首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Weak dust ion-acoustic (DIA) double- layers (DLs) in a dusty plasma with nonextensive electrons are addressed. A generalized Korteweg-de Vries equation with a cubic nonlinearity is derived. It is shown that under certain conditions, the effect of electron nonextensivity can be quite important. In particular, it may be noted that due to the net negative dust charge and electron nonextensivity, the present dusty plasma model may admit compressive as well as rarefactive weak DIA-DLS. Considering the wide relevance of nonlinear oscillations in space dusty plasmas, our investigation may be taken as a prerequisite for the understanding of the nonlinear structures observed in the ionosphere and the auroral acceleration regions.  相似文献   

2.
A theoretical investigation has been made of electrostatic solitary structures in an electron-positron-ion (e-p-i) plasma, taking nonextensive electrons and nonextensive positrons. By employing the reductive perturbation method, the basic characteristics of ion-acoustic (IA) solitary waves (SWs) in a three-component e-p-i plasma (consisting of negatively charged nonextensive electrons, positively charged nonextensive positrons, and ions) have been addressed. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and Gardner equations are derived and their numerical solutions are obtained. It has been shown that the combined effects of electron nonextensivity, positron nonextensivity, and ions significantly modify the behavior of these electrostatic solitary structures that have been found to exist with positive and negative potential in this plasma model. The present analysis may be useful to understand and demonstrate the dynamical properties of IA SWs in different astrophysical and cosmological scenarios (viz. stellar polytropes, hadronic matter and quark-gluon plasma, protoneutron stars, dark-matter halos, etc.).  相似文献   

3.
A theoretical investigation of the one dimensional dynamics of nonlinear electrostatic dust ion-acoustic (DIA) waves in an unmagnetized dusty plasma consisting of ion fluid, non-thermal electrons and fluctuating immobile dust particles has been made by the reductive perturbation technique. The basic features of DIA solitary and shock waves are studied by deriving the Korteweg-de Vries (KdV) and KdV Burger equations, respectively. It is shown that the special patterns of nonlinear electrostatic waves are significantly modified by the presence of the non-thermal electron component. In particular, the rarefactive solitary and shock structures are found with smaller amplitude in comparison to the isothermal case. The transition from DIA solitary to shock waves is also studied which is related to the contributions of the dispersive and dissipative terms. It is found that the dust charge fluctuation is a source of dissipation, and is responsible for the formation of the dust ion-acoustic shock waves. Furthermore, the dissipative effect becomes important and may prevail over that of dispersion as the population of non-thermal electrons present decreases. The present investigation may be of relevance to electrostatic solitary structures observed in many space dusty plasma, such as Saturn’s E-ring.  相似文献   

4.
Nonlinear dust acoustic (DA) shock waves are studied in a nonextensive charge varying complex plasma. A burger-like equation the coefficients of which is significantly modified by nonextensivity and dust charge fluctuation is derived. It is found that the influence of particle (electrons and ions) nonextensivity and dust charge fluctuation affect the basic properties of the collisionless DA shock wave drastically.  相似文献   

5.
Nonlinear propagation of dust-acoustic (DA) waves in a magnetized dusty plasma, consisting of negatively charged mobile dust, Maxwellian ions and two distinct temperature nonextensive electrons (following nonextensive q-distribution each), has been studied and analyzed by deriving and solving the Korteweg-de-Vries (K-dV) equation. According to the outcomes of the investigation, the basic characteristics of the DA solitary profiles are found to be strongly modified by the external magnetic field, nonextensivity of the electrons and the respective number densities of the two species of electrons. The results of this investigation can be applied in both laboratory and astrophysical plasma scenarios for understanding the basic features of the localized electrostatic dust-acoustic solitary waves (DASWs).  相似文献   

6.
A weakly nonlinear analysis is carried out to derive a Korteweg–de Vries-Burgers-like equation for small, but finite amplitude, ion-acoustic waves in a dissipative plasma consisting of weakly relativistic ions, thermal positrons and nonextensive electrons. The travelling wave solution has been acquired by employing the tangent hyperbolic method. Our results show that in a such plasma, ion-acoustic shock waves, the strength and steepness of which are significantly modified by relativistic, nonextensive and dissipative effects, may exist. Interestingly, we found that because of ion kinematic viscosity, an initial solitonic profile develops into a shock wave. This later evolves towards a monotonic profile (dissipation-dominant case) as the electrons deviate from their Maxwellian equilibrium. Our investigation may help to understand the dissipative structures that may occur in high-energy astrophysical plasmas.  相似文献   

7.
The nonlinear wave structures of ion acoustic waves (IAWs) in an unmagnetized plasma consisting of nonextensive electrons and thermal positrons are studied in bounded nonplanar geometry. Using reductive perturbation technique we have derived cylindrical and spherical Korteweg-de Vries-Burgers’ (KdVB) equations for IAWs. The presence of nonextensive q-distributed electrons is shown to influence the solitary and shock waves. Furthermore, in the existence of ion kinematic viscosity, the shock wave structure appears. Also, the effects of nonextensivity of electrons, ion kinematic viscosities, positron concentration on the properties of ion acoustic shock waves (IASWs) are discussed in nonplanar geometry. It is found that both compressive and rarefactive type solitons or shock waves are obtained depending on the plasma parameter.  相似文献   

8.
The dust-acoustic shock waves have been theoretically investigated using reductive perturbation technique. An unmagnetized four-component dusty plasma system consisting of nonextensive q-distributed electrons, Boltzmann distributed ions, and negatively as well as positively charged dust particles has been considered. The solution of Burgers equation in planar geometry is numerically analyzed. It has been observed that the nonextensive q-distribution of electrons has a significant role in the formation of shock waves. The relevance of our results to astrophysics as well as laboratory plasmas are briefly discussed.  相似文献   

9.
Arbitrary amplitude electron acoustic (EA) solitary waves in a magnetized nonextensive plasma comprising of cool fluid electrons, hot nonextensive electrons, and immobile ions are investigated. The linear dispersion properties of EA waves are discussed. We find that the electron nonextensivity reduces the phase velocities of both modes in the linear regime: similarly the nonextensive electron population leads to decrease of the EA wave frequency. The Sagdeev pseudopotential analysis shows that an energy-like equation describes the nonlinear evolution of EA solitary waves in the present model. The effects of the obliqueness, electron nonextensivity, hot electron temperature, and electron population are incorporated in the study of the existence domain of solitary waves and the soliton characteristics. It is shown that the boundary values of the permitted Mach number decreases with the nonextensive electron population, as well as with the electron nonextensivity index, q. It is also found that an increase in the electron nonextensivity index results in an increase of the soliton amplitude. A comparison with the Vikong Satellite observations in the dayside auroral zone is also taken into account.  相似文献   

10.
The properties of cylindrical and spherical dust acoustic (DA) solitary and shock waves in an unmagnetized electron depleted dusty plasma consisting of inertial dust fluid and ions featuring Tsallis statistics are investigated by employing the reductive perturbation technique. A Korteweg-de Vries Burgers (KdVB) equation is derived and its numerical solution is obtained. The effects of ion nonextensivity and dust kinematic viscosity on the basic features of DA solitary and shock waves are discussed in nonplanar geometry. It is found that nonextensive nonplanar DA waves behave quite differently from their one-dimensional planar counterpart.  相似文献   

11.
Properties of dust-ion acoustic solitary waves (DIASWs) in dusty plasmas composed of nonextensive electrons, cold fluid ions and stationary dust particles are investigated. The possibility of soliton formation and the effect of nonextensivity of the electron distribution on the soliton characters are studied using the pseudo-potential method. Regions of parameters in which a solitary wave can be propagated in the plasma is analyzed too. It is found that the solitary excitations strongly depend on the electron-ion density ratio (μ), Mach numbers (M) as well as the nonextensive parameter (q). It is shown that the domain of allowed Mach numbers depends drastically on the plasma parameters and especially on the electron nonextensivity. It is found that beyond a threshold value of the nonextensive parameter (q), dust-ion acoustic solitons are admitted.  相似文献   

12.
Propagation of the dust-acoustic shock waves (DASWs) in a dusty plasma containing arbitrarily charged dust, positive and negative ions following nonthermal (Cairn’s) distribution, and electrons following q-(nonextensive) distribution, has been investigated. The reductive perturbation technique is used to derive the Burgers equation for dust’s fluid dynamics. The basic features (viz. polarity, amplitude, speed, etc.) of DASWs are found to be significantly modified due to the effects of arbitrarily charged dust, number density and temperatures of heavier/lighter ions, nonextensive electrons, and dust kinematic viscosity. The present investigation can be very effective for understanding the nonlinear characteristics of the DASWs in space and laboratory dusty plasmas.  相似文献   

13.
A theoretical investigation is made on the formation as well as basic properties of dust-ion-acoustic (DIA) shock waves in a magnetized nonthermal dusty plasma consisting of immobile charge fluctuating dust, inertial ion fluid and nonthermal electrons. The reductive perturbation method is employed to derive the Korteweg-de Vries-Burgers equation governing the DIA shock waves. The combined effects of external static magnetic field, obliqueness, nonthermal electron distribution and dust charge fluctuation on the DIA shock waves are also investigated. It is shown that the dust charge fluctuation is a source of dissipation, and is responsible for the formation of the DIA shock waves. It is also observed that the combined effects of obliqueness, nonthermal electron distribution and dust charge fluctuation significantly modify the basic properties of the DIA shock waves. The implications of our results in space and laboratory dusty plasma situations are briefly discussed.  相似文献   

14.
A rigorous theoretical investigation on the characteristics of dust-ion-acoustic (DIA) shock waves in an unmagnetized multi component electron-positron-ion dusty plasma (consisting of inertial ions, electrons of two distinct temperatures referred to as low and high temperature superthermal electrons where superthermality is introduced via the κ-type of nonthermal distribution, Boltzmann distributed positrons, and negatively charged immobile dust grains) has been made both theoretically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The influence of superthermal electrons, Maxwellian positrons and ion kinematic viscosity, which are found in this investigation, significantly modify the basic features of DIA shock waves, are briefly discussed. The present investigation can be very effective for studying and understanding the basic characteristics of shock wave propagation through different astrophysical situations where distinct temperature superthermal electrons dominate the wave dynamics.  相似文献   

15.
The head-on collision of dust acoustic solitary waves are studied in a dusty plasma composed of dust and nonextensive distributed ions by using the extended version of Poincaré-Lighthill-Kuo (PLK) method. The effect of the nonextensivity on the phase shift is studied. It is found that the presence of nonextensive distributed ions plays a significant role on the collision of dust acoustic solitary waves.  相似文献   

16.
This article presents the first study of the head-on collision of two ion-acoustic solitary waves (IASWs) in magnetized plasmas with nonextensive electrons and positrons using the extended Poincaré-Lighthill-Kuo (PLK) method. The effects of the ion gyro-frequency to ion plasma frequency ratio, the positron to ion number density ratio, the electrons temperature to positrons temperature ratio, and the nonextensive parameter q on the phase shifts are investigated. It is shown that these factors significantly modify the phase shifts.  相似文献   

17.
The combined effects of the obliqueness and nonextensive electrons are incorporated in the study of ion-acoustic (IA) solitary waves in a magnetized electron-positron-ion (e-p-i) plasma. The nonlinear Korteweg-de Vries (KdV) equation is derived by using the reductive perturbation method. The plasma parameters such as, the degree of nonextensivity, obliqueness, positron concentration and temperature ratio are found to significantly affect the solitary waves characteristics. Also, a critical value of nonextensivity is found for which solitary structures transit from positive to negative potential. Our finding contributes to the physics of the nonlinear electrostatic excitation in astrophysical and cosmological scenarios like magnetosphere, polar cups region of pulsars, neutron stars and white dwarfs, etc., where magnetized e-p-i plasma can exist.  相似文献   

18.
The purpose of the present work is to investigate some nonlinear properties of the dust ion-acoustic (DIA) solitary waves in a four-component hot-magnetized dusty plasma consisting of charged dust grains, positively charged ions and two-temperature isothermal electrons. Applying a reductive perturbation theory, a nonlinear Korteweg-de Vries (KdV) equation for the first-order perturbed potential and a linear inhomogeneous KdV-type equation for the second-order perturbed potentials are derived. Stationary solutions of these coupled equations are obtained using a renormalization method. A method based on energy consideration is used to obtain a condition for stable solitons. The effects of two different types of isothermal electrons, external oblique magnetic field, concentration of negatively (positively) charged dust grains and higher-order nonlinearity on the nature of the DIA solitary waves are discussed. The numerical results are applied to Saturn's E-ring.  相似文献   

19.
A theoretical investigation has been made of obliquely propagating dust-acoustic solitary waves in a magnetized three-component dusty plasma, which consists of a negatively charged dust fluid, ions, and nonextensive electrons. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits a solitary wave solution. It has been shown that the combined effects of external magnetic field (obliqueness), ions, and electron nonextensivity change the behavior of these electrostatic solitary structures that have been found to exist with positive and negative potential in this dusty plasma model. The implications of our results in astrophysical and cosmological scenarios like vicinity of the Moon, magnetospheres of Jupiter and Saturn, dark-matter halos, hadronic matter, quark-gluon plasma, protoneutron stars, stellar polytropes etc. have been mentioned.  相似文献   

20.
The properties of arbitrary amplitude dust ion-acoustic (DIA) solitary waves (SWs) in a dusty plasma containing warm adiabatic ions, electrons following flat-topped velocity distribution, and arbitrarily (positively or negatively) charged immobile dust is studied by the pseudo-potential approach. The effects of ion temperature, resonant electrons, and dust number density are found to significantly modify the basic features of the DIA-SWs as well modify the parametric regime for the existence of compressive DIA-SWs. The pseudo-potential for small but finite amplitude limit is also analytically analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号