首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The discovery of C/1995 O1 (Hale-Bopp) at 7 AU from the Sun provided the first opportunity to follow the activity of a bright comet over a large range of heliocentric distances rh. Production rates of a number of parent molecules and daughter species have been monitored both pre- and postperihelion. CO was found to be the major driver of the activity far from the Sun, surpassed by water within 3 AU whose production rate reached 1031 s−1 at perihelion. Gas production curves obtained for various species show several behaviours with rh. Gas production curves contain important information concerning the physical state of cometary ices, the structure of the nucleus and all the processes taking place inside the nucleus leading to outgassing. They are relevant to the study of several other phenomena such as the sublimation from icy grains, dust mantling or seasonal effects. For some species, such as H2CO or HNC, they permit to constrain their origin in the coma. We discuss models of subsurface gas production in distant comets and predictions of how such a source may vary as the comet moves along its orbit, approaching perihelion and receding again. Features in the observed gas production curves of comet Hale-Bopp are generally interpretable in terms of either subsurface production (typical example: CO at large rh) or free sublimation (typical example: H2O). Possible implications for the vertical stratification of the cometary ices are reviewed, and preference is found for a model with crystallization of amorphous ice close to the nuclear surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
3.
S.M. Lederer  H. Campins  D.J. Osip 《Icarus》2009,199(2):477-843
We describe a 3-dimensional, time-dependent Monte Carlo model developed to analyze the chemical and physical nature of a cometary gas coma. Our model includes the necessary physics and chemistry to recreate the conditions applicable to Comet Hale-Bopp when the comet was near 1 AU from the Sun. Two base models were designed and are described here. The first is an isotropic model that emits particles (parents of the observed gases) from the entire nucleus; the second is a jet model that ejects parent particles solely from discrete active areas on the surface of the comet nucleus, resulting in coma jets. The two models are combined to produce the final model, which is compared with observations. The physical processes incorporated in both base models include: (1) isotropic ejection of daughter molecules (the observed gases) in the parent's frame of reference, (2) solar radiation pressure, (3) solar insolation effects, (4) collisions of daughter products with other molecules in the coma, and (5) acceleration of the gas in the coma. The observed daughter molecules are produced when a parent decays, which is represented by either an exponential decay distribution (photodissociation of the parent gas) or a triangular distribution (production from a grain extended source). Application of this model to the analysis the OH, C2 and CN gas jets observed in the coma of Comet Hale-Bopp is the focus of the accompanying paper [Lederer, S.M., Campins, H., Osip, D.J., 2008. Icarus, in press (this issue)].  相似文献   

4.
The recent availability of bright comets has given us an excellent opportunity to study cometary chemistry. Comet Hale-Bopp (1995 O1)gave us the particularly rare opportunity to study a bright and active comet for almost two years. Our program concentrated on millimeter-wave observations of sulfur-bearing molecules in an effort to understand the total sulfur budget of the comet. Using the National Radio Astronomy Observatory 12-m telescope on Kitt Peak we monitored both the long and short-term variations in H2S, CS, and OCS, as well as observing H2CS and SO. This was the first observation of H2CS in any comet (Figure 1). Additionally, we mapped CS with the BIMA interferometer. Variations in the line profiles and changes in line intensity as large as a factor of two were seen in day to day observations of both H2S and CS. An example for H2S is shown in Figure 2. This is the first time we can attempt to study the entire group of sulfur-bearing molecules. Models of the sulfur coma have thus far largely been based on observations of the daughter products CS and atomic sulfur made over the last 18 years using the International Ultraviolet Explorer (IUE) satellite, coupled with radio observations of CS and H2S in several recent comets. Four new sulfur-bearing species have been observed in comets Hale-Bopp and Hyaku take, three of them parent species. The high resolution maps in CS will also allow spatial information to be included in the sulfur model for the first time. C/Hale-Bopp is the first comet in which so many sulfur species have been observed. Analysis of the abundances of these species in comparison to the total atomic sulfur observed should reveal whether or not we can now account for all of the primary sulfur sources in comets. Perhaps the most interesting question that these observations raised was why C/Hale-Bopp appeared to contain so much more SO and SO2 (as observed by others) than any other comet. This spurred the discovery that the UV fluorescence models of these species were incorrect (S. J. Kim, this issue). Analysis of the data and modeling of the sulfur budget are still underway. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
A very long series of photographic observations of the comet Hale-Bopp has been made during January–April 1997 at the double astrograph (400/2000) of the Main Astronomical Observatory (Kyiv, Ukraine). Some of the cometary photos were obtained with two wide-band filter combinations. One of these combinations isolates C2 emission, another — the nearby dust continuum. The images were digitized by means of AMDPH-XY machine and then calibrated following the standard procedure. After subtraction of the dust continuum the distribution of surface brightness in the C2 emission coma of comet Hale-Bopp was studied. We found an asymmetric brightness distribution both pre- and post-perihelion. On 21.77 April 1997 a secondary brightness peak is found at the distance of 1.03 × 105 km from the nucleus. It is possible that this peak is related to the extended source of the C2 molecules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Comet Hale-Bopp was the largest comet by almost any definition, observed at least since the advent of modern observing techniques. In a more typical comet both the chemical and dynamical influences of collisional processes are limited by the short time a parcel of gas sublimated from the nucleus remains in the dense part of the coma. The resulting large size of the collisional coma in comet Hale-Bopp had important consequences on the dynamics of the coma, which in turn has important consequences on how observations are interpreted with standard models. Measured velocities of typical gas species (mostly the observed radicals) as well as dust were larger than normal comets. Conversely, velocities of super thermal atomic hydrogen were smaller than normal because of the samecollisional processes. Furthermore, as a consequence, dust particles, which are dragged by the outflowing gas, were also accelerated to larger velocities. Such larger velocities are not simply an interesting curiosity in their own right, because nearly all observations of dust and gas are interpreted with models of the coma that depend directly on some measurement or assumption with regard to velocity. In this presentation both observations and theory regarding the dynamical conditions in the coma of comet Hale-Bopp are summarized.  相似文献   

7.
One of the goals of comet research is the determination of the chemical composition of the nucleus because it provides us with the clues about the composition of the nebula in which comet nuclei formed. It is well accepted that photo-chemical reactions must be considered to establish the abundances of mother molecules in the coma as they are released from the comet nucleus or from distributed dust sources in the coma. However, the mixing ratios of mother molecules in the coma changes with heliocentric distance. To obtain the abundances in the nucleus relative to those in the coma, we must turn our attention to the release rates of mother molecules from the nucleus as a function of heliocentric distance. For this purpose, we assume three sources for the coma gas: the surface of the nucleus (releasing mostly water vapor), the dust in the coma (the distributed source of several species released from dust particles), and the interior of the porous nucleus (the source of many species more volatile than water). The species diffusing from the interior of the nucleus are released by heat transported into the interior. Thus, the ratio of volatiles relative to water in the coma is a function of the heliocentric distance and provides important information about the chemical composition and structure of the nucleus. Our goal is to determine the abundance ratios of various mother molecules relative to water from many remote-sensing observations of the coma as a function of heliocentric distance. Comet Hale-Bopp is ideal for this purpose since it has been observed using instruments in many different wavelength regions over large ranges of heliocentric distances. The ratios of release rates of species into the coma are than modeled assuming various chemical compositions of the spinning nucleus as it moves from large heliocentric distance through perihelion. Since the heat flow into the nucleus will be different after perihelion from that before perihelion, we can also expect different gas release rates after perihelion compared to those observed before perihelion. Since not all the data are available yet, we report on progress of these calculations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Splitting events affect cometary nuclei to a different level of severity ranging from complete disruption of the nucleus (e.g., C/1999 S4 LINEAR) to separation of major fragments (e.g., 73P/Schwassmann-Wachmann 3) and spill-offs of smaller boulders (e.g., C/2001 A2 LINEAR).Fragmentation of comets produces secondary products over a wide range of sizes (from cometesimals to sub-micron dust). It is detectable through the presence of fragments (with own comae and tails) in the coma of the parent nucleus, through outbursts in its activity and through arc-lets (“coma wings”)associated with fragments. The secondaries have different life times and show different non-gravitational forces. Nucleus splitting is also considered to generate whole families of comets (Kreutz group) or — if gravitational bound — multiple nuclei (e.g., C/1995 O1 Hale-Bopp). It may explain the striae phenomena seen in dust tails of bright comets (C/1995 O1 Hale-Bopp) and the detection of chains of impact craters onother bodies in the solar system. As process of significant mass loss it is relevant for the scenario of nucleus extinction, at the same time it also plays a role for the number statistics of existing (observable) comets and for the size distribution of comet nuclei. Various model scenarios for nucleus splitting are proposed: tidal disruption, rotational splitting, break-up due to internal gas pressure, fragmentation due to collision with other bodies. Only in one case, Comet D/1993 F1Shoemaker-Levy 9, the physical process of fragmentation could be undoubtedly identified. In any case, comet splitting provides important insights inthe internal structure, surface layering and chemistry of comet nuclei.  相似文献   

9.
We observed submillimeter lines of H2CO and HCN in comet Hale-Bopp near perihelion. One of our goals was to search for short term variability. Our observations are suggestive, but not conclusive, of temporal and/or spatial changes in the coma's HCN/H2CO abundance ratio of ~25%. If due to spatial variability, the ratio on the sunward side of the coma is enhanced over other regions. If due to temporal variability, we find the bulk ratio in the coma changed in less than 16 hours.  相似文献   

10.
We present results of polarimetric and photometric observations of bright comet C/1995 O1 (Hale-Bopp) obtained at the 0.7 m telescope of Kharkov University Observatory from June 18, 1996 to April 24, 1997. The IHW and HB comet filters were used. The C2 and C3 production rates for Hale-Bopp are more than one order of magnitude larger and the dust production rates are more than two orders of magnitude larger than the Halley ones at comparable distances. Hence, Hale-Bopp was one of the most dusty comets. The average UC-BC and BC-RC colours of the dust were −0.02 and 0.13 mag, respectively. The polarization of comet Hale-Bopp at small phase angles of 4.8–13.0° was in good agreement with the date for comet P1/Halley at the same phase angles in spite of the fact that the heliocentric distances of comments differed nearly twice. However, at intermediate phase angles of 34–49° the polarization of comet Hale-Bopp was significantly larger than the polarization of the other dusty comets. It is the first case of such a large difference found in the continuum polarization of comets. The wavelength dependence of polarization for Hale-Bopp was steeper than for other dusty comets. The observed degree of polarization for the anti-sunward side of the coma was permanently higher than that for the sunward shell side. The polarization phase dependence of Hale-Bopp is discussed and compared with the polarization curves for other dusty comets. The peculiar polarimetric properties of comet Hale-Bopp are most likely caused by an over-abundance of small or/and absorbing dust particles in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Hofstadter  M. D.  Hartogh  P.  McMullin  J. P.  Martin  R. N.  Jarchow  C.  Peters  W. 《Earth, Moon, and Planets》1997,78(1-3):53-61
We observed submillimeter lines of H2CO and HCN in comet Hale-Bopp near perihelion. One of our goals was to search for short term variability. Our observations are suggestive, but not conclusive, of temporal and/or spatial changes in the coma's HCN/H2CO abundance ratio of ∼25%. If due to spatial variability, the ratio on the sunward side of the coma is enhanced over other regions. If due to temporal variability, we find the bulk ratio in the coma changed in less than 16 hours. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Wink  J.  Bockelée-Morvan  D.  Despois  D.  Colom  P.  Biver  N.  Crovisier  J.  Gérard  E.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Jorda  L. 《Earth, Moon, and Planets》1997,78(1-3):63-63
Comet C/1995 O1 (Hale-Bopp) has been observed on October 5 and 25, 1996 and from March 6 to March 22, 1997 with the Institut de Radioastronomie Millimétrique (IRAM) interferometer at Plateau de Bure (France). Millimetre lines of HCN,HNC, CO, H2CO, CH3OH, H2S, CS and SO were mapped with spatial resolutions of 1.5–3.5 arc sec. These observations allow us to investigate whether these species are released by the nucleus or produced in the coma by extended sources or photo-processes. The brightness distribution of the HCN J (1-0) line is consistent with release from the nucleus. The HNC J (1-0) distribution deviates from that of HCN in the innermost coma, and indicates production of HNC in the coma. This is in agreement with the heliocentric variation of the HNC/HCN ratio (Biver et al., 1997, Science 275, 1915; Irvine et al., 1998, this issue) and formation by chemical reactions (Rodgers and Charnley, 1998, Ap. J. 501, L227; Irvine et al., 1998, Nature 393, 547). There is clear evidence that SO is a photo dissociation product. The observations also confirm that H2CO is mainly produced by an extended source, as first evidenced in comet P/Halley. The contribution of the nucleus to the total H2CO production rate does not exceed 6%. The molecular lines have also been monitored hourly with the five antennas of the interferometer in single-dish mode. The line velocity shifts show aperiodic modulation linked to the nucleus rotation. The amplitude of the modulation differs from one species to another. The periodic modulation seen for the CO J (2-1) line on March 11 suggests that a significant fraction of CO is released continuously night and day by an active source situated at equatorial latitudes on the nucleus surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Biver  N.  Bockelée-Morvan  D.  Colom  P.  Crovisier  J.  Germain  B.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Moreno  R.  Paubert  G.  Wink  J.  Despois  D.  Lis  D. C.  Mehringer  D.  Benford  D.  Gardner  M.  Phillips  T. G.  Gunnarsson  M.  Rickman  H.  Winnberg  A.  Bergman  P.  Johansson  L. E. B.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):5-11
C/1995 O1 (Hale-Bopp) has been observed on a regular basis since August 1995 at millimetre and submillimetre wavelengths using IRAM, JCMT, CSO and SEST radio telescopes. The production rates of eight molecular species (CO, HCN, CH3OH, H2CO,H2S, CS, CH3CN,HNC) have been monitored as a function of heliocentric distance(rh from 7 AU pre-perihelion to 4 AU post-perihelion. As comet Hale-Bopp approached and receded from the Sun, these species displayed different behaviours. Far from the Sun, the most volatile species were found in general relatively more abundant in the coma. In comparison to other species, HNC, H2CO and CS showed a much steeper increase of the production rate with decreasing rh. Less than 1.5 AU from the Sun, the relative abundances were fairly stable and approached those found in other comets near 1 AU. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about10 K at 7 AU to 110 K around perihelion. The expansion velocity of the gaseous species, derived from the line shapes, also increased with a law close torh 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Svoreň  J.  Komžík  R.  Neslušan  L.  Živňovský  J. 《Earth, Moon, and Planets》1997,78(1-3):149-154
Photometric observations of comet C/1995 O1 (Hale-Bopp) carried out at the Stará Lesná Observatory since February to April 1997 are analyzed and discussed. Emission band fluxes and continuum fluxes are presented, from which the total numbers of molecules in the columns of the coma encircled by diaphragms are calculated. The production rates are estimated from the conventional Haser model. We found that the photometric exponent of dust contribution two months prior perihelion was n = 5.2. The photometric exponent n of the cometary magnitude solely to the C2 emission alone equals 3.3 and that of CN equals 2.5. These values can be explained by a fact that the maximums of production rates of the gases were reached between March 2and 12 and not at the perihelion as it is valid for dust. These results are compared with the values of 1P/Halley (1986 III) under the similar conditions, obtained with the same method and instrument. C/Hale-Bopp exhibited 4.1 times more molecules radiating the CN-emission than 1P/Halley in the same column of the coma. The continuum flux of C/Hale-Bopp was also very strong. The ratios (to 1P/Halley) are 94:1 (Cont. 484.5) and 74:1 (Cont. 365.0). The cometary colour was the same as that of the Sun. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Ground based observations of comets obtained in support of spacecraft missions and space telescopes have provided critical supporting context that greatly enhances the value of the combined dataset. Major areas of ground-based contribution include providing unique instrumental capabilities and an increased temporal or global perspective on the system under study. This paper describes a decades long program of supporting cometary observations focused on high resolving power measurements of ions and atomic/molecular radicals in the coma. The instrumentation is described, along with the species under study and the results from a large campaign to study comet C/1995O1 (Hale-Bopp).  相似文献   

16.
Irvine  W. M.  Dickens  J. E.  Lovell  A. J.  Schloerb  F. P.  Senay  M.  Bergin  E. A.  Jewitt  D.  Matthews  H. E. 《Earth, Moon, and Planets》1997,78(1-3):29-35
The abundance ratio of the isomers HCN and HNC has been investigated in comet Hale-Bopp (C/1995 O1) through observations of the J = 4−3 rotational transitions of both species for heliocentric distances 0.93 < r < 3 AU, both pre- and post-perihelion. After correcting for the optical depth of the stronger HCN line, we find that the column density ratio of HNC/HCN in our telescope beam increases significantly as the comet approaches the Sun. We compare this behavior to that predicted from an ion-molecule chemical model and conclude that the HNC is produced insignificant measure by chemical processes in the coma; i.e., for comet Hale-Bopp, HNC is not a parent molecule sublimating from the nucleus. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Between July 1996 and April 1997, 92 spectra of comet Hale-Bopp were obtained with the 6-meter BTA telescope of the SAO of the RAS at Mount Pastukhov. The spectra are two-dimensional, which allows one to determine the energy distribution for each emission along the slit and the energy distribution in wavelength for each individual position in the slit. From the 92 two-dimensional spectra covering the inner coma, detailed spectral maps of the total near-nuclear region of the comet are available for July 10, 11 and 12, 1996 and April 15, 1997. We propose an hypothesis about an unknown cometary species near λ = 620 nm in the spectrum obtained July 10, 1996. We also find an effect which may be caused by fluorescence of cometary dust. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Infrared observations of comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp) benefited from the high spectral resolution and sensitivity of échelle spectrometers now equipping ground-based telescopes and from the availability of the Infrared Space Observatory (ISO). From the ground, several hydrocarbons were unambiguously detected for the first time: CH4, C2H2, C2H6. Water was observed through several of its hot vibrational bands, escaping telluric absorption. CO, HCN, NH3 and OCS were also observed, as well as several radicals. This permitted the evaluation of molecular production rates, of rotational temperature, and — taking advantage of the 1-D imaging of long-slit spectroscopy — of the space distribution of these species. With ISO, carbon dioxide was directly observed for the second time in a comet (after its detection from the Vega probes in P/Halley). The spectrum of water was investigated in detail (several bands of vibration and far-infrared rotational lines), permitting the evaluation of the rotational temperature of water, and of it spin temperature from the ortho-to-para ratio. Water ice was identified in the grains of Hale-Bopp as far as 7 AU from the ground and possibly at 3 AU with ISO. The composition of cometary volatiles appears to be strikingly similar to that of interstellar ices. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The recent apparition of comet Hale-Bopp has provided the first opportunity to study a truely “Great Comet” with modern observational equipment, from ground and from space. An enormous amount of data was gathered and is still in the process of being analysed. When compared with elaborate and realistic theoretical considerations, important new insights are now being obtained into the complex physical and chemical processes in the cometary environment. This summary highlights some of the main achievements of this work, as they were presented at the first major international conference on comet Hale-Bopp in February 1998. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Numerical simulation of the structure and evolution of a comet nucleus is reviewed both from the mathematical and from the physical point of view. Various mathematical procedures and approximations are discussed, and different attempts to model the physical characteristics of cometary material, such as thermal conductivity, or permeability to gas flow, are described. The evolution and activity of comets is shown to depend on different classes of parameters: Defining parameters, such as size and orbit, structural parameters, such as porosity and composition, and initial parameters, such as temperature and live radio isotope content. The latter are related to the formation of comets. Despite the large number of parameters, general conclusions, or common features, appear to emerge from the numerous model calculations — for different comets — performed to date. Thus, the stratified structure of comet nuclei, volatile depletion, and the role of crystallization of ice in cometary outbursts are discussed. Finally, an evolution model applied to comet C/1995 O1 Hale-Bopp — using different assumptions — is described and analysed in the light of observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号