首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
选取2008~2018年茅山断裂带及周边82个测震台站记录到的516个近震Pg、Sg到时数据,采用双差地震层析成像方法对茅山断裂带及邻区进行地震重定位和三维P波速度结构的联合反演,并分析溧阳历史上两次破坏性地震与速度结构的关系。结果表明,地震重定位后残差显著降低,研究区大部分地区横向分辨率可达0.2°。P波的速度结构横向差异变化比较明显,反演后的速度与初始速度模型之间的变化率基本在±10%左右。茅山断裂带两端呈现高速特征,中段表现为低速结构。溧阳震源区1974年MS5.5地震发生在深变质岩系内的低速层上,而1979年MS6.0地震发生在深变质岩系与浅变质岩系边界上,这两次地震的发震原因可能与具有塑性流变特性的低速体和速度梯度较大的转换复合位置容易产生应力集中有关。  相似文献   

2.
基于内蒙古测震台网2010~2020年记录的测震数据波形,从24个固定台站筛选出391个地震的3 010条Pg波和3 410条Sg波数据,采用双差层析成像反演鄂尔多斯块体北缘地壳Pg、Sg波的三维速度结构,同时对该区域所有地震进行重定位。结果显示,在5~15 km深度,研究区东部存在面积较大的连续高速体,西南部则表现为相对低速的分布特征,且大部分地震集中在高、低速区过渡带,反映了研究区地壳介质脆弱;在20~30 km深度,随着深度的增加,高速区向西蔓延,与呼包盆地的高速区连成一片,预示着有一个构造体横穿呼包地壳。  相似文献   

3.
为研究三河-平谷地震区浅层构造背景、地震孕育机理及地震与构造的关系,利用高精度重力异常数据,采用基于块体生长模式的重力三维反演算法对地震区浅层三维密度结构进行反演,并通过模拟试算验证基于块体生长模式反演方法的有效性和稳定性。高精度布格重力异常显示,三河-平谷8.0级地震位于大兴重力局部高、三河-马坊重力局部高与大厂重力低之间的交汇过渡低值区域。研究区浅层三维密度结构反演结果表明,1679年三河-平谷M8.0地震明显受NE向夏垫断裂控制,断裂两侧密度差异明显且向下延伸约10 km,推测发震部位深约10 km。  相似文献   

4.
利用双差层析成像方法反演若尔盖地区三维速度结构,得到该地区的精细三维速度结构和高精度震源位置参数。反演结果显示,研究区速度结构整体呈低速状态,反映出青藏高原内部具有部分熔融物质特性;在青藏高原东北缘地区,强烈的构造变形特征以及低速区蔓延方向印证了青藏高原内部物质向东南方向流溢的科学推测;低速青藏高原板块与相对较硬的若尔盖地块相互挤压导致应力累积,因而在两者的高低速过渡带区域内发生了若尔盖系列地震。  相似文献   

5.
对滇西北三江并流地区36个台站记录的远震波形数据进行处理,提取径向P波接收函数,基于中国地震科学实验场地区地壳剪切波速模型获取不同区域的初始模型,采用时间域线性反演方法和bootstrap重采样技术,反演各台站下方的S波速度结构。结果表明:1)研究区地壳S波速度结构整体以澜沧江断裂带和27.5°N为界,表现出明显的区域差异。在上地壳,S波速度在0~25 km深度范围内存在由地表向壳内延伸的低速层,但不同区域低速层厚度存在较大差异,27.5°N以北低速层较为发育,厚度在20~25 km之间;27.5°N以南,澜沧江断裂带东西两侧低速层厚度差异明显,断裂带以西在10~25 km之间,断裂带以东约4 km。2)在下地壳,S波速度在横向上以澜沧江断裂带和27.5°N为界,表现出NE与SW区域以相对低速为主,NW和SE区域以相对高速为主的分布特征;垂向上,怒江断裂带中南部和金沙江-红河断裂带北端附近局部区域25~45 km深度范围内存在低速体,与上地壳低速层相连。3)澜沧江断裂带为地壳厚度和S波速度变化的重要分界面,对滇西北三江并流地区的构造演化过程具有控制作用。  相似文献   

6.
基于滇西北密集台阵资料,采用绝对定位结合相对定位方法,对漾濞M6.4地震的前-主-余震进行重定位。同时,利用CAP全波形反演震源机制方法,获得此次地震序列中M≥5.0地震的震源机制解和矩心深度,并结合地震序列精定位结果对漾濞地震进行分析。结果表明,漾濞地震序列呈NW向展布,长约25~30 km,宽约5 km,主震在整个序列空间北端,且北部余震较集中。漾濞M6.4主震矩震级为MW6.03,矩心深度5.8 km,节面Ⅱ走向133°、倾角75°、滑动角-164°,与序列空间展布方向一致,为NW-SE向。M≥5.0地震震源机制和地震震源深度剖面皆表现为高倾角,且从北西到南东有变缓趋势,M6.4地震具有东南侧单侧破裂特征,节面Ⅱ为发震断层面。漾濞M6.4地震为一次NW向高倾角右旋走滑型地震,发震构造为维西-乔后-巍山断裂带西侧一条NW向的隐伏断裂或次生断裂,该断裂可能与维西-乔后断裂带不完全平行,存在一定夹角。  相似文献   

7.
张渤地震构造带中西段及邻区深部构造探测   总被引:4,自引:1,他引:3  
利用穿过张渤地震构造带中西段及邻区的多条地震测深资料.详细研究了张渤地震构造带中西段及邻区的地壳深部速度结构与构造。结果表明,该区地壳深部速度结构与构造在纵向和横向上具有明显的不均一性。在三河-平谷8级震区、延庆-怀来盆地及张家口附近地区莫霍面埋深分别为35、39和42km,其地壳厚度由东至西逐渐增加。该区基底断裂发育。在其深部,根据地震波动力学及运动学特征和二维速度结构中的地震界面与速度等值线起伏变化推测,在大兴、延庆、涿鹿等地均存在深部断裂带,在深部断裂带一侧或两侧的上地壳存在6.0km/s左右的低速层(体)。  相似文献   

8.
本文利用高频深源近震地震波形数据的R/Z比来获取沉积盆地速度结构,并以2011-05-10发生在黑龙江省与吉林省交界处(131.09°E,43.32°N)的M W5.7深源地震(深度554.9 km)为例,分析位于松辽盆地沉积层内部NECESSArray中的22个台站记录到的0.5~2 Hz数据,利用沉积盆地对地震波的到时延迟效应及P波和Ps转换波的振幅信息,通过对沉积盆地底部剪切波速度与厚度进行网格搜索获得松辽盆地的速度结构。结果显示,22个台站下方的沉积层顶部剪切波速度为0.1~1.0 km/s,且盆地边缘速度较大,盆地厚度为0~6.5 km,总体呈现内部大于边缘的状态。与已有结果相比,本文结果在沉积层边缘地带较符合实际趋势,表明利用高频近震深源Ps转换波的方法可以较好地获得沉积盆地内部的速度结构。  相似文献   

9.
利用辽宁及邻区70台地震仪2012年噪声连续波形记录,基于背景噪声层析成像法获取研究区下方10~40 s的相速度结构。利用得到的基阶面波相速度频散曲线,通过马尔科夫链蒙特卡洛(MCMC)法反演研究区下方10~40 km深度处的三维S波速度结构。结果表明,研究区浅层及中上地壳的S波速度分布与地形地貌有较好的对应关系,高低速过渡带更易形成孕震区。中下地壳至上地幔顶部的S波速度结构更多受控于莫霍面的起伏状态及深大断裂。海城至大连最后延伸至辽东湾的区域下方30~40 km深度范围内一直存在一个“弧形”的低速异常体,推测该区域存在热物质上涌现象。纵剖面C-C′的辽阳至伊通段下方15 km处存在椭圆形低速体。  相似文献   

10.
基于密集的流动近台和分布相对均匀的固定台网资料,利用接收函数和面波联合反演震源区下方的速度结构,采用绝对走时和CAP方法获得2019-05-18松原MS5.1地震的震源机制解,并重新定位余震。结果表明,该地震的发震断层为第二松花江断裂,断层面产状为303°/73°/10°,破裂深度为5.8 km,质心深度约为8 km。结合近年来发生在该地区的5级以上地震资料发现,特殊的震源区结构在东侧太平洋板块持续向松辽盆地深俯冲的作用下导致了松原MS5.1地震及其他强震的发生。  相似文献   

11.
利用新疆测震台网在南天山地区架设的固定和流动台站记录的近8 a的观测资料,通过近震走时层析成像技术获得地壳三维速度结构,并利用三维速度结构对该区域的近震事件进行重定位。重定位后走时残差均方根由1.29 s减小为0.64 s,震源位置的不确定性约为0.1 km。三维速度结构显示,区域内速度结构表现出明显的横向和纵向不均匀性,5 km深度处,阿图什背斜和柯坪断裂以北表现为高速异常,以南表现为低速异常,波速比整体上以高值为主;15 km和20 km深度处,研究区P波速度主要以高速异常为主;25~30 km深度处,研究区内P波高速异常转变为以近NE向低速异常为主,波速比也以近NE向低值异常为主。区域内地震活动性与地壳速度结构具有较强的对应性,震源主要集中在P波高低速交界处的高速区域,同时波速比也偏向高波速比一侧。震源位置集中区的下方存在低速条带,该条带可为应变能的积累和释放提供有利的环境基础。  相似文献   

12.
采用InSAR形变监测资料计算2015年西藏定日MW5.7地震同震形变场,反演发震断层几何参数和滑动分布。在此基础上,研究尼泊尔MW7.8主震对定日地震的静态库仑应力触发影响。综合分析地震滑动机制和构造特征,认为定日断层为西倾隐伏断层。反演结果表明,地震破裂相对集中,主要深度在6~9 km,破裂以正断滑动为主。发震断层走向约178°,倾角约 48°,破裂区长约5 km,宽约5 km,最大滑动量约0.2 m,释放的地震矩约3.7×1017 N·m,对应矩震级MW5.6。尼泊尔主震同震库仑应力在定日地震震源处约为0.2 bar,造成藏南申扎-定结拉张地堑应变加载。  相似文献   

13.
基于数字地震台网波形数据,采用gCAP反演方法解算四川石渠MS4.3地震的震源机制。结果表明,最佳双力偶解为节面Ⅰ走向134°、倾角82°、滑动角11°,节面Ⅱ走向42°、倾角79°、滑动角171°;最佳质心深度为9 km,矩震级为MW4.53。为测试震源机制解的稳定性和可靠性,从地壳速度结构、定位误差和数据质量影响等方面进行分析,研究结果表明,这些因素对反演结果影响较小。余震序列展布方向为NW向,主要分布在主震偏北东侧附近,发震断层具有向NE倾的趋势。综合震源区地质构造特征、主震震源机制解和余震序列的空间分布特征,初步判断石渠地震的发震断层面为节面Ⅰ,即长沙贡玛断裂,是一次左旋走滑型地震事件。  相似文献   

14.
利用Sentinel-1A卫星数据和D-InSAR技术,获得2016-05-22西藏日喀则市定结县MW5.3地震LOS方向的同震形变场图像,分析InSAR形变结果的变化特征,并以此为约束反演该地震的断层几何参数和同震滑动分布特征。结果表明,定结MW5.3地震发震断层走向近SN,断面倾向E,倾角约43°,破裂长度约9 km,同震滑动主要集中在2~5 km深度范围内,以正断倾滑为主,最大滑动量为0.24 m,矩震级为5.3级。2016年定结地震发震构造是定结-申扎伸展断裂系中的一条新生盲断层。  相似文献   

15.
利用2011日本东北Mw9.0地震和2008汶川Mw7.9地震若干台站的高频(1 Hz)GNSS观测资料,通过精密单点定位方法解算出地震发生时的位移形变波形。对位移波形一阶差分得到震时高频GNSS速度时间序列,采用S变换谱的方法对该速度时序进行地震波到时的拾取,即震相识别。将地震波拾取结果用于震中位置和发震时刻反演,并与美国地质调查局USGS公布的资料对比。结果发现,两者日本地震震中位置相差约16 km,发震时刻相差约0.7 s;汶川地震震中相差约4 km,发震时刻相差约0.4 s。  相似文献   

16.
通过Sentinel-1卫星升降轨数据获取谢通门地震的同震形变场,并基于均匀弹性半无限位错模型反演地震的同震滑动分布模型。InSAR同震形变场表明,升降轨视线向最大形变量分别为0.049 m和0.051 m,形变场长轴大致呈南北方向,位于甲岗-定结断裂西侧。通过对倾角和倾向进行格网搜索发现,西倾节面更可能为该地震的发震节面。反演结果表明,滑动分布主要位于2~10 km深度范围内,平均滑动量为0.02 m,最大滑动量为0.10 m,发震断层倾角为47°,平均滑动角为-81.60°,显示该地震以正倾滑动为主。大地测量数据约束的该地震震中为30.27°N、87.75°E,震源深度为6.58 km,释放地震矩为5.056×1017 Nm,对应矩震级为MW5.7,与GCMT、USGS公布的震级基本一致。综合分析震中位置和滑动机制认为,甲岗-定结断裂的分支断层为本次谢通门地震的发震断层。  相似文献   

17.
以横跨东大别造山带东段的地磁总强度剖面数据和皖中西部地磁总强度加密点阵数据为基础,经过日变通化改正化极、局部与区域异常场的分离,基于分离出的区域磁异常场,使用近似线性反演公式,计算出剖面的居里面平均埋深24 km,最大起伏6 km。通过近30 a的震源深度分析得知,研究区地震震源深度集中分布在1~30 km,表明该区的“发震层”层位与“磁性层”层位正好吻合。结合区域地质、构造演化等资料,揭示了磁性构造特征与孕震的关系。  相似文献   

18.
从台湾海峡与台湾浅滩的地貌特征、区域构造格局、海峡盆地形成历史、深部构造与断裂构造、震源机制解以及地震活动等方面论述了台湾浅滩7.3级地震的发震构造,认为北东东向澎湖—北港隆起南侧断裂(义竹断裂)是该地震的发震构造。  相似文献   

19.
基于江西省及邻区数字地震台网资料,对瑞昌-阳新4.6级地震序列进行重新定位,反演该序列里较大地震的震源机制解,探讨该地震序列的空间分布特征以及发震构造,并对震区内两次中强地震之间的关系进行讨论。结果表明,瑞昌-阳新4.6级地震序列走向约为NE60°,主震发震构造为郯庐断裂带分支垄塘-皮家山隐伏断裂带;瑞昌-阳新4.6级地震序列与九江-瑞昌5.7级地震序列时空分布特点密切相关。  相似文献   

20.
利用Sentinel-1A卫星SAR影像数据,对2023年塔吉克斯坦MW7.2地震开展同震形变提取,基于弹性位错模型进行断层反演,并以本文反演得到的右旋节面解为接收面,计算不同深度的静态库仑应力。同震形变结果显示,升轨LOS向最大形变量达15 cm,降轨LOS向最大形变量达16 cm。断层反演结果表明,此次地震最优发震断层走向为131.1°、倾角为85.7°,同震主滑移区分布在深度10~30 km范围内,以右旋走滑为主,最大滑移位置位于地下约20 km深度处,滑移量为3.49 m,未破裂至地表,矩震级为MW7.16。库仑应力结果显示,该区域库仑应力符合帕米尔高原已有的应力场及地质学研究结果,随着深度增加,其影响范围以发震断层为中心向外扩张,且自5 km深度往下,应力加载区逐渐侵蚀应力卸载区,并开始以加载区为主,在约10 km深度处开始发生余震活动,与本次发震断层相邻的2条断层未来短时间内地震风险性较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号