首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three rapid-response Lagrangian particle-tracking dispersion models have been developed for southern Spain coastal waters. The three domains cover the Gulf of Cádiz (Atlantic Ocean), the Alborán Sea (Mediterranean), and the Strait of Gibraltar with higher spatial resolution. The models are based on different hydrodynamic submodels, which are run in advance. Tides are calculated using a 2D barotropic model in the three cases. Models used to obtain the residual circulation depend on the physical oceanography of each region. Thus, two-layer models are applied to Gibraltar Strait and Alborán Sea and a 3D baroclinic model is used in the Gulf of Cádiz. Results from these models have been compared with observations to validate them and are then used by the particle-tracking models to calculate dispersion. Chemical, radioactive and oil spills may be simulated, incorporating specific processes for each kind of pollutant. Several application examples are provided.  相似文献   

2.
There is scatter information of the inorganic carbon system in the coastal zones and it is important to increment our knowledge and understand the global carbon cycle. We investigated the distribution of inorganic carbon system parameters and its controls in the coastal waters of the north eastern shelf of the Gulf of Cádiz (GoC) during four cruises that took place in June 2006, November 2006, February 2007 and May 2007. The objectives of this study are: (1) to describe the spatio-temporal distribution of inorganic carbon system parameters in waters of the north eastern shelf of the GoC using four cruises, each undertaken in one of the four seasons, (2) to calculate net ecosystem production (NEP) and (3) to examine factors controlling these distributions. The distribution of inorganic carbon system parameters in the north eastern shelf of the Gulf of Cádiz showed temporal and spatial variability. River input, mixing, primary production, respiration, CO2 air-sea exchange, and remineralization were factors that controlled such distributions. The coastal zone of the GoC is autotrophic on an annual scale at a rate of 1.0 mmol m−2 d−1. Further measurements are needed it to improve the NEP calculation and to evaluated to intra-annual variability.  相似文献   

3.
4.
A three-dimensional baroclinic nonlinear numerical model is employed to investigate the summer upwelling in the northern continental shelf of the South China Sea (NCSCS) and the mechanisms of the local winds inducing the coastal upwelling, associated with the QuikSCAT wind data. First, the persistent signals of the summer upwelling are illustrated by the climatological the Advanced Very High-Resolution Radiometer (AVHRR) Sea Surface Temperature (SST) image over 1985–2006 and field observations in 2006 summer. Then, after the successful simulation of the summer upwelling in the NCSCS, four numerical experiments are conducted to explore the different effects of local winds, including the wind stress and wind stress curl, on the coastal upwelling in two typical strong summer upwelling regions of the NCSCS. The modeled results indicate that the summer upwelling is a seasonal common phenomenon during June–September in the NCSCS with the spatial extent of a basin-scale. Typical continental shelf upwelling characteristics are clearly shown in the coastal surface and subsurface water, such as low temperature, high salinity and high potential density in the east of the Hainan Island, the east of the Leizhou Peninsula and the southeast of the Zhanjiang Bay (noted as the Qiongdong-QD), and the inshore areas from the Shantou Coast to the Nanri Islands of the Fujian Coast (noted as the Yuedong-YD). The analysis of the QuikSCAT wind data and modeled upwelling index suggests that the local winds play significant roles in causing the coastal upwelling, but the alongshore wind stress and wind stress curl have different contributions to the upwelling in the Qiongdong (QDU) and the coastal upwelling in the Yuedong (YDU), respectively. Furthermore, model results from the numerical experiments show that in the YD the stable alongshore wind stress is a very important dynamic factor to induce the coastal upwelling but the wind stress curl has little contribution and even unfavorable to the YDU. However, in the QD the coastal upwelling is strongly linked to the local wind stress curl. It is also found that not only the offshore Ekman transport driven by the alongshore wind stress, the wind stress curl-induced Ekman pumping also plays a crucial effect on the QDU. Generally, the wind stress curl even has more contributions to the QDU than the alongshore wind stress.  相似文献   

5.
One of the current problems in the accurate estimation of over-ocean wind from scatterometry observations is the proper accounting for precipitation. Specific cases such as hurricanes are particularly difficult, because precipitation in the eye wall and rain bands can be quite heavy, and therefore, affect the scatterometer signatures so drastically that a category-4 hurricane can appear, to the scatterometer, to have category-1 winds. We have developed an approach to infer and account for the signature of the precipitation from non-simultaneous passive-microwave measurements of rain, with the help of geostationary IR measurements. In this note, we describe the basic approach, and the results of applying it to the data taken by the Tropical Rainfall Measurement Mission Microwave Imager measurements several hours before and after the QuikSCAT observation of Hurricane Rita in September 2005. We also describe how we are enhancing the approach with more realism in the assimilation of the IR information.  相似文献   

6.
Ocean–atmosphere coupling in the Humboldt Current System (HCS) of the Southeast Pacific is studied using the Scripps Coupled Ocean–atmosphere Regional (SCOAR) model, which is used to downscale the National Center for Environmental Prediction (NCEP) Reanalysis-2 (RA2) product for the period 2000–2007 at 20-km resolution. An interactive 2-D spatial smoother within the sea-surface temperature (SST)–flux coupler is invoked in a separate run to isolate the impact of the mesoscale (~50–200 km, in the oceanic sense) SST field felt by the atmosphere in the fully coupled run. For the HCS, SCOAR produces seasonal wind stress and wind stress curl patterns that agree better with QuikSCAT winds than those from RA2. The SCOAR downscaled wind stress distribution has substantially different impacts on the magnitude and structure of wind-driven upwelling processes along the coast compared to RA2. Along coastal locations such as Arica and Taltal, SCOAR and RA2 produce seasonally opposite signs in the total wind-driven upwelling transport. At San Juan, SCOAR shows that upwelling is mainly due to coastal Ekman upwelling transport, while in RA2 upwelling is mostly attributed to Ekman pumping. Fully coupled SCOAR shows significant SST–wind stress coupling during fall and winter, while smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air–sea coupling in HCS. Coupling between SST, wind speed, and latent heat flux is incoherent in large-scale coupling and full coupling mode. In contrast, coupling between these three variables is clearly identified for oceanic mesoscales, which suggests that mesoscale SST affects latent heat directly through the bulk formulation, as well as indirectly through stability changes on the overlying atmosphere, which affects surface wind speeds. The SST–wind stress and SST–heat-flux couplings, however, fail to produce a strong change in the ocean eddy statistics. No rectified effects of ocean–atmosphere coupling were identified for either the atmospheric or oceanic mean conditions, suggesting that mesoscale coupling is too weak in this region to strongly alter the basic climate state.  相似文献   

7.
In order to clarify the mechanism of carbon transport in an ice-covered ecosystem in Lake Saroma (44°N44°N, 143°E143°E, Hokkaido, Japan), a three-dimensional numerical calculation using a coupled ice–ocean ecosystem model was conducted. This model comprises an ocean ecosystem model, an ice ecosystem model, and equations for the coupling between ice and ocean. Comparisons of calculated results with observational data confirm that the calculation well reproduced the in situ phenomena with respect to tides, tidal currents, concentrations of POC and chlorophyll a in ice and in water, and sinking fluxes beneath the ice. The analysis of the organic carbon budget based on the calculation reveals that tide-induced transport, the enhancement of biological production in a pelagic system, and the physical release of organic matter from ice associated with ice-melting are important factors affecting the carbon transport during the ice-melting season. The carbon transport has a one-day time cycle. This is because principal driving forces are sunlight, and diurnal tides. The described mechanism of “sunlight and tidal pumping” is one of the most important features of carbon transport in a coupled ice–water ecosystem.  相似文献   

8.
In this work, the impact of assimilation of conventional and satellite remote sensing observations (Oceansat-2 winds, MODIS temperature/humidity profiles) is studied on the simulation of two tropical cyclones in the Bay of Bengal region of the Indian Ocean using a three-dimensional variational data assimilation (3DVAR) technique. The Weather Research and Forecasting (WRF)-Advanced Research WRF (ARW) mesoscale model is used to simulate the severe cyclone JAL: 5–8 November 2010 and the very severe cyclone THANE: 27–30 December 2011 with a double nested domain configuration and with a horizontal resolution of 27 × 9 km. Five numerical experiments are conducted for each cyclone. In the control run (CTL) the National Centers for Environmental Prediction global forecast system analysis and forecasts available at 50 km resolution were used for the initial and boundary conditions. In the second (VARAWS), third (VARSCAT), fourth (VARMODIS) and fifth (VARALL) experiments, the conventional surface observations, Oceansat-2 ocean surface wind vectors, temperature and humidity profiles of MODIS, and all observations were respectively used for assimilation. Results indicate meager impact with surface observations, and relatively higher impact with scatterometer wind data in the case of the JAL cyclone, and with MODIS temperature and humidity profiles in the case of THANE for the simulation of intensity and track parameters. These relative impacts are related to the area coverage of scatterometer winds and MODIS profiles in the respective storms, and are confirmed by the overall better results obtained with assimilation of all observations in both the cases. The improvements in track prediction are mainly contributed by the assimilation of scatterometer wind vector data, which reduced errors in the initial position and size of the cyclone vortices. The errors are reduced by 25, 21, 38 % in vector track position, and by 57, 36, 39 % in intensity, at 24, 48, 72 h predictions, respectively, for the two cases using assimilation of all observations. Simulated rainfall estimates indicate that while the assimilation of scatterometer wind data improves the location of the rainfall, the assimilation of MODIS profiles produces a realistic pattern and amount of rainfall, close to the observational estimates.  相似文献   

9.
A limited domain, coastal ocean forecast system consisting of an unstructured grid model, a meteorological model, a regional ocean model, and a global tidal database is designed to be globally relocatable. For such a system to be viable, the predictability of coastal currents must be well understood with error sources clearly identified. To this end, the coastal forecast system is applied at the mouth of Chesapeake Bay in response to a Navy exercise. Two-day forecasts are produced for a 10-day period from 4 to 14 June 2010 and compared to real-time observations. Interplay between the temporal frequency of the regional model boundary forcing and the application of external tides to the coastal model impacts the tidal characteristics of the coastal current, even contributing a small phase error. Frequencies of at least 3 h are needed to resolve the tidal signal within the regional model; otherwise, externally applied tides from a database are needed to capture the tidal variability. Spatial resolution of the regional model (3 vs 1 km) does not impact skill of the current prediction. Tidal response of the system indicates excellent representation of the dominant M 2 tide for water level and currents. Diurnal tides, especially K 1, are amplified unrealistically with the application of coarse 27-km winds. Higher-resolution winds reduce current forecast error with the exception of wind originating from the SSW, SSE, and E. These winds run shore parallel and are subject to strong interaction with the shoreline that is poorly represented even by the 3-km wind fields. The vertical distribution of currents is also well predicted by the coastal model. Spatial and temporal resolution of the wind forcing including areas close to the shoreline is the most critical component for accurate current forecasts. Additionally, it is demonstrated that wind resolution plays a large role in establishing realistic thermal and density structures in upwelling prone regions.  相似文献   

10.
Summary In 1974 and 1975 deep seismic sounding experiments were carried out in the area of the Betic Cordillera in southern Spain. A network of crustal seismic profiles was established with shotpoints at sea close to Cádiz, Adra and Cartagena and on land at Alquife near Guadix. The lengths of the profiles range from 50 km near Alquife to 440 km for the main profile between Cádiz and Cartagena parallel to the strike of the Betic Cordillera. The main profile was supplemented by a reversed recording line close to the Mediterranean coast between Adra and Cartagena and another one perpendicular to the main tectonic strike from Adra towards the north. The first interpretation of the data indicates considerable variation in the crustal thickness. A preliminary inversion leads to a three-layered model of the crust. The mean compressional velocity is about 5.1 km/s down to a depth of 4 km. Below this the velocity is 6.13 km/s from 4 to 16 km where it increases to 7.14 km/s. TheP n-velocity is 8.18 km/s. The crust-mantle boundary is reached at a depth of 27 km near Cartagena and lies 32 km deep near Adra, Underneath the gravity minimum of the Betic Cordillera the crust-mantle boundary is found at a depth of about 36 km. Below the Betic zone a pronounced zone of low velocity with 7.7 km/s seems to exist in the depth range from 40 to 60 km.Contribution No. 4, Grupo de Trabajo de Perfiles Sismicos, Comisión Española del Proyecto Geodinámico, C.S.I.C., Madrid, Spain.Contribution No. 139, Geophysical Institute, University of Karlsruhe, Hertzstrasse 16, D-75 Karlsruhe 21, Germany.Contribution No. 217, Institut de Physique du Globe, Université Paris VI, 4 Place Jussieu, F-75230 Paris Cedex 05, France.Contribution No. 11, Instituto y Observatorio de Marina, San Fernando (Cádiz), Spain.Contribution No. 163, Institute of Geophysics, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland.  相似文献   

11.
Summary The main characteristics of surface winds are tabulated for 34 Antarctic stations. Using these data, supplemented by traverse records, the average wind flow is interpolated for each region and presented as a map showing the pattern of surface wind flow for the whole continent. Attention is focused on the flow in relation to surface contours. Statistics are presented for surface slope, wind speed, temperature, seasonal variations of speed and temperature, diurnal variation (including power spectra) of the wind speed and times of maximum and minimum speed at coastal and inland stations, wind frequency versus direction, the occurrence of calms, the deviation of the plateau wind from the downslope direction, the wind direction near the front of ice shelves, the proportion of cloud cover, and wind chill factors. In all cases data are grouped according to the environs of the stations in an attempt to isolate systematic differences depending on location: coastal stations near the foot of the ice slope and fully exposed to katabatic flow, coastal stations on offshore islands, coastal stations on peninsulas, coastal stations on extensive rock areas, ice shelf stations and inland stations.  相似文献   

12.
“龙王”台风期间高频地波雷达数据分析   总被引:2,自引:0,他引:2       下载免费PDF全文
OSMAR2003岸基高频地波雷达系统由武汉大学电波传播实验室研制并于2005年应用于福建沿海,能够全天候、大面积探测台湾海峡内海洋表面动力学要素. 本文首先将0519号台风期间高频地波雷达的测量数据与局部点的浮标数据对比,然后又对大面积海域内雷达测量风场与uikSCAT卫星遥感数据进行了对比分析. 结果表明高频地波雷达较好地反映了台风期间台湾海峡内风场的空间分布及其发展变化情况,具有一定的灾害性海洋天气监测能力.  相似文献   

13.
Sediment toxicity assessments using caged organisms present advantages over using laboratory and native community studies. The use of caged Arenicola marina in sediment toxicity assessments was evaluated. Lugworms were exposed in situ to sediments from coastal and port areas in Spain for seven days, and the activities of the biotransformation enzymes ethoxyresorufin O-deethylase, dibenzylfluorescein dealkylase and glutathione S-transferase, the activities of the antioxidant enzymes glutathione reductase and glutathione peroxidase and lipid peroxidation were then analyzed as biomarkers. Biomarker results and sediment physicochemical data were integrated. Cádiz Bay (SW Spain) sediments presented metal contamination that was not linked to a biochemical response. In LPGC Port (SW Spain), Pb contamination exhibited a moderate toxic potential, while PAHs, and presumably pharmaceuticals, provoked biochemical responses that efficiently prevented lipid peroxidation. In Santander Bay (N Spain), exposure to PAHs and, presumably, pharmaceuticals induced biomarker responses, but lipid peroxidation occurred nevertheless. These results indicated that caged A. marina were effective for the assessment of sediment quality and that the selected biomarkers were sufficiently sensitive to identify chemical exposure and toxicity.  相似文献   

14.
The coupled ocean atmosphere mesoscale prediction system that includes the Navy Coastal Ocean Model has been configured for the Kuroshio Extension region using multiple one-way nested high-resolution grids. The coupled model system was used to simulate a strong cold-air outbreak event from 31 Jan to 7 Feb 2005 in good agreement with meteorological data from a surface buoy data and QuikSCAT scatterometer winds. Latent heat fluxes and sensible heat fluxes were computed during the event with daily averages in excess of 1,500 W/m2 and 500 W/m2, respectively, and combined instantaneous turbulent heat fluxes up to 2,300 W/m2. The largest heat fluxes were found in two large meanders of the Kuroshio and along its southern flank. Strong gradients in turbulent heat fluxes coincided with strong sea surface temperature gradients and were maintained during the cold-air outbreak simulation. The large turbulent heat fluxes lead to significant subtropical mode water formation during the event at a rate about 10 Sv in the cyclonic recirculation region south of the Kuroshio. This increased the volume of core layer mode water within the temperature range 16°C to 18°C by 10% and increased the surface area of that layer directly exposed to the atmosphere by a factor close to 5 in the model domain.  相似文献   

15.
Radar observations at 46.5 MHz of vertical-velocity perturbations at Aberystwyth (52.4N, 4.1W) have been used to examine the incidence of mountain waves and their dependence on local topography and the wind vector at low heights. A contrast is drawn between the effects of easterly winds passing over major topographical features to the east of the radar site and those of westerly winds crossing low coastal topographical features to the west. Estimates are made of the vertical flux of horizontal momentum associated with mountain waves, and the general influence of mountain-wave activity on vertical-velocity measurements at the site is assessed.  相似文献   

16.
Coastal upwelling phenomenon along the China coast in the Yellow Sea during August 2007 is studied using ENVISAT Advanced Synthetic Aperture Radar (ASAR) data, NOAA Advanced AVHRR series Sea Surface Temperature (SST) data, and NASA QuikSCAT Scatterometer ocean surface wind data. A dark pattern in an ASAR image is interpreted as coastal upwelling. This is because the natural biogenic slicks associated with coastal upwelling damp the Bragg waves on the sea surface and thus make the surface smoother. Most of the incoming radar energy is reflected in the forward direction. As a result, the radar backscatter signal is very weak. Analyzing the concurrent AVHRR SST image, we find that the dark pattern in the ASAR image is indeed corresponding to the low SST area. The wind retrieval in the slicks dominant region is biased due to the low Normalised Radar Cross Section (NRCS) associated with the coastal upwelling. We applied a SST correction to the NRCS values to improve the accuracy of wind retrieval from ASAR data.  相似文献   

17.
Records of wind, air temperature and air pressure from nine stations, situated along the shoreline of Lake Geneva, Switzerland, were analyzed for the summer period May to September. At all stations the consistent appearance of significant spectral peaks and changes in wind direction at the diurnal frequency indicates the importance of lake-land breezes. It is shown that the surrounding topography has a strong modifying effect (temporal and spatial) on the lake-land breeze. Superimposed on this cyclic wind pattern, short episodes of strong winds with long fetch over parts of Lake Geneva are regularly observed. Both of these winds exert a spatially variable wind stress over the lake surface on the same time scale. Typical examples of the expected lakes response are presented, among them the seasonally persistent gyre in the central part of the lake. Evidence is provided that this dominant circulation is part of a direct cyclonic circulation, generated by the curl of the diurnal wind field. It is concluded that the mean circulation is caused by these winds and affected by the topography of the surrounding land.Present address: Environmental Protection Agency, Perth 6009, Australia  相似文献   

18.
Tal Ezer 《Ocean Dynamics》2018,68(10):1259-1272
Tropical storms and hurricanes in the western North Atlantic Ocean can impact the US East Coast in several ways. Direct effects include storm surges, winds, waves, and precipitation and indirect effects include changes in ocean dynamics that consequently impact the coast. Hurricane Matthew [October, 2016] was chosen as a case study to demonstrate the interaction between an offshore storm, the Gulf Stream (GS) and coastal sea level. A regional numerical ocean model was used, to conduct sensitivity experiments with different surface forcing, using wind and heat flux data from an operational hurricane-ocean coupled forecast system. An additional experiment used the observed Florida Current (FC) transport during the hurricane as an inflow boundary condition. The experiments show that the hurricane caused a disruption in the GS flow that resulted in large spatial variations in temperatures with cooling of up to ~?4 °C by surface heat loss, but the interaction of the winds with the GS flow also caused some local warming near fronts and eddies (relative to simulations without a hurricane). A considerable weakening of the FC transport (~?30%) has been observed during the hurricane (a reduction of ~?10 Sv in 3 days; 1Sv?=?106 m3 s?1), so the impact of the FC was explored by the model. Unlike the abrupt and large wind-driven storm surge (up to 2 m water level change within 12 h in the South Atlantic Bight), the impact of the weakening GS on sea level is smaller but lasted for several days after the hurricane dissipated, as seen in both the model and altimeter data. These results can explain observations that show minor tidal flooding along long stretches of coasts for several days following passages of hurricanes. Further analysis showed the short-term impact of the hurricane winds on kinetic energy versus the long-term impact of the hurricane-induced mixing on potential energy, whereas several days are needed to reestablish the stratification and rebuild the strength of the GS to its pre-hurricane conditions. Understanding the interaction between storms, the Gulf Stream and coastal sea level can help to improve prediction of sea level rise and coastal flooding.  相似文献   

19.
利用全极化微波辐射计资料反演台风境内海面风场   总被引:3,自引:0,他引:3       下载免费PDF全文
作为一种新兴的被动遥感技术,全极化微波辐射计不仅可以提供海面风速产品,还可以提供海面风向产品.以往利用全极化微波辐射计观测亮温进行海面风场反演仅在晴空条件下进行,本文通过对观测亮温结合台风区域海面风场的分布特征进行分析,验证了全极化微波辐射计具有在台风等恶劣天气条件下进行海面风场观测的能力.基于敏感性分析实验,确定使用6.8 GHz和10.7 GHz等低频通道组合可进行台风区域内海面风场反演.其中,海面风速反演使用基于统计的多元线性回归算法,同时对海面温度、大气水汽含量、云中液态水含量及降水强度等物理量进行反演计算,为海面风向反演做准备.海面风向反演使用物理统计法进行,借鉴散射计风向反演使用的最大似然估计法.通过在全极化辐射传输前向模型中加入降水对大气透过率的影响、设计第三和第四Stokes通道亮温环境影响修正函数,在实现台风区域内海面风向反演的同时减小了反演误差.通过对“云娜”台风境内海面风场进行数值计算,验证了本文反演算法的可行性,并对反演误差的空间分布特征进行了分析.将2004年各台风过程的海面风场反演结果与散射计风场产品进行对比,海面风速和海面风向反演的均方根误差分别为1.64 m·s-1和18.02°.  相似文献   

20.
Modeling studies of future changes in coastal hydrodynamics, in terms of storm surges and wave climate, need appropriate wind and atmospheric forcings, a necessary requirement for the realistic reproduction of the statistics and the resolution of small scale features. This work compares meteorological results from different climate models in the Mediterranean area, with a focus on the Adriatic Sea, in order to assess their capability to reproduce coastal meteorological features and their possibility to be used as forcings for hydrodynamic simulations. Five meteorological datasets are considered. They are obtained from two regional climate models, implemented with different spatial resolutions and setups and are downscaled from two different global climate models. Wind and atmospheric pressure fields are compared with measurements at four stations along the Italian Adriatic coast. The analysis is carried out both on simulations of the control period 1960–1990 and on the A1B Intergovernmental Panel for Climate Change scenario projections (2070–2100), highlighting the ability of each model in reproducing the statistical coastal meteorological behavior and possible changes. The importance of simulated global- and regional-scale meteorological processes, in terms of correct spatial resolution of the phenomena, is also discussed. Within the Adriatic Sea, the meteorological climate is influenced by the local orography that controls the strengthening of north-eastern katabatic winds like Bora. Results show indeed that the increase in spatial resolution provides a more realistic wind forcing for the hydrodynamic simulations. Moreover, the chosen setup and the global climate models that drive the regional downscalings appear to play an important role in reproducing correct atmospheric pressure fields. The comparison between scenario and control simulations shows a small increase in the mean atmospheric pressure values, while a decrease in mean wind speed and in extreme wind events is observed, particularly for the datasets with higher spatial resolution. Finally, results suggest that an ensemble of downscaled climate models is likely to provide the most suitable climatic forcings (wind and atmospheric pressure fields) for coastal hydrodynamic modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号