首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
《Gondwana Research》2013,24(4):1402-1428
The formation of collisional orogens is a prominent feature in convergent plate margins. It is generally a complex process involving multistage tectonism of compression and extension due to continental subduction and collision. The Paleozoic convergence between the South China Block (SCB) and the North China Block (NCB) is associated with a series of tectonic processes such as oceanic subduction, terrane accretion and continental collision, resulting in the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt. While the arc–continent collision orogeny is significant during the Paleozoic in the Qinling–Tongbai–Hong'an orogens of central China, the continent–continent collision orogeny is prominent during the early Mesozoic in the Dabie–Sulu orogens of east-central China. This article presents an overview of regional geology, geochronology and geochemistry for the composite orogenic belt. The Qinling–Tongbai–Hong'an orogens exhibit the early Paleozoic HP–UHP metamorphism, the Carboniferous HP metamorphism and the Paleozoic arc-type magmatism, but the three tectonothermal events are absent in the Dabie–Sulu orogens. The Triassic UHP metamorphism is prominent in the Dabie–Sulu orogens, but it is absent in the Qinling–Tongbai orogens. The Hong'an orogen records both the HP and UHP metamorphism of Triassic age, and collided continental margins contain both the juvenile and ancient crustal rocks. So do in the Qinling and Tongbai orogens. In contrast, only ancient crustal rocks were involved in the UHP metamorphism in the Dabie–Sulu orogenic belt, without involvement of the juvenile arc crust. On the other hand, the deformed and low-grade metamorphosed accretionary wedge was developed on the passive continental margin during subduction in the late Permian to early Triassic along the northern margin of the Dabie–Sulu orogenic belt, and it was developed on the passive oceanic margin during subduction in the early Paleozoic along the northern margin of the Qinling orogen.Three episodes of arc–continent collision are suggested to occur during the Paleozoic continental convergence between the SCB and NCB. The first episode of arc–continent collision is caused by northward subduction of the North Qinling unit beneath the Erlangping unit, resulting in UHP metamorphism at ca. 480–490 Ma and the accretion of the North Qinling unit to the NCB. The second episode of arc–continent collision is caused by northward subduction of the Prototethyan oceanic crust beneath an Andes-type continental arc, leading to granulite-facies metamorphism at ca. 420–430 Ma and the accretion of the Shangdan arc terrane to the NCB and reworking of the North Qinling, Erlangping and Kuanping units. The third episode of arc–continent collision is caused by northward subduction of the Paleotethyan oceanic crust, resulting in the HP eclogite-facies metamorphism at ca. 310 Ma in the Hong'an orogen and low-P metamorphism in the Qinling–Tongbai orogens as well as crustal accretion to the NCB. The closure of backarc basins is also associated with the arc–continent collision processes, with the possible cause for granulite-facies metamorphism. The massive continental subduction of the SCB beneath the NCB took place in the Triassic with the final continent–continent collision and UHP metamorphism at ca. 225–240 Ma. Therefore, the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt records the development of plate tectonics from oceanic subduction and arc-type magmatism to arc–continent and continent–continent collision.  相似文献   

2.
晚中生代东亚多板块汇聚与大陆构造体系的发展   总被引:4,自引:4,他引:0  
东亚大陆原型形成于三叠纪印支造山运动旋回,其周邻环绕的三大洋(古太平洋、蒙古-鄂霍茨克洋、中特提斯洋)于早侏罗世初期几乎同时向东亚大陆俯冲,开启了东亚多板块汇聚历史。文章通过总结东亚大陆晚中生代构造变形和构造岩浆事件的新近研究成果,简述了东亚多板块汇聚产生的三个陆缘汇聚构造系统(北部蒙古-鄂霍次克碰撞造山带、东部与俯冲有关的增生造山系统、西南部班公湖-怒江缝合构造带)、陆内汇聚构造变形体系和大陆伸展构造体系。在此基础上,重新构建了东亚多板块汇聚大陆构造-岩浆演化的时间框架,将其划分为三个阶段:早侏罗世(200~170 Ma)周邻大洋板块初始俯冲阶段和陆缘裂解事件,中晚侏罗世-早白垩世早期(170~135 Ma)周邻陆缘碰撞造山或俯冲增生造山作用、陆内再生造山作用和汇聚构造体系的形成;中晚白垩世(135~80 Ma)大陆岩石圈的减薄作用和大陆伸展构造体系的发育。研究认为,晚中生代东亚多板块汇聚在时空上的有序演化和深浅构造的复合叠加,不仅产生了东亚大陆复杂的陆缘和陆内构造体系,同时控制了中国东部燕山期爆发式岩浆-成矿作用,也使东亚构造地貌发生东西翘变,早期陆缘汇聚产生的东部高原因晚期大陆岩石圈的减薄和伸展而垮塌。东亚大陆构造体系的形成和演化与联合古大陆的裂解同步,晚中生代东亚多板块汇聚完成了从东亚到欧亚大陆的演替,以东亚大陆为核心的多板块汇聚格局一直延续至新生代,可能成为未来超大陆形成的起点。   相似文献   

3.
从洋-陆俯冲到陆-陆碰撞:回眸与展望   总被引:2,自引:0,他引:2  
大陆造山带的经典含义是指由于大陆地壳岩石在板块俯冲-碰撞的巨大挤压应力下,遭受强烈变形、变质和熔融作用,地壳发生大规模缩短、加厚和隆升而形成的地带.分布在大陆边缘和内部的造山带,经历从洋壳扩张、洋-陆俯冲到陆-陆碰撞的造山过程,形成"俯冲增生型"、"陆陆碰撞型"和远离板块边界的"陆内型"造山带.造山带类型的分析是识别地...  相似文献   

4.
中国大陆构造及动力学若干问题的认识   总被引:17,自引:2,他引:15  
中国(东亚)大陆受特提斯、古亚洲和太平洋构造体系的制约,具有复杂的地体构架和特殊的岩石圈结构。本文从地学前沿——大陆动力学的视野出发,围绕中国大陆构造及动力学四个方面的研究,总结已有的进展并提出新的思考:①中国大陆板块下的构造和整个地幔运动的构架:地震层析资料揭示西太平洋板片向西俯冲到东亚大陆之下,其倾角逐渐减小,最后近水平地插进400~600km深度的地幔过渡带中,成为箕状几何形态的超深俯冲板片。印度岩石圈板片超深俯冲至青藏高原之下~800km的深度,在喜马拉雅西构造结部位发生双向不对称深俯冲,印度岩石圈板片向东俯冲至东构造结东侧之下300~500km的深度。②中国大陆变质基底的再活化:中国大陆的大部分陆块未受显生宙以来构造、变质和岩浆事件的改造与激活,在冈瓦纳大陆北缘的印度陆块和阿拉伯陆块北缘还发育有形成于泛非期(530~470Ma)的造山带,其影响范围至高喜马拉雅、拉萨地体和三江地区。新生代的变质活化普遍出现在喜马拉雅、南迦巴瓦、拉萨地体和三江-缅甸地区,最新的变质年龄仅2~1Ma(南迦巴瓦)。③中国主要高压-超高压变质带的大地构造背景及深俯冲-折返机制:中国及邻区含榴辉岩的高压-超高压(HP/UHP)变质带有洋壳(深)俯冲和陆壳(深)俯冲之分。青藏高原中,大部分洋壳俯冲形成的高压/超高压变质带与原-古特提斯洋盆中诸多微陆块之间的小洋盆的汇聚碰撞有关,陆壳深俯冲作用有两种机制,它们分别是大陆块之间剪式碰撞和撕裂式岩石圈舌形板片的深俯冲。④中国大陆造山带的深部物质可经3类机制挤出,即深部地壳物质"牙膏式"挤出、侧向挤出和"挤压转换式"挤出。  相似文献   

5.
The spatial distribution of recent (under 2 Ma) volcanism has been studied in relation to mantle hotspots and the evolution of the present-day supercontinent which we named Northern Pangea. Recent volcanism is observed in Eurasia, North and South America, Africa, Greenland, the Arctic, and the Atlantic, Indian, and Pacific Oceans. Several types of volcanism are distinguished: mid-ocean ridge (MOR) volcanism; subduction volcanism of island arcs and active continental margins (IA + ACM); continental collision (CC) volcanism; intraplate (IP) volcanism related to mantle hotspots, continental rifts, and transcontinental belts. Continental volcanism is obviously related to the evolution of Northern Pangea, which comprises Eurasia, North and South America, India, Australia, and Africa. The supercontinent is large, with predominant continental crust. The geodynamic setting and recent volcanism of Northern Pangea are determined by two opposite processes. On one hand, subduction from the Pacific Ocean, India, the Arabian Peninsula, and Africa consolidates the supercontinent. On the other hand, the spreading of oceanic plates from the Atlantic splits Northern Pangea, changes its shape as compared with Wegener’s Pangea, and causes the Atlantic geodynamics to spread to the Arctic. The long-lasting steady subduction beneath Eurasia and North America favored intense IA + ACM volcanism. Also, it caused cold lithosphere to accumulate in the deep mantle in northern Northern Pangea and replace the hot deep mantle, which was pressed to the supercontinental margins. Later on, this mantle rose as plumes (IP mafic magma sources), which were the ascending currents of global mantle convection and minor convection systems at convergent plate boundaries. Wegener’s Pangea broke up because of the African superplume, which occupied consecutively the Central Atlantic, the South Atlantic, and the Indian Ocean and expanded toward the Arctic. Intraplate plume magmatism in Eurasia and North America was accompanied by surface collisional or subduction magmatism. In the Atlantic, Arctic, Indian, and Pacific Oceans, deep-level plume magmatism (high-alkali mafic rocks) was accompanied by surface spreading magmatism (tholeiitic basalts).  相似文献   

6.
邓军  葛良胜  杨立强 《岩石学报》2013,29(4):1099-1114
构造动力体制是研究区域大地构造演化和成矿地质环境的基础,而造山带作为全球金属矿产资源集中产出的地带,同时保留了地球地质构造演化最为丰富的记录,因而是用来解剖不同构造动力体制及相关成矿环境和成矿作用的主要对象.板块构造源于大洋,描述和解释的是以水平运动为主导的板块构造导致的大陆边缘增生和大洋板块消失及与其相关的地质现象,其动力学体制称为大洋动力体制;大陆构造描述和解释的主要是大陆内部而不是边缘发生的以垂直运动(壳幔相互作用)为主导的的大陆物质增生和消失及其相关的地质现象,其动力学体制称为大陆动力体制;而洋陆转换则是水平和垂直运动相互耦合、共同作用的动力学体制,描述和解释的是洋陆转换及其相关的地质现象,可以将其称为转换动力体制.不同构造动力体制在全球范围内具有同区转承和异区并存特点.每一种构造动力体制都可以激发造山作用,因此,地球上同时存在着不同类型的造山作用和造山带,可以归结为俯冲造山(带)、碰撞造山(带)、伸展造山(带)和陆内造山(带)等完整反映造山带演化过程的4种类型.复合造山概念科学地描述了全球不同造山带的复杂性.它具有三种涵义,一是不同时期相同或不同类型造山带在空间上的复合(叠置);二是同一造山带在不同地质历史阶段、不同构造动力体制下造山作用的时间复合(叠加);三是同时具有时空复合特征的复合造山带.对三江造山带时空结构的解析表明,它是具有时空复合特征的巨型复合造山带的典型代表.  相似文献   

7.
青藏高原南部拉萨地体的变质作用与动力学   总被引:3,自引:0,他引:3  
董昕  张泽明  向华  贺振宇 《地球学报》2013,34(3):257-262
拉萨地体位于欧亚板块的最南缘,它在新生代与印度大陆的碰撞形成了青藏高原和喜马拉雅造山带。因此,拉萨地体是揭示青藏高原形成与演化历史的关键之一。拉萨地体中的中、高级变质岩以前被认为是拉萨地体的前寒武纪变质基底。但新近的研究表明,拉萨地体经历了多期和不同类型的变质作用,包括在洋壳俯冲构造体制下发生的新元古代和晚古生代高压变质作用,在陆-陆碰撞环境下发生的早古生代和早中生代中压型变质作用,在洋中脊俯冲过程中发生的晚白垩纪高温/中压变质作用,以及在大陆俯冲带上盘加厚大陆地壳深部发生的两期新生代中压型变质作用。这些变质作用和伴生的岩浆作用表明,拉萨地体经历了从新元古代至新生代的复杂演化过程。(1)北拉萨地体的结晶基底包括新元古代的洋壳岩石,它们很可能是在Rodinia超大陆裂解过程中形成的莫桑比克洋的残余。(2)随着莫桑比克洋的俯冲和东、西冈瓦纳大陆的汇聚,拉萨地体洋壳基底经历了晚新元古代的(~650Ma)的高压变质作用和早古代的(~485Ma)中压型变质作用。这很可能表明北拉萨地体起源于东非造山带的北端。(3)在古特提斯洋向冈瓦纳大陆北缘的俯冲过程中,拉萨地体和羌塘地体经历了中古生代的(~360Ma)岩浆作用。(4)古特提斯洋盆的闭合和南、北拉萨地体的碰撞,导致了晚二叠纪(~260Ma)高压变质带和三叠纪(~220Ma)中压变质带的形成。(5)在新特提斯洋中脊向北的俯冲过程中,拉萨地体经历了晚白垩纪(~90Ma)安第斯型造山作用,形成了高温/中压型变质带和高温的紫苏花岗岩。(6)在早新生代(55~45Ma),印度与欧亚板块的碰撞,导致拉萨地体地壳加厚,形成了中压角闪岩相变质作用和同碰撞岩浆作用。(7)在晚始新世(40~30Ma),随着大陆的继续汇聚,南拉萨地体经历了另一期角闪岩相至麻粒岩相变质作用和深熔作用。拉萨地体的构造演化过程是研究汇聚板块边缘变质作用与动力学的最佳实例。  相似文献   

8.
The formation and evolution of basins in the China continent are closely related to the collages of many blocks and orogenic belts. Based on a large amount of the geological, geophysical, petroleum exploration data and a large number of published research results, the basement constitutions and evolutions of tectonic–sedimentary of sedimentary basins, the main border fault belts and the orogenesis of their peripheries of the basins are analyzed. Especially, the main typical basins in the eight divisions in the continent of China are analyzed in detail, including the Tarim, Ordos, Sichuan, Songliao, Bohai Bay, Junggar, Qiadam and Qiangtang basins. The main five stages of superimposed evolutions processes of basins revealed, which accompanied with the tectonic processes of the Paleo–Asian Ocean, Tethyan and Western Pacific domains. They contained the formations of main Cratons(1850–800 Ma), developments of marine basins(800–386 Ma), developments of Marine–continental transition basins and super mantle plumes(386–252 Ma), amalgamation of China Continent and developments of continental basins(252–205 Ma) and development of the foreland basins in the western and extensional faulted basin in the eastern of China(205–0 Ma). Therefore, large scale marine sedimentary basins existed in the relatively stable continental blocks of the Proterozoic, developed during the Neoproterozoic to Paleozoic, with the property of the intracontinental cratons and peripheral foreland basins, the multistage superimposing and late reformations of basins. The continental basins developed on the weak or preexisting divisional basements, or the remnant and reformed marine basins in the Meso–Cenozoic, are mainly the continental margins, back–arc basins, retroarc foreland basins, intracontinental rifts and pull–apart basins. The styles and intensity deformation containing the faults, folds and the structural architecture of regional unconformities of the basins, responded to the openings, subductions, closures of oceans, the continent–continent collisions and reactivation of orogenies near the basins in different periods. The evolutions of the Tianshan–Mongol–Hinggan, Kunlun–Qilian–Qinling–Dabie–Sulu, Jiangshao–Shiwandashan, Helanshan–Longmengshan, Taihang–Wuling orogenic belts, the Tibet Plateau and the Altun and Tan–Lu Fault belts have importantly influenced on the tectonic–sedimentary developments, mineralization and hydrocarbon reservoir conditions of their adjacent basins in different times. The evolutions of basins also rely on the deep structures of lithosphere and the rheological properties of the mantle. The mosaic and mirroring geological structures of the deep lithosphere reflect the pre–existed divisions and hot mantle upwelling, constrain to the origins and transforms dynamics of the basins. The leading edges of the basin tectonic dynamics will focus on the basin and mountain coupling, reconstruction of the paleotectonic–paleogeography, establishing relationship between the structural deformations of shallow surface to the deep lithosphere or asthenosphere, as well as the restoring proto–basin and depicting residual basin of the Paleozoic basin, the effects of multiple stages of volcanism and paleo–earthquake events in China.  相似文献   

9.
造山作用概念和分类   总被引:1,自引:0,他引:1  
本文从造山作用的特征标志出发讨论了Sengor造山带定义的缺陷, 总结了造山作用的六条特征标志,并给出了造山作用新的定义。该定义包括了造山作用的起因、特征标志和大地构造背景。评述了造山带陆内、陆缘、陆间三分法方案的不足之处和剪压造山带的单独设类问题,提出了造山带板内、俯冲、碰撞三分方案。针对碰撞造山带,笔者在总结探讨现有分类方案的优点的基础上, 提出碰撞造山带陆陆碰撞、碰撞增生、弧陆碰撞和无大陆型碰撞造山带四分法方案,其中无大陆型碰撞造山带是描述陆壳物质形成初期计体拼合聚合过程的新类型。  相似文献   

10.
Problems of geodynamics, tectonics, and metallogeny of orogens   总被引:1,自引:0,他引:1  
This is an overview of papers published in the present volume of Russian Geology and Geophysics (Geologiya i Geofizika), a special issue that covers presentations at the International Conference “Geodynamic Evolution, Tectonics, and Metallogeny of Orogens”, held on 28–30 June 2010 in Novosibirsk (http://altay2010.igm.nsc.ru). The workshop concerned the general evolution of the Central Asian orogenic system, with a special focus on continental growth, history of oceans and continental margins, and role of plumes in accretionary-collisional tectonics and metallogeny. The discussed papers are grouped in three sections: 1. General issues of geodynamics and geodynamic evolution; 2. Role of mantle plumes in tectonics, magmatism, and metallogeny; 3. Regional tectonic and geodynamic problems of Asia.The synthesis of data reported at the workshop demonstrates critical importance of mantle plumes for the evolution of the Paleoasian ocean and for orogenic processes in Central Asia.In addition to three large pulses of continental growth at about 2900–2700, 1900–1700, and 900–700 Ma, three orogenic stages have been distinguished in the geological history of Eurasia: Late Cambrian–Ordovician (510–470 Ma), Late Devonian–Early Carboniferous (380–320 Ma), and Permian–Triassic (285–230 Ma). In the evolution of the Central Asian orogen, these stages were associated with events of ultramafic-mafic and bimodal plume magmatism which promoted translithospheric strike-slip faulting. Plume magmatism was an active agent in ocean opening when the Paleotethys, Ural, Ob–Zaisan, and Turkestan basins appeared while the Late Cambrian–Ordovician orogen was forming in Central Asia (North Kazakhstan, Altai–Sayan, Tuva, and Baikal areas). Closure of the Ob–Zaisan ocean and collision of the Kazakhstan–Baikal continent with Siberia in the Late Devonian–Early Carboniferous was coeval with the maximum opening of the Turkestan ocean, possibly, as a consequence of plume activity. The Tarim (285–275 Ma) and Siberian (250–230 Ma) superplume events corresponded in time to closure of the Ural ocean and opening of the Meso- and Neotethys, as well as to major metallogenic events.  相似文献   

11.
亚洲东部存在一个巨大的三角形地震构造区域,大体上,喜马拉雅山脉、帕米尔—天山—阿尔泰山—贝加尔和东经105°线是它的3个边界,主要覆盖中国和蒙古国西部众多高原、山脉及山间盆地。三角区内现今构造活动和地震广泛强烈,地壳破碎,显示不均匀的块体边界和块内变形;区外基本上是稳定的刚性陆块,地震很少,变形较弱,处于整体缓慢运动之中。这个宽阔的板内变形区起源于印度、菲律宾海—西太平洋和欧亚三大板块之间的动力作用以及深部地幔流的影响。向北快速运动的印度次大陆已近水平地插入到西藏板块下,沿喜马拉雅弧产生多种运动和变形,并向亚洲内部远距离地扩散。沿东经95°~100°,向北的地壳运动向东和东南方向偏转,阻截了喜马拉雅弧东端的北向运动;而在喜马拉雅弧西端,帕米尔继续向北挤进中亚,受天山—阿尔泰山—贝加尔一线西北側稳定地壳的限制,扩散的变形被中国、蒙古、俄罗斯边境地区一系列EW向和NW向的老断层吸收并在它们的西端终止。菲律宾海—西太平洋向欧亚大陆的消减-俯冲导致沿海沟-岛弧的漫长而狭窄的地震带,但对亚洲大陆的水平挤压较小,未能阻挡亚洲大陆东部向东移动。其部分原因可能是俯冲板片受到来自欧亚大陆下的ES向地幔流的推挤,这个ES向地幔流与来自印度下面的N向地幔流在西藏中部汇合并向东偏转,在大尺度上与GPS观测到的地表移动图像一致。  相似文献   

12.
The Tethyside orogen, a direct consequence of the separation of the Gondwanaland and the accretion of Eurasia, is a huge composite orogenic system that was generated during Paleozoic–Mesozoic Tethyan accretionary and Cenozoic continent–continent collisional orogenesis within the Tethyan domain. The Tethyside orogenic system consists of a group of diverse Tethyan blocks, including the Istanbul, Sakarya, Anatolide–Taurides, Central Iran, Afghanistan, Songpan–Ganzi, Eastern Qiangtang, Western Qiangtang, Lhasa, Indochina, Sibumasu, and Western Burma blocks, which were separated from Gondwana, drifted northwards, and accreted to the Eurasian continent by opening and closing of two successive Tethyan oceanic basins (Paleo-Tethyan and Neo-Tethyan), and subsequent continental collision.The Tethyan domain represents a metallogenic amalgamation across diverse geodynamic settings, and is the best endowed of all large orogenic systems, such as those associated with the Cordilleran and Variscan orogenies. The ore deposits within the Tethyan domain include porphyry Cu–Mo–Au, granite-related Sn–W, podiform chromite, sediment-hosted Pb–Zn deposits, volcanogenic massive sulfide (VMS) Cu–Pb–Zn deposits, epithermal and orogenic Au polymetallic deposits, as well as skarn Fe polymetallic deposits. At least two metallogenic supergroups have been identified within the eastern Tethyan metallogenic domain (ETMD): (1) metallogenesis related to the accretionary orogen, including the Zhongdian, Bangonghu, and Pontides porphyry Cu belts, the Pontides, Sanandaj–Sirjan, and Sanjiang VMS belts, the Lasbela–Khuzdar sedimentary exhalative-type (SEDEX) Pb–Zn deposits, and podiform chromite deposits along the Tethyan ophiolite zone; and (2) metallogenesis related to continental collision, including the Gangdese, Yulong, Arasbaran–Kerman and Chagai porphyry Cu belts, the Taurus, Sanandaj–Sirjan, and Sanjiang Mississippi Valley-type (MVT) Pb–Zn belts, the Southeast Asia and Tengchong–Lianghe Sn–W belts or districts, the Himalayan epithermal Sb–Au–Pb–Zn belt, the Piranshahr–Saqez–Sardasht and Ailaoshan orogenic Au belts, and the northwest Iran and northeastern Gangdese skarn Fe polymetallic belts. Mineral deposits that are generated with tectonic evolution of the Tethys form in specific settings, such as accretionary wedges, magmatic arcs, backarcs, and passive continental margins within accretionary orogens, and the foreland basins, foreland thrust zones, collisional sutures, collisional magmatic zones, and collisional deformation zones within collisional orogens.Synthesizing the architecture and tectonic evolution of collisional orogens within the ETMD and comparisons with other collisional orogenic systems have led to the identification of four basic types of collision: orthogonal and asymmetric (e.g., the Tibetan collision), orthogonal and symmetric (Pyrenees), oblique and symmetric (Alpine), and oblique and asymmetric (Zagros). The tectonic evolution of collisional orogens typically includes three major processes: (1) syn-collisional continental convergence, (2) late-collisional tectonic transform, and (3) post-collisional crustal extension, each forming distinct types of ore deposits in specific settings. The resulting synthesis leads us to propose a new conceptual framework for the collision-related metallogenic systems, which may aid in deciphering relationships among ore types in other comparable collisional orogens. Three significant processes, such as breaking-off of subducted Tethyan slab, large-scale strike-slip faulting, shearing and thrusting, and delamination (or broken-off) of lithosphere, developed in syn-, late- and post-collisional periods, repsectively, were proposed to act as major driving forces, resulting in the formation of the collision-related metallogenic systems. Widespread appearance of juvenile crust and intense inteaction between mantle and crust within the Himalayan–Zagros orogens indicate that collisional orogens have great potential for the discovery of large or giant mineral deposits.  相似文献   

13.
Arc–continent collision is a key process of continental growth through accretion of newly grown magmatic arc crust to older continental margin. We present 2D petrological–thermo-mechanical models of arc–continent collision and investigate geodynamic regimes of this process. The model includes spontaneous slab bending, dehydration of subducted crust, aqueous fluid transport, partial melting of the crustal and mantle rocks and magmatic crustal growth stemming from melt extraction processes. Results point to two end-member types of subsequent arc–continent collisional orogens: (I) orogens with remnants of accretion prism, detached fragments of the overriding plate and magmatic rocks formed from molten subducted sediments; and (II) orogens mainly consisting of the closed back-arc basin suture, detached fragments of the overriding plate with leftovers of the accretion prism and quasi insignificant amount of sediment-derived magmatic rocks. Transitional orogens between these two endmembers include both the suture of the collapsed back-arc basin and variable amounts of magmatic production. The orogenic variability mainly reflects the age of the subducting oceanic plate. Older, therefore colder and denser oceanic plates trigger subduction retreat, which in turn triggers necking of the overriding plate and opening of a backarc basin in which new oceanic lithosphere is formed from voluminous decompression melting of the rising hot asthenosphere. In this case, subducted sediments are not heated enough to melt and generate magmatic plumes. On the other hand, young and less dense slabs do not retreat, which hampers opening of a backarc basin in the overriding plate while subducted sediments may reach their melting temperature and develop trans-lithospheric plumes. We have also investigated the influences of convergence rate and volcanic/plutonic rocks' ratio in newly forming lithosphere. The predicted gross-scale orogenic structures find similarities with some natural orogens, in particular with deeply eroded orogens such as the Variscides in the Bohemian Massif.  相似文献   

14.
The paper reports results of the analysis of the spatial distribution of modern (younger than 2 Ma) volcanism in the Earth’s northern hemisphere and relations between this volcanism and the evolution of the North Pangaea modern supercontinent and with the spatial distribution of hotspots of the Earth’s mantle. Products of modern volcanism occur in the Earth’s northern hemisphere in Eurasia, North America, Greenland, in the Atlantic Ocean, Arctic, Africa, and the Pacific Ocean. As anywhere worldwide, volcanism in the northern hemisphere of the Earth occurs as (a) volcanism of mid-oceanic ridges (MOR), (b) subduction-related volcanism in island arcs and active continental margins (IA and ACM), (c) volcanism in continental collision (CC) zones, and (d) within-plate (WP) volcanism, which is related to mantle hotspots, continental rifts, and intercontinental belts. These types of volcanic areas are fairly often neighboring, and then mixed volcanic areas occur with the persistent participation of WP volcanism. Correspondingly, modern volcanism in the Earth’s northern hemisphere is of both oceanic and continental nature. The latter is obviously related to the evolution of the North Pangaea modern supercontinent, because it results from the Meso-Cenozoic evolution of Wegener’s Late Paleozoic Pangaea. North Pangaea in the Cenozoic comprises Eurasia, North and South America, India, and Africa and has, similar to other supercontinents, large sizes and a predominantly continental crust. The geodynamic setting and modern volcanism of North Pangaea are controlled by two differently acting processes: the subduction of lithospheric slabs from the Pacific Ocean, India, and the Arabia, a process leading to the consolidation of North Pangaea, and the spreading of oceanic plates on the side of the Atlantic Ocean, a process that “wedges” the supercontinent, modifies its morphology (compared to that of Wegener’s Pangaea), and results in the intervention of the Atlantic geodynamic regime into the Arctic. The long-lasting (for >200 Ma) preservation of tectonic stability and the supercontinental status of North Pangaea are controlled by subduction processes along its boundaries according to the predominant global compression environment. The long-lasting and stable subduction of lithospheric slabs beneath Eurasia and North America not only facilitated active IA + ACM volcanism but also resulted in the accumulation of cold lithospheric material in the deep mantle of the region. The latter replaced the hot mantle and forced this material toward the margins of the supercontinent; this material then ascended in the form of mantle plumes (which served as sources of WP basite magmas), which are diverging branches of global mantle convection, and ascending flows of subordinate convective systems at the convergent boundaries of plates. Subduction processes (compressional environments) likely suppressed the activity of mantle plumes, which acted in the northern polar region of the Earth (including the Siberian trap magmatism) starting at the latest Triassic until nowadays and periodically ascended to the Earth’s surface and gave rise to WP volcanism. Starting at the breakup time of Wegener’s Pangaea, which began with the opening of the central Atlantic and systematically propagated toward the Arctic, marine basins were formed in the place of the Arctic Ocean. However, the development of the oceanic crust (Eurasian basin) took place in the latter as late as the Cenozoic. Before the appearance of the Gakkel Ridge and, perhaps, also the oceanic portion of the Amerasian basin, this young ocean is thought to have been a typical basin developing in the central part of supercontinents. Wegener’s Pangaea broke up under the effect of mantle plumes that developed during their systematic propagation to the north and south of the Central Atlantic toward the North Pole. These mantle plumes were formed in relation with the development of global and local mantle convection systems, when hot deep mantle material was forced upward by cold subducted slabs, which descended down to the core-mantle boundary. The plume (WP) magmatism of Eurasia and North America was associated with surface collision- or subduction-related magmatism and, in the Atlantic and Arctic, also with surface spreading-related magmatism (tholeiite basalts).  相似文献   

15.
摘要:大陆造山带与沉积盆地之间具有十分密切的内在联系,空间上相互依存,物质上相互补偿,构造上相互作用,时间上同步演化。这些内在联系体现在统一的形成机制上:大陆造山带和沉积盆地是在大陆边缘俯冲板片脱水熔融和大陆内部地幔柱(枝)上隆的热动力作用下,地壳由盆向山侧向流动,导致盆山地壳物质发生循环运动。青藏高原与周边盆地的耦合作用十分典型。青藏高原不是印度板块与欧亚板块碰撞的结果,而是形成于下地壳流动驱动的板内盆山作用。青藏高原板内盆山耦合可分为两个阶段:(1)板内造山成盆阶段,表现为180~120 Ma→65~30 Ma→23~7 Ma从青藏高原北部和东部盆山系统→青藏高原中部盆山系统→青藏高原南部盆山系统有序迁移,以构造隆升、水平运动、地质作用和大规模板内金属成矿为特征;(2)均衡成山成盆阶段,表现为从36 Ma开始,青藏高原整体快速隆升和周边沉积盆地边缘坳陷带巨厚的磨拉石沉积,以36 Ma B.P.、25 Ma B.P.、18~12 Ma B.P.、 08 Ma B.P.和015 Ma B.P.等一系列脉动式快速隆升、垂直运动、地理作用和水系 环境变化为特征。大陆板内盆山构造演化经历从伸展构造向挤压构造的转换,伴随盆地主动作用转变成造山带主动作用。大陆下地壳流动和盆山耦合形成非安德森式的低角度拆离断层、波状起伏逆冲断层和异常共轭关系走滑断层。  相似文献   

16.
There is a correlation of global large igneous province (LIP) events with zircon age peaks at 2700, 2500, 2100, 1900, 1750, 1100, and 600 and also probably at 3450, 3000, 2000, and 300 Ma. Power spectral analyses of LIP event distributions suggest important periodicities at 250, 150, 100, 50, and 25 million years with weaker periodicities at 70–80, 45, and 18–20 Ma. The 25 million year periodicity is important only in the last 300 million years. Some LIP events are associated with granite-forming (zircon-producing) events and others are not, and LIP events at 1900 and 600 Ma correlate with peaks in craton collision frequency. LIP age peaks are associated with supercontinent rifting or breakup, but not dispersal, at 2450–2400, 2200, 1380, 1280, 800–750, and ≤200 Ma, and with supercontinent assembly at 1750 and 600 Ma. LIP peaks at 2700 and 2500 Ma and the valley between these peaks span the time of Neoarchaean supercraton assemblies. These observations are consistent with plume generation in the deep mantle operating independently of the supercontinent cycle and being controlled by lower-mantle and core-mantle boundary thermochemical dynamics. Two processes whereby plumes can impact continental assembly and breakup are (1) plumes may rise beneath supercontinents and initiate supercontinent breakup, and (2) plume ascent may increase the frequency of craton collisions and the rate of crustal growth by accelerating subduction.  相似文献   

17.
M. V. Mints 《Geotectonics》2007,41(4):257-280
The evolution of the North American, East European, and Siberian cratons is considered. The Paleoproterozoic juvenile associations concentrate largely within mobile belts of two types: (1) volcanic-sedimentary and volcanic-plutonic belts composed of low-grade metamorphic rocks of greenschist to low-temperature amphibolite facies and (2) granulite-gneiss belts with a predominance of high-grade metamorphic rocks of high-temperature amphibolite to ultrahigh-temperature granulite facies. The first kind of mobile belt includes paleosutures made up of not only oceanic and island-arc rock associations formed in the process of evolution of relatively short-lived oceans of the Red Sea type but also peripheral accretionary orogens consisting of oceanic, island-arc, and backarc terranes accreted to continental margins. The formation of the second kind of mobile belt was related to the activity of plumes expressed in vigorous heating of the continental crust; intraplate magmatism; formation of rift depressions filled with sediments, juvenile lavas, and deposits of pyroclastic flows; and metamorphism of lower and middle crustal complexes under conditions of granulite and high-temperature amphibolite facies that, in addition, spreads over the fill of rift depressions. The evolution of mobile belts pertaining to both types ended with thrusting in a collisional setting. Five periods are recognized in Paleoproterozoic history: (1) origin and development of a superplume in the mantle that underlay the Neoarchean supercontinent; this process resulted in separation and displacement of the Fennoscandian fragment of the supercontinent (2.51–2.44 Ga); (2) a period of relatively quiet intraplate evolution complicated by locally developed plume-and plate-tectonic processes (2.44–2.0 (2.11) Ga); (3) the origin of a new superplume in the subcontinental mantle (2.0–1.95 Ga); (4) the complex combination of intense global plume-and plate-tectonic processes that led to the partial breakup of the supercontinent, its subsequent renascence and the accompanying formation of collisional orogens in the inner domains of the renewed Paleoproterozoic supercontinent, and the emergence of accretionary orogens along some of its margins (1.95–1.75 (1.71) Ga); and (5) postorogenic and anorogenic magmatism and metamorphism (<1.75 Ga).  相似文献   

18.
Based on the discussion on the intracontinental orogenic igneous rocks formed after India- Asia collision (40 or 45 Ma ),the intracontinemal orogenic processes of Qinghai-Xizang (Tibet)-Himalaya are traced . Muscovite/two mica granite is considered as a petrological record of intracontinental subduction. Volcanic rocks of shoshonite series are believed to be the products of the orogenic and outside cratonic lithosphere convergence . The intracontinental orogenic igneous rocks are developed only on the margins of the orogenic belt. The pairing phenomenon of the igneous rock zones is regarded as one of the best signs to recognize the special range of orogenic belt . The stage of magmatic activity is a representation and indicator of orogenic episode . Three pairs of the igneous events in Oligocene , Miocene and Pleistocene and their space distribution indicate three corresponding orogenic episodes and the horizontal expansion across the orogenic belt , respectively , On the northern and southern margins of  相似文献   

19.
燕山运动和中国大陆晚中生代的活化   总被引:36,自引:30,他引:36       下载免费PDF全文
吴根耀 《地质科学》2002,37(4):453-461
燕山运动可分为2类:一是印支期拼合大陆外侧的新特提斯洋消减及嗣后的碰撞引起的内硅镁质的造山运动,形成滇藏、东南沿海、苏鲁和蒙古-鄂霍次克造山带;二是拼合大陆内部因古缝合线或古深断裂活化发生的内硅铝质的(陆内的)造山运动,前者如川黔湘-鄂南、湘赣闽和阴山-燕山褶皱-冲断系,后者如川南-滇东和中扬子褶皱-冲断系及江南冲断-推覆带.文章剖析了中国大陆晚中生代活化的时空特征,指出陆内造山带及冲断带的发育受制于东亚燕山期山系的形成,简述了研究构造-岩浆活化对内生矿产和油气资源评价的指导意义.  相似文献   

20.
A comprehensive synthesis of U–Pb geochronology and Hf isotopes of zircons from granulite/pyroxenite xenoliths entrained in Phanerozoic magmatic rocks and inherited xenocrysts from the associated lower crust rocks from various domains of the North China Craton (NCC) provides new insights into understanding the Phanerozoic evolution of the lower crust in this craton. Episodic widespread magma underplating into the ancient lower crust during Phanerozoic has been identified throughout the NCC from early Paleozoic to Cenozoic, broadly corresponding to the Caledonian, Hercynian, Indosinian, Yanshanian, and Himalayan orogenies on the circum-craton mobile belts. The early Paleozoic (410–490 Ma) ages come from xenoliths in the northern and southern margins as well as the central domain of the Eastern Block of the craton which mark the first phase of Phanerozoic magma underplating since the final cratonization of the NCC in the Paleoproterozoic. The magmatism coincided with the northward subduction of the Paleotethysian Ocean in the south and the southward subduction of the Paleoasian Ocean in the north. The subduction not only triggered magma underplating but also led to the emplacement of the diamondiferous kimberlites on the craton, marking the initiation of decratonization. The late Paleozoic event as represented by the 315 Ma garnet pyroxenite and/or lherzolite xenoliths in Hannuoba was restricted to the northern and southern margins of the craton, correlating with the arc magmatism continuous associated with the subduction of the Paleotethysian and Paleoasian Oceans and resulting in the interaction between the melts from subducted slabs and the lithospheric mantle/lower crust. The early Mesozoic event also dominantly occurred in the northern and southern margins and was related with the final closure of the Paleotethysian and Paleoasian Oceans as well as the collisional orogeny between the NCC and the Yangtze Craton. The late Mesozoic (ca. 120 Ma) was a major and widespread magmatic event which manifested throughout the NCC, associated with the geothermal overturn due to the giant south Pacific mantle plume. The Cenozoic magmatism, identified only in the dark clinopyroxenite xenoliths in the Hannuoba, was probably induced by the Himalayan movement in eastern Asia and might also have been influenced by the subduction of the Pacific Ocean to some extent. These widespread and episodic magma underplating or rejuvenation of the ancient lower crust beneath the NCC revealed by U–Pb and Hf isotope data resulted from the corresponding addition of juvenile materials from mantle to lower crust, with a mixing of the old crust with melts. The process inevitably resulted in the compositional modification of the ancient lower crust, similar to the compositional transformation from the refractory lithospheric mantle to a fertile one through the refractory peridotite — infiltrated melt reaction as revealed in the lithospheric mantle beneath the craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号