首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The Qaidam Basin is one of the most sensitive areas to climate change in China, owing to its unique geographical position and ecological condition. In this study, 32 surface‐soil pollen samples were collected to reveal the relationship between modern pollen assemblages, vegetation and precipitation in the eastern region of the Qaidam Basin. The results show that Chenopodiaceae (3.8–87%, average 48%), Artemisia (1.7–64.2%, average 17.5%) and Ephedra (0–90%, average 16.3%) are the dominant pollen types in all samples, and that different pollen assemblages correspond to different vegetation types. DCA and CCA of major pollen types demonstrate that precipitation is an important factor in the control of the distribution of vegetation in the study area. The content and concentration of the three major pollen types (Artemisia, Chenopodiaceae and Ephedra) change with the mean annual precipitation, and the optimum mean annual precipitation for Ephedra, Chenopodiaceae and Artemisia is <80, 80–200 and >160 mm, respectively. Correlation analysis between the variation in grain size of the three major pollen types and the main environmental variables shows that the grain size of the three pollen types is positively correlated with precipitation in the Qaidam Basin. The results confirm that precipitation is the most important environmental factor in the Qaidam Basin, and that it has an important effect on pollen grain size in the study area.  相似文献   

2.
The relationships amongst modern pollen assemblages, vegetation, climate and human activity are the basis for reconstructing palaeoenvironmental changes using pollen records. It is important to determine these relationships at regional scales due to the development of vegetation under different climatic conditions and human activities. In this paper, we report on an analysis of modern pollen assemblages of 31 surface lake samples from 31 lakes (one sample per lake) on the southwestern Tibetan Plateau where the knowledge of modern pollen and their relationships with vegetation, climate and human activities is insufficient. The region includes five vegetation zones: sub‐alpine shrub steppe, alpine steppe, alpine meadow and steppe ecotone, mountain desert and alpine desert. The lakes span a wide range of mean annual precipitation (50–500 mm) and mean annual temperature (?8 to 6 °C). Modern pollen assemblages from our samples mainly consist of herb taxa (Artemisia, Cyperaceae, Poaceae, Chenopodiaceae, etc.) and some tree taxa (Pinus, Fagaceae, Alnus, etc.). The results indicate that modern pollen assemblages are able to reflect the main vegetation distribution. Redundancy analysis for the main pollen types and environmental variables shows that precipitation is the leading factor that influences the pollen distribution in the study area with the first axis capturing 13.7% of the variance in the pollen data set. The Artemisia/Chenopodiaceae ratio is valid for separating the desert component (<2) from the steppe and other vegetation zones (>2) but is unable to distinguish moisture variations. The Artemisia/Cyperaceae ratio is able to identify meadows (<1) and steppes (>1) and can be used as a moisture index on the southwestern Tibetan Plateau. Our results show that an appropriate range is needed for a modern pollen data set in order to perform pollen‐based quantitative climate reconstructions in one region. It is essential to perform modern studies before using pollen ratios to reconstruct palaeovegetation and palaeoclimate at a regional scale.  相似文献   

3.
The interpretation of the pollen records from lake sediments is always hampered by a lack of information relating to different pollen production, transportation, deposition, and preservation. It is important to understand the modern process of pollen sedimentation and its climatic implications. This paper presents results from a palynological study on 61 surface sediments samples from Bosten Lake, the largest inland freshwater lake in China. Our results suggest that Chenopodiaceae and Artemisia dominate the modern pollen assemblages and have stable percentages at most sites of the lake basin except for the estuary area. Pollen Artemisia/Chenopodiaceae ratio is about 0.5, indicating the dry climate of the region. Principle Components Analysis (PCA) of pollen data can identify the pollen samples as several ecological groups from different parts of the lake. Pollen transportation dynamics and the mixing effect of lake currents and waves on pollen deposition have affected the pollen assemblages. The distribution of Typha pollen seems to be affected by the location where the parent plants grow. Picea pollen has higher percentages at estuary area, suggesting fluvial transport. Pollen concentration has high values at the central part of the lake basin due to the sedimentation focusing process effect. Our results suggest that the pollen assemblages of the sediment core from the central part of the lake can potentially record the regional vegetation history.  相似文献   

4.
54个晋冀低山丘陵区人工和人工扰动植被表土花粉样品分析表明:花粉组合以草本植物花粉(74.5%)为主,乔木花粉含量低于20%。人类活动较强的农田以谷物禾本科、蒿属和藜科花粉为主,人类活动较弱的荒地以蒿属、藜科和杂草禾本科花粉为主。人类活动强度不同,指示种不同,孢粉浓度亦不同;农田指示种为谷物禾本科、葡萄科和胡桃科,孢粉浓度约4380粒/g;而蒿属、蓼科和蔷薇科则为荒地指示种,孢粉浓度约10983粒/g。农作物种植方式不同,谷物禾本科花粉含量不同,单一禾本科作物种植区谷物禾本科花粉含量(40.2%)高于多种作物混作区(18.8%)和荒地(3.8%)的含量。谷物禾本科含量的变化可以为利用化石花粉提取和检测人类活动信息提供依据,也可为利用地层中谷物禾本科花粉判断古代农业活动提供依据。  相似文献   

5.
6.
Articulated molluscs, sea urchins and barnacle fragments close to the Vedde Ash Bed in a shallow marine deposit on the west coast of Norway have been 14C dated. The weighted mean of four dates from a sediment slice 8 cm thick centred on the Vedde Ash Bed is 10920 ± 24 14C yr BP. The most accurate 14C age of the Vedde Ash from terrestrial plant macrofossils is 10310 ± 50 yr BP. The difference is the 14C reservoir age for coastal water at the west coast of Norway during the mid‐Younger Dryas and equals 610 ± 55 yr. This is 230 yr older than the reservoir age for the Bølling/Allerød and for the present day in this area. The result supports earlier conclusions of a higher reservoir age for the Younger Dryas in the North Atlantic and Nordic Seas, although our reservoir age of 610 ± 55 yr is a few hundred years younger. This suggests that the 14C reservoir age at Vedde Ash time may increase from coastal water towards the open North Atlantic and Nordic Seas. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Pollen ratios have been commonly used to indicate landscape change and climate variation. However, the reliability of these indicators needs to be verified by studies on modern pollen process. Here, we synthesized the major pollen ratios used in previous studies and found that pollen ratios are valuable indicators for the change of vegetation types and climate, e.g., precipitation and moisture. Artemisia/Chenopodiaceae (A/C) ratio could increase from desert to steppe and positively correlate with mean annual precipitation (MAP). Artemisia/Cyperaceae (A/Cy) ratio could be used to identify cool meadow and warm steppe, and it is positively correlated with temperature of July (TJuly) and negatively correlated with MAP. Arboreal pollen/nonarboreal pollen (AP/NAP) ratio can be used as a semi-quantitative indicator for landscape and regional precipitation changes. In spite of the significant climatic and environmental implications of the pollen ratios, they were also questioned in some studies under various circumstances and thus caution is needed when using them to indicate climate in different vegetation zones.  相似文献   

8.
A pollen‐inferred vegetation shift, from pioneer birch–pine woodland to mixed pine–summergreen oak forests, in the southern Alpine forelands, is commonly attributed to a centennial‐scale warming that occurred between the Gerzensee Oscillation (GO) and the Younger Dryas. Two microtephra layers bracketing the Younger Dryas onset (the Laacher See Tephra and the Vedde Ash) improve the chronology at Lago Piccolo di Avigliana (northern Italy) and allowed accurate correlation with Central European records where the GO is clearly detected. We used pollen percentages, pollen accumulation rates (PARs) and plant macrofossils to assess the population dynamics of Quercus, and leaf‐cuticle analysis for a better taxonomic identification of Quercus. Our results indicate that the species that was locally present was probably Quercus robur. PARs suggest that the population expansion started as early as the Bølling and followed an exponential increase through time. We attribute this gradual shift to increasing summer temperatures and longer growing seasons which contrast with a gradually decreasing temperature trend as recorded in Greenland ice cores and in Central Europe. Breaks or set‐backs in the PAR record may indicate the biotic response to minor Lateglacial cooling events of different life‐history stages in the Quercus population. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A high-resolution pollen record from Lake Teletskoye documents the climate-related vegetation history of the northern Altai Mountain region during the last millennium. Siberian pine taiga with Scots pine, fir, spruce, and birch dominated the vegetation between ca. AD 1050 and 1100. The climate was similar to modern. In the beginning of the 12th century, birch and shrub alder increased. Lowered pollen concentrations and simultaneous peaks in herbs (especially Artemisia and Poaceae), ferns, and charcoal fragments point to colder and more arid climate conditions than before, with frequent fire events. Around AD 1200, regional climate became warmer and more humid than present, as revealed by an increase of Siberian pine and decreases of dry herb taxa and charcoal contents. Climatic conditions were rather stable until ca. AD 1410. An increase of Artemisia pollen may reflect slightly drier climate conditions between AD 1410 and 1560. Increases in Alnus, Betula, Artemisia, and Chenopodiaceae pollen and in charcoal particle contents may reflect further deterioration of climate conditions between AD 1560 and 1810, consistent with the Little Ice Age. After AD 1850 the vegetation gradually approached the modern one, in conjunction with ongoing climate warming.  相似文献   

10.
Sediments of Balsam Meadow have produced a 11,000-yr pollen record from the southern Sierra Nevada of California. The Balsam Meadow diagram is divided into three zones. (1) The Artemisia zone (11,000–7000 yr B.P.) is characterized by percentages of sagebrush (Artemisia) and other nonarboreal pollen higher than can be found in the modern local vegetation. Vegetation during this interval was probably similar to the modern vegetation on the east slope of the Sierra Nevada and the climate was drier than that of today. (2) Pinus pollen exceeded 80% from 7000 to 3000 yr B.P. in the Pinus zone. The climate was moister than during the Artemisia zone. (3) Fir (Abies, Cupressaceae, and oak (Quercus) percentages increased after 3000 yr B.P. in the Abies zone as the modern vegetation at the site developed and the present cool-moist climatic regime was established. Decreased fire frequency after 1200 yr B.P. is reflected in decreased abundance of macroscopic charcoal and increased concentration of Abies magnifica and Pinus murrayana needles.  相似文献   

11.
A late Pleistocene long pollen record from Lake Urmia, NW Iran   总被引:4,自引:0,他引:4  
A palynological study based on two 100-m long cores from Lake Urmia in northwestern Iran provides a vegetation record spanning 200 ka, the longest pollen record for the continental interior of the Near East. During both penultimate and last glaciations, a steppe of Artemisia and Poaceae dominated the upland vegetation with a high proportion of Chenopodiaceae in both upland and lowland saline ecosystems. While Juniperus and deciduous Quercus trees were extremely rare and restricted to some refugia, Hippophaë rhamnoides constituted an important phanerophyte, particularly during the late last glacial period. A pronounced expansion in Ephedra shrub-steppe occurred at the end of the penultimate late-glacial period but was followed by extreme aridity that favoured an Artemisia steppe. Very high lake levels, registered by both pollen and sedimentary markers, occurred during the middle of the last glaciation and late part of the penultimate glaciation. The late-glacial to early Holocene transition is represented by a succession of Hippophaë, Ephedra, Betula, Pistacia and finally Juniperus and Quercus. The last interglacial period (Eemian), slightly warmer and moister than the Holocene, was followed by two interstadial phases similar in pattern to those recorded in the marine isotope record and southern European pollen sequences.  相似文献   

12.
A palynological analysis of the Late Miocene and Early Pliocene successions of the Cappadocian Volcanic Province (Central Anatolia, Turkey) has been carried out with the aim of reconstructing the palaeovegetation and palaeoclimatic conditions. The samples are collected from outcrop sections from three different localities (A: Akda?, B: Bayramhac?l? and G: Güzelöz). The pollen spectra reveals the existence of a steppe vegetation dominated by Amaranthaceae–Chenopodiaceae and Artemisia, typical of present day arid and semi-arid continental areas (i.e. Middle East), and Asteraceae Asteroideae in the A section (Late Miocene) developed in arid climatic conditions. The flora of the G (Early Pliocene) and lower part of the B (Late Miocene) sections reflects steppes on which Asteraceae Asteroideae was dominant. This flora also indicates arid conditions. The development of trees in the upper part of the B section was possibly related to local paleoenvironmental conditions rather than a climatic change. This study provides the first palynological data to reveal the presence of an Amaranthaceae–Chenopodiaceae and Artemisia steppe already during the Late Miocene in Turkey.  相似文献   

13.
The tephrostratigraphy of lake sediments in the Endinger Bruch provides the first robust age model for the Lateglacial palynological records of Vorpommern (north‐east Germany). Cryptotephra investigations revealed six tephra layers within sediments spanning from Open vegetation phase I (~Bølling, ~15 ka) to the Early Holocene Betula/Pinus forest phase (~Pre‐boreal, ~10.5 ka). Four of these layers have been correlated with previously described tephra layers found in sites across Europe. The Laacher See Tephra (Eifel Volcanic Field) is present in very high concentrations within sediments of the Lateglacial Betula (/Pinus) forest phase (~Allerød). The Vedde Ash (Iceland) lies midway through Open vegetation phase III (~Younger Dryas). The Hässeldalen and the Askja tephras (Iceland) lie in the Early Holocene Betula/Pinus forest phase (~Preboreal). These tephra layers have independently derived age estimates, which have been imported into the Endinger Bruch record. Furthermore, the layers facilitate direct correlation of the regional vegetation record with other palaeoenvironmental archives, which contain one or more of the same tephra layers, from Greenland to Southern Europe. In doing this, localized variations are confirmed in some aspects of the pollen stratigraphy; however, transitions between the main vegetation phases appear to occur synchronously (within centennial errors) with the equivalent environmental transitions observed in sites across the European continent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Four Quaternary volcanic ash zones in the southern Norwegian Sea have been investigated in core P57-7 from the Iceland Plateau. Both the geochemical composition and morphological variation of each ash layer have been studied. The four volcanic ash zones appear in the light oxygen isotope stages 1, 5, 7 and 11. The ash zones are composed of transparent platy grains, light brown transparent grains, brown blocky and black blocky grains and white/transparent pumice, and each zone shows a distinct stratigraphic evolution. The geochemical results show a mixture of basaltic and silicic grains in each ash zone, and that each zone contains grains from more than one eruption. The geochemical investigations strongly suggest that all the ashes are derived from Iceland. The youngest ash zone includes two layers, which based on their geochemical composition and stratigraphic position are correlated with the 14C-dated Vedde Ash (10 600 yr BP) and Saksunarvatn Ash (9 100 yr BP). Possible sources on Iceland for these layers are discussed.  相似文献   

15.
This paper reports the discovery of a visible, tephra horizon of Late‐glacial age from the site of Loch Ashik in the Isle of Skye, the Inner Hebrides, Scotland. Although the tephra shards have a bimodal geochemical composition identical to that of the Vedde Ash (a well known marker horizon within Late‐glacial sequences. The horizon at Ashik is dominated by basaltic shards and devitrified tephra shards, giving the layer its characteristic black colour. Only rhyolitic shards have previously been reported from Vedde Ash horizons in the British Isles. This new evidence raises some important questions about the factors that govern the distribution and accumulation of basaltic tephra, and about the methods used to detect ash shards in basins distal to centres of volcanic activity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
A detailed shoreline displacement curve documents the Younger Dryas transgression in western Norway. The relative sea‐level rise was more than 9 m in an area which subsequently experienced an emergence of almost 60 m. The sea‐level curve is based on the stratigraphy of six isolation basins with bedrock thresholds. Effort has been made to establish an accurate chronology using a calendar year time‐scale by 14C wiggle matching and the use of time synchronic markers (the Vedde Ash Bed and the post‐glacial rise in Betula (birch) pollen). The sea‐level curve demonstrates that the Younger Dryas transgression started close to the Allerød–Younger Dryas transition and that the high stand was reached only 200 yr before the Younger Dryas–Holocene boundary. The sea level remained at the high stand for about 300 yr and 100 yr into Holocene it started to fall rapidly. The peak of the Younger Dryas transgression occurred simultaneously with the maximum extent of the ice‐sheet readvance in the area. Our results support earlier geophysical modelling concluding a causal relationship between the Younger Dryas glacier advance and Younger Dryas transgression in western Norway. We argue that the sea‐level curve indicates that the Younger Dryas glacial advance started in the late Allerød or close to the Allerød–Younger Dryas transition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Evidence is presented to show that two measurable concentrations of microtephra particles can be detected in deposits of Late Devensian Late-glacial age in three sites in Scotland. One layer is attributed to the Vedde Ash, a marker horizon within the Younger Dryas chronozone. The second is a new tephra reported for the first time, which we name the Borrobol Tephra. This occurs consistently near the base of the Late-glacial Interstadial organic sediments at each site, and is thought to date to around 12.5 14C ka BP. Geochemical determinations using an electron microprobe confirm the identification of the Vedde Ash, suggest the Borrobol Tephra to have an Icelandic origin, and demonstrate the consistency of the geochemical signals at all three sites. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Palynological and geochemical analyses provide valuable information about modern and past climatic regimes and vegetation. The impact of climate and humans on past vegetation in the semi-arid areas of northwestern Iran has received increased interest in the wake of warming temperatures in the Middle East. Palynological and down-core XRF elemental abundances from a peat core from Lake Neor enabled a reconstruction of vegetational changes of the past 7000 years over the highlands of northwestern Iran. Periods of increased arboreal pollen (AP) types and high (Artemisia + Poaceae)/Chenopodiaceae ratios along with low titanium abundances, high percentages of total organic carbon, more negative δD values, and higher carbon accumulation rates suggest a relatively wet climate. These conditions have persisted during the periods 6700–6200, 5200–4450 and 3200–2200 cal a bp. The overall low AP values, substantial rise of Chenopodiaceae, high Ti abundances and low values of palaeo-redox proxies, are all evidences of a drier climate, as has been reconstructed for the periods 6200–5200 and 4030–3150 cal a bp and the last 2200 years. An important feature of the last centuries is the increase of anthropogenic and pastoral indicator pollen types. Our results may provide basic data to predict future trends in vegetation dynamics under future climate change in western Asia.  相似文献   

19.
Here we present the results of a detailed cryptotephra investigation through the Lateglacial to early Holocene transition, from a new sediment core record obtained from Lake Hämelsee, Germany. Two tephra horizons, the Laacher See Tephra (Eifel Volcanic Field) and the Saksunarvatn Ash (Iceland), have been previously described in this partially varved sediment record, indicating the potential of the location as an important Lateglacial tephrochronological site in northwest Europe. We have identified three further tephra horizons, which we correlate to: the c. 12.1 ka BP Vedde Ash (Iceland), the c. 11 ka BP Ulmener Maar tephra (Eifel Volcanic Field) and the c. 10.8 ka BP Askja‐S tephra (Iceland). Three additional cryptotephra deposits have been found (locally named HÄM_T1616, HÄM_T1470 and HÄM_T1456‐1455), which cannot be correlated to any known eruption at present. Geochemical analysis of the deposits suggests that these cryptotephras most likely have an Icelandic origin. Our discoveries provide age constraints for the new sediment records from Lake Hämelsee and enable direct stratigraphical correlations to be made with other tephra‐bearing sites across Europe. The new tephrostratigraphical record, within a partially varved Lateglacial sediment record, highlights the importance of Lake Hämelsee as a key site within the European tephra lattice.  相似文献   

20.
Cores recovered from the Witch Ground Basin (central North Sea) and the northern Rockall Trough, near the Wyville-Thomson Ridge have been found to contain volcanic glass shards. These have been correlated with the Vedde Ash Bed of western Norway, which has an age of 10600± 60yr BP, and with North Atlantic ash zone 1. This is the first time that this important chronostratigraphic marker has been identified on the UK continental shelf and it is suggested that it might also be present in northern Scotland. If so, it would be a useful tool in the correlation of terrestrial, lacustrine and marine sequences of the Loch Lomond Stadial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号