首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于西安测绘研究所发布的BDS-3精密轨道和钟差产品,研究B1C-B2a双频组合的卫星端差分码偏差(DCB)改正模型,并分析中国科学院发布的DCB产品的稳定性。采用10个MGEX测站7 d的观测数据,对非差非组合和无电离层组合模型下的B1I-B3I、B1C-B2a两种双频组合的BDS-3精密单点定位精度进行对比分析。结果表明,BDS-3静态定位精度水平方向优于2.0 cm,高程方向优于2.5 cm,收敛时间在31 min左右;模拟动态定位精度水平方向优于3.4 cm ,高程方向优于4.1 cm,收敛时间在60 min左右;B1I-B3I、B1C-B2a两种双频组合定位精度相当且收敛时间较为接近,二者都可用于北斗精密单点定位。  相似文献   

2.
基于武汉大学发布的BDS-2/3观测量偏差(OSB)改正产品,采用国内8个iGMAS测站1个月的观测数据,分析OSB改正前后对B1I/B3I旧频点及B1C/B2a新频点2种组合模式下BDS-2/3伪距单点定位(SPP)和精密单点定位(PPP)精度的影响。结果表明,B1I、B3I、B1C和B2a的OSB年均值为-80~70 ns,各频点OSB年稳定性分别为3.41 ns、5.87 ns、2.04 ns和2.32 ns。在BDS-2/3伪距单点定位方面,改正后B1I/B3I组合的3D方向定位精度优于2.53 m, B1C/B2a组合的3D方向定位精度优于3.84 m,二者精度提升均不明显。在BDS-2/3精密单点定位方面,B1I/B3I组合的3D方向定位精度优于7.7 cm,提升约20.6%,收敛时间约为38 min,提升约7.3%;B1C/B2a组合的3D方向定位精度优于3.7 cm,提升约11.9%,收敛时间约为36 min,提升约16.3%。  相似文献   

3.
针对北斗三号MEO卫星和IGSO卫星新增加的B1C和B2a信号中长基线RTK定位精度仍未确定的问题,利用4组中长基线实测数据对BDS-3新信号、BDS-3的B1I、B3I信号和GPS的 L1、L2信号进行数据质量分析和中长基线双频RTK定位研究。结果表明,在数据质量方面,BDS-3的可视卫星数和PDOP值优于GPS,BDS-3新信号的信噪比和多路径误差与BDS-3的B1I、B3I信号和GPS的L1、L2信号相当;在中长基线RTK定位方面,BDS-3新信号B1C+B2a组合的模糊度首次固定时间优于BDS-3的B1I+B3I组合,BDS-3新信号B1C+B2a组合的定位精度略优于BDS-3的B1I+B3I组合和GPS的L1+L2组合,可为用户提供cm级定位精度。  相似文献   

4.
基于精密单点定位(PPP)原理及BDS-3 PPP-B2b电文改正模型,分析在使用电文改正信息进行PPP过程中需要注意的2个改正参数间匹配性问题,以及静态、仿动态条件下经过PPP-B2b电文信息改正后B1C+B2a、B1I+B3I模式定位服务性能。结果表明,在静态条件下,2种定位模式水平、高程方向定位精度均优于11 cm;仿动态条件下,水平、高程方向定位精度均优于22 cm,在15 min内均能达到水平、高程方向分别不超过0.3 m、0.6 m的精度要求;B1C+B2a组合在定位精度和收敛速度方面均略优于B1I+B3I。  相似文献   

5.
首先采用国际上通用的德国地学中心(GFZ)与武汉大学(WHU)精密产品,对GNSS精密卫星轨道和精密钟差产品精度进行初步评估;然后基于WHU精密轨道和钟差产品对18个分布于东半球的MGEX地面站进行多系统定位测试,同时也对BDS的B1I/B3I与B1C/B2a两组新、旧频点的精密单点定位性能进行对比分析。结果表明:1)四大导航系统(GPS、GLONASS、BDS、Galileo)的卫星轨道产品精度均在cm级,精密钟差内符合精度均优于0.1 ns,北斗三号(BDS-3)卫星钟精度相比北斗二号(BDS-2)有显著提升。2)亚太地区BDS的定位精度优于其他3个系统;在其他地区,GPS定位精度最优(与Galileo基本相当),优于BDS和GLONASS的定位结果。3)BDS PPP平均收敛时间静态模式约为50.33 min、动态模式约为77.83 min,收敛速度略低于GPS、Galileo,优于GLONASS。4)B1C/B2a与B1I/B3I双频消电离层组合PPP定位性能基本相当。  相似文献   

6.
选取MGEX亚太区域12个测站1周的观测数据,分析比较BDS-2和BDS-2+3的动态PPP性能。结果表明,加入BDS-3能显著提升动态PPP的收敛速度和定位精度,但由于目前BDS-3精密轨道和钟差产品中的卫星数目有限,收敛速度仍比GPS慢。  相似文献   

7.
张宁 《地理信息世界》2021,28(1):113-117
针对BDS-3系统IGSO卫星对BDS-3伪距单点定位精度的影响,基于MEGX跟踪站实测数据,分析了IGSO对BDS-3卫星可见数、PDOP值以及单双频伪距单点定位精度的影响.经过试验分析,发现IGSO有效地增加了BDS-3卫星可见数和改善了BDS-3卫星空间分布结构,IGSO卫星的加入有效地提升了BDS-3伪距单点定位精度,对于单频伪距单点定位精度的影响B2a优于B3I,B31优于B1I,对于双频伪距单点定位精度的影响B3I/B2a优于B1I/B2a,B1I/B2a优于B1I/B3I.同时发现,BDS-3单频伪距单点定位精度优于双频,因此建议在进行伪距单点定位时,采用单频伪距单点定位.  相似文献   

8.
针对BDS-3新卫星对极地地区定位性能的影响,分析了BDS-3新卫星对极地地区北斗B1I、B2I以及B3I卫星3个频率数据质量以及定位精度的影响。经研究发现,BDS-3新卫星增加了极地地区北斗卫星可见数,有效改善了极地地区的北斗卫星空间分布结构,增强了卫星信号强度,降低了多路径效应,BDS-3卫星的加入使极地地区北斗伪距单点定位精度与GPS相当。进行北斗与GPS组合精密单点定位时,BDS-3新卫星提升精度效果优于BDS-2卫星,而BDS-2/BDS-3组合精密单点定位精度低于GPS。研究结果旨在为今后极地地区北斗高精度定位研究提供一定的参考意义。  相似文献   

9.
为验证BDS-3新三频PPP模型的定位性能,在原始观测方程的基础上推导新三频PPP模型,并重新推导模型中的伪距偏差改正。利用14个MGEX测站观测到的数据对3种三频PPP模型及2种传统双频非差非组合模型的静态和动态定位性能进行比较分析。结果表明,新三频PPP模型在收敛时间和定位精度上均有所提升,其中TDF模型的提升效果最好。  相似文献   

10.
选取IGMAS中国区域的5个测站2020年年积日(doy)112~116期间的观测数据,分析北斗3号PPP-B2b信号静态、动态精密单点定位(PPP)精度。结果表明,B2b轨道产品R、A、S方向精度分别优于0.07 m、 0.33 m、 0.24 m,钟差STD优于0.08 ns;在中国区域内,利用北斗3号PPP-B2b信号,静态PPP定位N、E、U方向精度RMS分别达到0.8 cm、1.5 cm、1.6 cm,动态PPP定位精度RMS分别达到3.6 cm、 6.0 cm、12.2 cm,可满足导航与位置服务、大地测量等应用服务需求。  相似文献   

11.
基于实测数据分析天线相位中心PCO改正模型和观测值频点选择对北斗三号卫星精密定轨和定位的影响。结果表明,基于北斗官方CSNO发布的PCO模型定轨定位表现稍优于IGS协议模型。此外,相较于两者PCO模型差异的影响,B1C/B2a与B1I/B3I观测值频点的选择对精密定位影响更为显著。以IGS B1I/B3I PCO模型为参考,CSNO B1C/B2a PCO模型定位坐标在E、N、U方向上的精度分别提升约5%、13%、14%,可应用于北斗高精度数据处理。  相似文献   

12.
北斗地基增强系统是推广高精度“北斗+”应用的重要基础设施。本文首次研究千寻位置、六分科技及中国移动3家覆盖全国的北斗地基增强系统的定位服务性能,通过对2021-07-21~22采集的2次8~9 h观测数据进行分析,得到以下结论: 1) 千寻位置和中国移动的官方推荐挂载点支持BDS-2三频信号和BDS-3双频信号(B1I、B3I),六分科技支持BDS-2和BDS-3双频信号(B1I、B3I); 2) 3家北斗地基增强系统都能提供100%的北斗数据完整率; 3) 静态基线结果表明,3家北斗地基增强系统虚拟基站组成的闭合环相对误差均小于2×10-6; 4) 单历元RTK解算结果表明,3家北斗地基增强系统均能够提供水平向优于3 mm、垂直向优于9 mm的内符合精度,但不同北斗地基增强系统之间存在cm~dm级的定位结果偏差,因此不建议在RTK作业时使用不同的北斗地基增强系统。  相似文献   

13.
利用空间几何原理推导三频消电离层参数和最小噪声直线空间表达式,采用5个静态观测站和1组实测跑车北斗三频观测数据,对比分析北斗三频消电离层模型与双频消电离层模型PPP精度和收敛速度。结果表明,静态条件下,三频PPP的位置误差为3.75 cm,标准差为2.06 cm,收敛时间为109.6 min,较双频PPP性能分别提升22.3%、19.8%、22.1%;动态条件下,三频PPP的位置误差为15.21 cm,标准差为12.89 cm,较双频PPP性能分别提升42.4%和26.8%,且收敛速度也更优。  相似文献   

14.
选取2018-01-23起10 d内16个iGMAS测站观测数据,对北斗三号卫星的观测数据质量及BDS单系统精密定轨精度进行评估。初步结果表明,老信号B1I、B3I北斗三号卫星的信噪比略强于二号卫星,噪声与多路径基本相当,均在0.1 m量级,新卫星不存在星内多路径偏差。新信号B1C/L1/E1频点GPS信噪比最强,Galileo和BDS卫星相当,B2a/L5/E5a和B2b/E5b各系统基本相当;噪声及多路径方面,B1C/L1/E1频点GPS优于BDS、Galileo卫星0.1 m量级,B2a/L5/E5a和B2b/E5b各系统基本相当,均在0.1 m量级,新信号中北斗三号卫星星内多路径偏差基本消失。单系统精密定轨试验中,分别进行有/无GEO卫星策略、太阳光压模型ECOM 五/九参数策略的比较,并使用卫星激光测距数据进行独立检核。初步结果表明,有GEO卫星、ECOM五参数光压模型的定轨精度最好,C19号卫星7个重叠弧段的平均定轨精度在沿迹向、法向、径向的精度分别为32 cm、16 cm、8 cm,与试验卫星的定轨精度基本相当。  相似文献   

15.
为分析BDS-3在极地地区的定位精度,选取两极地区10个MGEX站连续7 d的观测数据进行SPP和PPP实验。结果表明,BDS-3在两极地区可见卫星数及PDOP基本一致,平均可见卫星数约为9颗,PDOP约为2.3。BDS-3各频点间定位精度相差不大,南极地区SPP定位精度略优于北极,特别是U方向。北极地区E、N、U方向定位精度分别优于1 m、1 m和5 m,南极地区E、N、U方向定位精度分别优于1 m、1 m和2 m。BDS-3在两极地区PPP定位精度相当,与GPS定位精度基本一致,各频点组合定位精度在E、N、U方向均优于2 cm。  相似文献   

16.
研究华为P40手机终端北斗三频观测数据质量及噪声特性,通过与测量型接收机对比分析发现,P40手机海思芯片具有较好的北斗三号信号捕获能力,B1I、 B1C和B2a三频信号信噪比略低于测量型天线,且3个频点均存在与终端芯片相关的系统误差。外置天线零基线实验结果表明,P40手机海思芯片零基线定位精度达到mm级,伪距和载波相位噪声可达到测量接收机噪声精度水平,B2a伪距噪声优于0.5 m,3个频点的相位噪声均优于2 mm。  相似文献   

17.
基于双频非组合PPP模型,采用常量模型、白噪声模型和随机游走模型对ISB参数进行处理,利用7个MGEX测站10 d的数据进行静态和仿动态实验,并分析3种模型的收敛时间和定位精度。结果表明,在收敛时间方面,随机游走模型和白噪声模型效果一致,总体优于常量模型,静态和仿动态下分别提升15.4%和29.4%;在定位精度方面,随机游走模型和白噪声模型效果相当,较常量模型在E、U方向上精度提升最为明显,静态下E和U方向的精度分别提升约77.7%和32.2%,在仿动态定位中E和U方向的精度分别提升约66%和43.5%。  相似文献   

18.
使用可观测到BDS-3 B1I/B1C/B2a频率和GPS L1/L5频率的智能手机Xiaomi 11(青春版)作为研究对象,分别进行静态实验和不同场地的动态实验,分析手机输出的三频BDS和双频GPS原始观测数据质量及单频SPP性能。实验结果表明,智能手机的GNSS天线成本低致使其信号质量不佳,其中GPS L1频率和BDS B1C频率抗干扰性较强:BDS B1C频率定位结果在静态和动态实验中均较为稳定;GPS L1频率定位结果在动态实验中优于GPS L5频率,在静态实验中略差于GPS L5频率。  相似文献   

19.
PPP-B2b服务播发的钟差改正数存在GPS系统钟差基准随时间变化的现象,而BDS系统无此现象。此项钟差基准变化会造成ISB参数出现跳变,影响ISB时变模型选择。基于PPP-B2b服务,分析白噪声模型、随机游走模型以及常数模型在动静态定位模式下的实际定位性能。实验结果表明,静态模式下白噪声与随机游走模型在收敛时间和定位精度方面均优于常数模型;动态模式下白噪声模型以及设置合适过程噪声的随机游走模型不会出现重收敛情况,且定位精度较常数模型在E、N、U三个方向上分别提升86.7%、89.2%、85.3%。因此对于PPP-B2b服务,多系统实时PPP采用白噪声模型或设置合适过程噪声的随机游走模型能够得到较好的定位性能。  相似文献   

20.
从使用CNES产品的北斗实时PPP用户角度出发,对比分析连续10 d的北斗实时和存档产品,并对2种产品的轨道/钟差差异及该差异对北斗PPP的影响进行研究。结果表明,2种产品的轨道差异小于1 mm,但钟差存在±0.1 ns差异;将2种产品分别应用到4个IGS MGEX测站的北斗静态PPP中发现,2种产品的差异对PPP收敛速度存在一定影响,收敛后的定位精度差异可达3 cm。因此在实际使用中,用户不能忽视CNES实时产品和存档产品的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号