean Tsunami had inundated several parts of this coastal zone, indicating nature of sensitivity. The present study is an attempt to develop a coastal sensitivity index (CSI) for Thiruvananthapuram coast within the framework of coastal sediment cells. Seven variables, namely (a) coastal slope, (b) geomorphology, (c) shoreline change, (d) mean sea-level rise, (e) nearshore slope, (f) significant wave height and (g) mean tide range, were adopted in calculation of CSI (the square root of the product of the ranked variables divided by the number of variables). Remote sensing data, topographic maps supported by field work and data from numerical models are used in geographic information system environment to generate CS index for each kilometer segment of this 76-km coastline. This study reveals that 72 % of the Thiruvananthapuram coastline falls in the high sensitive category. This exercise, first of its kind for Kerala coast will be useful for disaster mitigation and management.  相似文献   

20.

Many coastal urban areas and many coastal facilities must be protected against pluvial and marine floods, as their location near the sea is necessary. As part of the development of a Probabilistic Flood Hazard Approach (PFHA), several flood phenomena have to be modelled at the same time (or with an offset time) to estimate the contribution of each one. Modelling the combination and the dependence of several flooding sources is a key issue in the context of a PFHA. As coastal zones in France are densely populated, marine flooding represents a natural hazard threatening the coastal populations and facilities in several areas along the shore. Indeed, marine flooding is the most important source of coastal lowlands inundations. It is mainly generated by storm action that makes sea level rise above the tide. Furthermore, when combined with rainfall, coastal flooding can be more consequent. While there are several approaches to analyse and characterize marine flooding hazard with either extreme sea levels or intense rainfall, only few studies combine these two phenomena in a PFHA framework. Thus this study aims to develop a method for the analysis of a combined action of rainfall and sea level. This analysis is performed on the city of Le Havre, a French urban city on the English Channel coast, as a case study. In this work, we have used deterministic materials for rainfall and sea level modelling and proposed a new approach for estimating the probabilities of flooding.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号