首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In this paper, the authors used the Princeton Ocean Model (POM) to simulate the seasonal evolutions of circulation and thermal structure in the Yellow Sea. The simulated circulation showed that the Yellow Sea Warm Current (YSWC) was a compensation current of monsoon-driven current, and that in winter, the YSWC became stronger with depth, and could flow across the Bohai Strait in the north. Sensitivity and controlling tests led to the following conclusions, In winter, the direction of the Yellow Sea Coastal Current in the surface layer was controlled partly by tide instead of wind, In summer, a cyclonic horizontal gyre existed in the middle and eastern parts of the Yellow Sea below 10 m. The downwelling in upper layer and upwelling in lower layer were somehow similar to Hu et al. (1991) conceptual model. The calculated thermal structure showed an obvious northward extending YSWC tongue in winter, its position and coverage of the Yellow Sea Cold Water Mass in summer.  相似文献   

2.
To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDPI02, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modem Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modem warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BE and synchronously the modem TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BP. Thus,the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC,indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BE caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BP. The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BP.  相似文献   

3.
In this paper, the authors explored the presence of shear fronts between the Yellow Sea Coastal Current (YSCC) and the monsoon-strengthened Yellow Sea Warm Current (YSWC) in winter and their sedimentary effects within the shear zone based on a fully validated numerical model. This work added the wind force to a tidal model during simulating the winter baroclinic circulation in the Yellow Sea. The results indicate that the YSWC is significantly strengthened by wind-driven compensation due to a northeast monsoon during winter time. When this warm current encounters the North Shandong-South Yellow Sea coastal current, there is a strong reverse shear action between the two current systems, forming a reverse-S-shaped shear front that begins near 34°N in the south and extends to approximately 38°N, with an overall length of over 600 km. The main driving force for the formation of this shear front derives from the circulation system with the reverse flow. In the shear zone, temperature and salinity gradients increase, flow velocities are relatively small and the flow direction on one side of the shear zone is opposite to that on the other side. The vertical circulation structure is complicated, consisting of a series of meso- and small-scale anti-clockwise eddies. Particularly, this shear effect significantly hinders the horizontal exchange of coastal sediments carried by warm currents, resulting in fine sediments deposition due to the weak hydrodynamic regime.  相似文献   

4.
Based on the Pathfinder sea surface temperature(PFSST),the surface axis and its pattern of the Yellow Sea Warm Current(YSWC) are discussed.A structure of double-warm-tongue is found in February and it varies in different years.Two indexes are calculated to represent the westward shift(WSI) and northward extension(NEI) of the warm water in the Yellow Sea(YS).Wavelet analysis illustrates that the WSI and NEI have prominent periods of 3-6 years and 3-4 years,respectively.The Empirical Orthogonal Function(EOF) ...  相似文献   

5.
Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter. This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position. Supported by the National Basic Research Program of China (No. G1999043809) and the National Science Foundation of China (No. 49736190).  相似文献   

6.
Seasonal cycle is the most significant signals of topography and circulation in the Bohai Sea (BS)and Yellow Sea (YS) forced by prevailing monsoon and is still poorly understood due to lack of data in their interiors. In the present study, seasonal cycles of topography in the BS and YS and its relationship with atmospheric forcing and oceanic adjustment were examined and discussed using TOPEX/Poseidon and ERS-I/2 Sea Level Anomalies (SLA) data. Analyses revealed complicated seasonal cycles of topography composed mainly of 2 REOF modes, the winter-summer mode (WlM) and spring-autumn mode (SAM). The WlM with action center in the BS displayed peak and southward pressure gradient in July, and valley and northward pressure gradient in January, which is obviously the direct response to monsoon with about l-month response time. The SAM with action center in the western south YS displayed peak and northward pressure gradient in October and valley and southward pressure gradient in April. After the mature period of monsoon, the action center in the BS becam eweakened while that in the western south YS became strengthened because of regional convergence or divergence induced by seasonal variations of the Taiwan Warm Current and Yellow Sea Coastal Current. The direct response of topography to monsoon resulted in the WIM, while oceanic adjustment of topography played an important role in the forming of the SAM.  相似文献   

7.
In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmitted useful data of at least 30 days. The wind-driven component of the drift was removed from the original drift velocity of drifters. The wind data used are from NCEP (National Center for Environmental Prediction), USA.Trajectories and drift velocities of the 23 drifters depicted the upper circulation structure in the southern YS. There exists an anti-cyclonic eddy with a mean speed and radius of 0.063 m/s and 50km in the central southern YS, whose center lingered within 35.3-36.0°N / 123.5-124.0°E. Showed by 6 drifters, a basin-scale elliptic cyclonic gyre with a mean speed of 0.114 m/s, long and short radius of 250 and 200 km surrounds the anti-cyclonic eddy. In the southwestern part of the southern YS has obvious frontal eddy activities within about 100 km with a mean speed about 0.076  相似文献   

8.
To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDP102, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modern Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modern warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BP, and synchronously the modern TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7–6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BP. Thus, the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC, indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BP, caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BP. The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BP. Supported by the National Natural Science Foundation of China (Nos. 90411014 and 40506015), the National major Fundamental Research and Development Project (No. 2007CB815903) and the CAS Pilot Project of the National Knowledge Innovation Program (No. KZCFX3-SW-233)  相似文献   

9.
The CTD (conductivity, temperature and depth) data collected by six China-Korea joint cruises during 1996-1998 and the climatological data suggest that the seasonal variability of average salinity in the Yellow Sea (Sa) presents a general sinusoid pattern. To study the mechanism of the variability, annual cycles of Sa were simulated and a theoretical analysis based on the governing equations was reported.Three main factors are responsible for the variability: the Yellow Sea Warm Current (YSWC), the Changji-ang (Yangtze) River diluted water (YRDW) and the evaporation minus precipitation (E-P). From December to the next May, the variability of Sa is mainly controlled by the salt transportation of the YSWC. But in early July, the YSWC is overtaken and replaced by the YRDW which then becomes the most important controller in summer. From late September to November, the E-P gradually took the lead. The mass exchange north of the 37癗 line is not significant.  相似文献   

10.
Based on survey data from April to May 2009, distribution and its influential factors of dissolved inorganic nitrogen (DIN) over the continental slopes of the Yellow Sea (YS) and East China Sea (ECS) are discussed. Influenced by the Changjiang (Yangtze) River water, alongshore currents, and the Kuroshio current off the coast, DIN concentrations were higher in the Changjiang River estuary, but lower (<1 μmol/L) in the northern and eastern YS and outer continental shelf area of the ECS. In the YS, the thermocline formed in spring, and a cold-water mass with higher DIN concentration (about 11 μmol/L) formed in benthonic water around 123.2°E. In Changjiang estuary (around 123°E, 32°N), DIN concentration was higher in the 10 m layer; however, the bottom DIN concentration was lower, possibly influenced by mixing of the Taiwan Warm Current and offshore currents.  相似文献   

11.
Community structure changes of macrobenthos in the South Yellow Sea   总被引:3,自引:0,他引:3  
The ecological environment in the Yellow Sea has changed greatly from the 1950s to 1990s and this has had significant impact on marine organisms. In this study, data on soft-sediment macrobenthos occurring in depths from 25 m to 81 m in the South Yellow Sea were used to compare changes in community structure. The agglomerative classification (CLUSTER) and multidimensional scaling (MDS) methods were applied. Five communities were recognized by cluster analysis: 1. The Yellow Sea Cold Water Mass community dominated by cold water species, which changed slightly in species composition since the 1950s; 2. The mixed community with the coexistence of cold water species and warm water species, as had been reported previously; 3. The polychaete-dominated eurythermal community in which the composition changed considerably as some dominant species disappeared or decreased; 4. The Changjiang (Yangtze) River Estuarine community, with some typical estuarine species; 5. The community affected by the Yellow Sea Warm Current. The greatest change occurred in the coastal area, which indicated that the change may be caused by human activities. Macrobenthos in the central region remained almost unchanged, particularly the cold water species shielded by the Yellow Sea Cold Water Mass. The depth, temperature and median grain size of sediments were important factors affecting the distributions of macrobenthos in the South Yellow Sea.  相似文献   

12.
The concentration of suspended load can be determined by its linear relationship to turbidity. Our results present the basic distribution of suspended load in North Yellow Sea. In summer, the suspended load concentration is high along the coast and low in the center of the sea. There are four regions of high concentration in the surface layer: Penglai and Chengshantou along the north of the Shandong Peninsula, and the coastal areas of Lüshun and Changshan Islands. There is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. And there is a 2 mg/L contour at 124°E that separates the North Yellow Sea from regions of lower concentrations in the open sea to the west. The distribution features in the 10 m and bottom layer are similar to the surface layer, however, the suspended load concentration declines in the 10 m layer while it increases in the bottom layer. And in the bottom layer there is a low suspended load concentration water mass at the region south of 38°N and east of 123°E extending to the southeast. In general, the lowest suspended load concentration in a vertical profile is at a depth of 10 to 20 m, the highest suspended load concentration is in the bottom near Chengshantou area. In winter, the distribution of suspended load is similar to summer, but the average concentrations are three times higher. There are two tongue-shaped high suspended load concentration belt, one occurring from surface to seafloor, extends to the north near Chengshantou and the other invades north to south along the east margin of Dalian Bay. They separate the low suspended load concentration water masses in the center of North Yellow Sea into east and west parts. Vertical distribution is quite uniform in the whole North Yellow Sea because of the cooling effect and strong northeast winds. The distribution of suspended load has a very close relationship to the current circulation and wind-induced waves in the North Yellow Sea. Because of this, we have been able to show for the first time that the distribution of suspended load can be used to identify water masses.  相似文献   

13.
The Yellow Sea (YS) environmental and ecological changes during the Holocene are driven by the interactions between the Yellow Sea Warm Current (YSWC), the East Asian Winter Monsoon (EAWM) and the Kuroshio Current (KC). We report marine biomarker records of brassicasterol, dinosterol and C37 alkenones in core ZY1 and core ZY2 from the South Yellow Sea (SYS) to reconstruct the spatial/temporal variations and possible mechanisms of phytoplankton primary productivity and community structure changes during the Mid-late Holocene. The contents of the corresponding biomarkers in the two cores are similar, and they also reveal broadly similar temporal trends. From 6 kyr to 3 kyr, the biomarker contents in the two cores were relatively low with small oscillations, followed by a distinct increase at about 3 kyr indicating productivity increases caused by a stronger EAWM. The alkenone/brassicasterol ratio (A/B) is used as a community structure proxy, which also showed higher values in both cores since 3 kyr, indicating increased haptophyte contribution to total productivity. It is proposed that the YS community structure has been mainly influenced by the YSWC, with stronger YSWC influences causing an increase in haptophyte contribution since 3 kyr. Some differences of the biomarker records between ZY2 and ZY1 suggest spatial variations in response to YSWC and KC forcing. When the KC was intensified during the periods of 6–4.2 kyr and 1.7–0 kyr, the YSWC extended eastward, exerting more influence on core ZY1. On the other hand, when the KC weakened during 4.2–1.7 kyr, the YSWC extended westward, exerting more influence on the ZY2.  相似文献   

14.
The Distribution of Dissolved Aluminum in the Yellow and East China Seas   总被引:2,自引:0,他引:2  
Water samples containing dissolved aluminum were collected from the Yellow and East China Seas in October-November 2000. The average concentrations of dissolved AI in the Yellow Sea (YS) and East China Sea (ECS) were 0.042 and 0.056 μ molL^-1, respectively. The concentration of dissolved aluminum decreased gradually across the continental shelf. The lower concentrations appeared in the YS cold water center and in the bottom layer at the shelf edge of the ECS, where they were 0.016 and 0.011 μmolL^-1, respectively. The distribution of dissolved Al was controlled by physical mixing processes rather than biological uptake processes. The impact of different water masses along the PN transect was calculated based on the mass balance model. The results show that the impact of the Changjiang River was mainly concentrated on the coastal area and the top thermocline water on the ECS shelf, where the impact percentage decreased from 12.6% to 1.1% in the surface water, while the contribution of the Kuroshio water was dominant on the ECS shelf in this survey, increasing from 77.6% to 97,8% along the PN transect from the Changjiang River Estuary to the Ryukyu Islands. It is concluded that aluminum can serve as a proper tracer for studying the impact of Changjiang terrestrial matter on the ECS shelf water.  相似文献   

15.
Spatial distribution of some large tintinnid species (nominally > 76 μm) is investigated on samples vertically towed in the southern Yellow Sea in winters of 2001 to 2004. Nine tintinnid species are recorded: Codonellopsis morchella, Stenosemella pacifica, S. steini, Tintinnopsis schotti, T. radix, T. karajacensis, Eutintinnus tenuis, Parafavella sp., Leprotintinnus neriticus, of which C. morchella and T. radix dominated in the warm tongue-shaped zone of the Yellow Sea Warm Current (YSWC), and S. pacifica i...  相似文献   

16.
The Yellow Sea Warm Current (YSWC) is one of the principal currents in the Yellow Sea in winter. Former examinations on current activity in the Yellow Sea have not observed a stable YSWC because of the positioning of current meters. To further understand the YSWC, a research cruise in the southern Yellow Sea was carried out in the winter of 2006/2007. Five moorings with bottom-mounted acoustic Doppler current profilers (ADCP) were deployed on the western side of the central trough of the Yellow Sea. The existence and distributional features of the YSWC were studied by analyzing three ADCP moorings in the path of the YSWC in conjunction with conductivity-temperature-depth (CTD) data over the observed area in the southern Yellow Sea. The results show the following. (1) The upper layer of the YSWC is strongly influenced by winter cold surge; its direction and speed often vary along a south-north axis when strong cold surges arrive from the north. (2) The YSWC near the bottom layer is a stable northwest flowing current with a speed of 4 to 10 cm/s. By combining the analyses of the CTD data, we speculate that the core of the YSWC may lie near the bottom. (3) On a monthly average timescale, the YSWC is stably oriented with northward flow from the sea surface to the sea floor.  相似文献   

17.
An MOM2 based 3-dimentional prognostic baroclinic Z-ordinate model was established to study the circulation in eastern China seas, considering the topography, inflow and outflow on the open boundary, wind stress, temperature and salinity exchange on the sea surface. The results were consistent with observation and showed that the Kuroshio intrudes in large scale into the East China Sea continental shelf East China, during which its water is exchanged ceaselessly with outer sea water along Ryukyu Island. The Tsushima Warm Current is derived from several sources, a branch of the Kuroshio, part of the Taiwan Warm Current, and Yellow Sea mixed water coming from the west of Cheju Island. The water from the west of Cheju Island contributes approximately 13% of the Isushima Warm Current total transport through the Korea Strait. The circulation in the Bohai Sea and Yellow Sea is basically cyclonic circulation, and is comprised of coastal currents and the Yellow Sea Warm Current. Besides simulation of the real circulation, numerical experiments were conducted to study the dynamic mechanism. The numerical experiments indicated that wind directly drives the East China Sea and Yellow Sea Coastal Currents, and strengthens the Korea Coastal Current and Yellow Sea Warm Current. In the no wind case, the kinetic energy of the coastal current area and main YSWC area is only 1% of that of the wind case.Numerical experiments also showed that the Tsushima Warm Current is of great importance to the formation of the Korea Coastal Current and Yellow Sea Warm Current.  相似文献   

18.
This study investigates the wind energy input, an important source of mechanical energy, in the coastal seas east of China. Using the wind field from the high-resolution sea surface meteorology dataset in the Bohai Sea, Yellow Sea, and East China Sea, we studied the wind energy input through surface ageostrophic currents and surface waves. Using a simple analytical formula for the Ekman Spiral with timedependent wind, the wind energy input through ageostrophic currents was estimated at ~22 GW averaged from 1960 to 2007, and through use of an empirical formula, the wind energy input through surface waves was estimated at ~169 GW. We also examined the seasonal variation and long-term tendency of mechanical energy from wind stress, and found that the wind energy input to the East China Sea decreased before the 1980s, and then subsequently increased, which is contrary to what has been found for the Bohai Sea and Yellow Sea. More complicated physical processes and varying diffusivity need to be taken into account in future studies.  相似文献   

19.
A winter onshore warm tongue extending from the Yellow Sea Warm Current to the southern Jiangsu coast, and an of fshore cold tongue extending from the southern Jiangsu coast to the southwest of Jeju Island(South Korea), are newly identified based on the sea-surface temperature from satellite remote sensing, and further confirmed by the distribution of suspended sediments. In addition, there are two obvious thermal fronts associated with the onshore warm tongue and off shore cold tongue. The narrow gap between the two thermal fronts is supposed to be the pathway for the off shore transport of cold coastal water and suspended sediments. The concurrence of onshore warm and of fshore cold tongues suggests the concurrence of onshore and off shore currents in the western Yellow Sea in winter, which seems to be inconsistent with the previously accepted view that, in winter, the Yellow Sea Coastal Current flows from the Old Huanghe Delta to the southwest of Jeju Island. This distinctive phenomenon helps establish an updated view of the circulation in the western Yellow Sea in winter.  相似文献   

20.
Study of the distribution and migration of the common squid,Todarodes pacificus Steenstrup,basedon the index of important fishing ground(P) and fisheries statistics on the Yellow Sea and northern EastChina Sea during 1980—1991 showed that:1.Its catch in the fishing period(June to November) is 91.77% of the annual yield.The fishingground distributes over the northem and middle Yel1ow Sea and adjacent area of the Changjiang Estuary.2. It over-winters in the northem East China Sea and waters adjacent to Goto Island from De-cember to February and spawns in waters near Haijiao Is1and and west of Kyushu. The main stock mi-grates along 123°30′E to the ChangJiang Estuary, Haizhou Bay. offsea from Shidao to Qingdao,mideastern Yellow Sea, and offsea Weihai and Haiyang Island succesively for feeding after April. The sur-plus stock migrates again to the wintering ground in December.3.The favorable feeding temperature is 6-23℃(optimum of l3-20℃ in the Changjiang Estua-ry and 7-13℃ in the northern and middle Yel  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号