首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
A comprehensive study has been carried out to subdivide and correlate the Upper Carboniferous and Permian sedimentary successions in the Junggar basin based on outcrops and drilling and geophysical data. The study results, combined with geological analyses of the basin's periphery and the basement, as well as studies of the sedimentary rocks within the basin, the unconformities, tectonic geometry, kinematics and geodynamics, lead to the conclusion that the Junggar basin was characterized by the development of foreland basin systems during the Late Carboniferous and Permian. During that period, three foreland basin systems were developed: (1) the northwest foreland basin system, which trended nearly north-south from Mahu to the Chepaizi Palaeo-mountain during its early stage of development and thus it was also referred to as the west foreland basin system; (2) the Karamaili foreland basin system in the east and (3) the Northern Tianshan foreland basin system in the south. These systems are different in s  相似文献   

2.
The Late Miocene–Pliocene Loxton Sand strandplain extends across the western part of the Murray Basin in southeastern Australia. Gamma logging on groundwater bores surrounding Lake Tutchewop, which lies close to the eastern limit of this strandplain, showed that a heavy mineral layer within the Loxton Sand is displaced across the northern extension of the Leaghur Fault. A crevasse splay sand within the overlying Pliocene Shepparton Formation is also displaced, indicating that tectonic activity along the Leaghur Fault occurred in the Early Pliocene. This coincides with the Kosciusko Uplift, a major phase of Neogene tectonism across southeastern Australia, which also resulted in movement along the Danyo, Hindmarsh, Tyrell and Avoca Faults in northwestern Victoria.  相似文献   

3.
Reef formation in the Late Ordovician was relatively widespread in the Sandbian and Katian times. In the late Katian, it gradually reduced and ended in the Hirnantian, before the end of the Ordovician. In parallel, reef-building skeleton frame-building biota disappeared and was replaced with algae and calcimicrobes.  相似文献   

4.
This paper reports U–Pb–Hf isotopes of detrital zircons from Late Triassic–Jurassic sediments in the Ordos, Ningwu, and Jiyuan basins in the western-central North China Craton (NCC), with the aim of constraining the paleogeographic evolution of the NCC during the Late Triassic–Jurassic. The early Late Triassic samples have three groups of detrital zircons (238–363 Ma, 1.5–2.1 Ga, and 2.2–2.6 Ga), while the latest Late Triassic and Jurassic samples contain four groups of detrital zircons (154–397 Ma, 414–511 Ma, 1.6–2.0 Ga, and 2.2–2.6 Ga). The Precambrian zircons in the Late Triassic–Jurassic samples were sourced from the basement rocks and pre-Late Triassic sediments in the NCC. But the initial source for the 238–363 Ma zircons in the early Late Triassic samples is the Yinshan–Yanshan Orogenic Belt (YYOB), consistent with their negative zircon εHf(t) values (−24 to −2). For the latest Late Triassic and Jurassic samples, the initial source for the 414–511 Ma zircons with εHf(t) values of −18 to +9 is the Northern Qinling Orogen (NQO), and that for the 154–397 Ma zircons with εHf(t) values of −25 to +12 is the YYOB and the southeastern Central Asian Orogenic Belt (CAOB). In combination with previous data of late Paleozoic–Early Triassic sediments in the western-central NCC and Permian–Jurassic sediments in the eastern NCC, this study reveals two shifts in detrital source from the late Paleozoic to Jurassic. In the Late Permian–Early Triassic, the western-central NCC received detritus from the YYOB, southeastern CAOB and NQO. However, in the early Late Triassic, detritus from the CAOB and NQO were sparse in basins located in the western-central NCC, especially in the Yan’an area of the Ordos Basin. We interpret such a shift of detrital source as result of the uplift of the eastern NCC in the Late Triassic. In the latest Late Triassic–Jurassic, the southeastern CAOB and the NQO restarted to be source regions for basins in the western-central NCC, as well as for basins in the eastern NCC. The second shift in detrital source suggests elevation of the orogens surrounding the NCC and subsidence of the eastern NCC in the Jurassic, arguing against the presence of a paleo-plateau in the eastern NCC at that time. It would be subsidence rather than elevation of the eastern NCC in the Jurassic, due to roll-back of the subducted paleo-Pacific plate and consequent upwelling of asthenospheric mantle.  相似文献   

5.
The early stage of Sichuan Basin formation was controlled by the convergence of three major Chinese continental blocks during the Indosinian orogeny that include South China,North China,and Qiangtang blocks.Although the Late Triassic Xujiahe Formation is assumed to represent the commencement of continental deposition in the Sichuan Basin,little research is available on the details of this particular stratum.Sequence stratigraphic analysis reveals that the Xujiahe Formation comprises four third-order depositional sequences.Moreover,two tectono-sedimentary evolution stages,deposition and denudation,have been identified.Typical wedge-shaped geometry revealed in a cross section of the southern Sichuan Basin normal to the Longmen Shan fold-thrust belt is displayed for the entire Xujiahe Formation.The depositional extent did not cover the Luzhou paleohigh during the LST1 to LST2 (LST,TST and HST mean Iowstand,transgressive and highstand systems tracts,1,2,3 and 4 represent depositional sequence 1,2,3 and 4),deltaic and fluvial systems fed sediments from the Longmen Shan belt,Luzhou paleohigh,Hannan dome,and Daba Shan paleohigh into a foreland basin with a centrally located lake.The forebulge of the western Sichuan foreland basin was located southeast of the Luzhou paleohigh after LST2.According to the principle of nonmarine sequence stratigraphy and the lithology of the Xujiahe Formation,four thrusting events in the Longmen Shan fold-thrust belt were distinguished,corresponding to the basal boundaries of sequences 1,2,3,and 4.The northern Sichuan Basin was tilted after the deposition of sequence 3,inducing intensive erosion of sequences 3 and 4,and formation of wedge-shaped deposition geometry in sequence 4 from south to north.The tilting probably resulted from small-scale subduction and exhumation of the western South China block during the South and North China block collision.  相似文献   

6.
Mesozoic ophiolites crop out discontinuously in the Indo‐Myanmar Ranges in NE India and Myanmar, and represent the remnants of the Neotethyan oceanic lithosphere. These ophiolites in the Indo‐Myanmar Ranges are the southern continuation of the Neotethyan ophiolites occurring along the Yarlung Zangbo Suture Zone in southern Tibet farther northwes, as indicated by their coeval crystallization ages and geochemical compositions. The Kalaymyo ophiolite is located in the central part of the Indo‐Myanmar Ranges (Myanmar). The Kalaymyo ophiolite are composed of olivine (Fo = 89.8–90.5), orthopyroxene (En86‐91Wo1‐4Fs8‐10; Mg#=89.6–91.9), clinopyroxene (En46‐49Wo47‐50Fs3‐5; Mg# = 90.9–93.6) and spinel (Mg# = 67.1–78.9; Cr# = 13.5–31.5), and have relatively homogeneous whole‐rock compositions with Mg# of 90.1–90.8 and SiO2 (41.5–43.65 wt.%), Al2O3 (1.66–2.66 wt.%) and CaO (1.45–2.67 wt.%) contents. They display Light Rare Earth Element (LREE)‐depleted chondrite‐normalized REE patterns and show a slight enrichment from Pr to La. The Kalaymyo peridotites are characterized by Pd‐enriched chondrite‐normalized PGE patterns with superchondritic (Pd/Ir)CN ratios (1.15–2.36). Their calculated oxygen fugacities range between QFM–0.57 and QFM+0.90. These features collectively suggest that the Kalaymyo peridotites represent residual upper mantle rocks after low to moderate degrees (5–15%) of partial melting at a mid‐ocean‐ridge environment. The observed enrichment in LREE and Pd was a result of their reactions with enriched MORB‐like melts, percolating through these already depleted, residual peridotites. The Kalaymyo and other ophiolites in the Indo‐Myanmar Ranges hence represent mid‐ocean ridge–type Tethyan oceanic lithosphere derived from a downgoing plate and accreted into a westward migrating subduction–accretion system along the eastern margin of India.  相似文献   

7.
Plate subduction leads to complex exhumation processes on continents. The Huangling Massif lies at the northern margin of the South China Block. Whether the Huangling Massif was exhumed as a watershed of the middle reaches of the Paleo-Yangtze River during the Mesozoic remains under debate. We examined the exhumation history of the Huangling Massif based on six granite bedrock samples, using apatite fission track (AFT) and apatite and zircon (U-Th)/He (AHe and ZHe) thermochronology. These samples yielded ages of 157–132 Ma (ZHe), 119–106 Ma (AFT), and 114–72 Ma (AHe), respectively. Thermal modeling revealed that three phases of rapid cooling occurred during the Late Jurassic–Early Cretaceous, late Early Cretaceous, and Late Cretaceous. These exhumation processes led to the high topographic relief responsible for the emergence of the Huangling Massif. The integrated of our new data with published sedimentological records suggests that the Huangling Massif might have been the watershed of the middle reaches of the Paleo-Yangtze River since the Cretaceous. At that time, the rivers flowed westward into the Sichuan Basin and eastward into the Jianghan Basin. The subduction of the Pacific Plate beneath the Asian continent in the Mesozoic deeply influenced the geomorphic evolution of the South China Block.  相似文献   

8.
Eighty-one samples were selected from the Late Pleistocene Xifeng loess profile and analyzed for their element abundances using instrumental neutron activation analysis,and for ^10Be using the AMS method.The results show that the variations of element abundance and ^10Be with dept are similar to those of δ^18O in DSDP ,and may be considered as an indicator of climatic and environmental changes.  相似文献   

9.
Proterozoic rocks in the northeastern Jiangxi-southern Anhui may fall into three rock associations whichbelong to different but interrelated tectono-palaeogeographic units. The field geological and petrochemicalcharacteristics of the northeastern Jiangxi-western Zhejiang volcanic zone indicate that it was once an islandarc zone. An analysis of the sedimentary characteristics of Proterozoic turbidites lying north of the zone has re-vealed the history of development of a back-arc basin. According to the type of the Proterozoic rock formationsouth of the zone, it may be deduced that the formation might represent the fore-arc and trench areas. Bymeans of various tectono-palaeogeographic analyses, the relation between the island arc zone and the back-arcbasin is inferred and the Late Proterozoic tectono-palaeogeographic development is discussed by using themodel of the trench-arc-basin system.  相似文献   

10.
《International Geology Review》2012,54(16):2008-2015
Growing geologic evidence documents incremental Mesozoic and early Cenozoic shortening and thickening of the Tibetan crust prior to the onset of the main Cenozoic orogenic event. The Tibetan crust shows spatial and temporal variability in thickness, style, and timing of thickening, and in plateau-forming processes. The Songpan–Ganzi area of northeastern Tibet provides evidence for shortening and thickening of the crust in Late Triassic time. An oil exploratory well (HC-1) of 7012.4 m located in the area shows at least six tectonic repetitions, resulting in more than ~46% thickening of the Triassic sequence. It indicates that the true thickness of the Songpan–Ganzi Triassic flysch is not 10–15 km as previously assumed, but not more than 3–5 km. Based on this evidence, combined with prior tectonostratigraphic studies, we propose that substantial crustal shortening and thickening, leading to initial plateau formation in the northeastern Tibetan Plateau, had already occurred during the Late Triassic.  相似文献   

11.
Geochemical studies of volcanic rocks in the Gamilaroi terrane and Calliope Volcanic Assemblage, New England Fold Belt, eastern Australia, indicate that the setting in which these rocks formed changed in both space and time. The Upper Silurian to Middle Devonian basalts of the Gamilaroi terrane show flat to slightly light rare‐earth element (LREE) depleted chondrite normalised patterns, depletion of high field strength elements (HFSE) relative to N‐MORB, low Ti/V and high Ti/Zr ratios, high Ni, Cr and large‐ion lithophile element (LILE) contents, features characteristic of intra‐oceanic island arc basaltic magmas. They are associated with low‐K, less mafic volcanics, showing moderate LREE enrichment, low Nb and Y contents and Rb/Zr ratios. The depletion of HFSE in the basalts indicates that the magmas were derived from a refractory source in a supra‐subduction zone setting. The presence of such a zone implies that the arc was associated with a backarc basin, the location of which was to the west where a wide backarc region existed from the Middle Silurian. This polarity of arc and backarc basin suggests that the subduction zone dipped to the west. In contrast to their older counterparts, Middle to Upper Devonian basalts of the Gamilaroi terrane have MORB‐like chondrite normalised patterns and higher Ti and lower LILE contents. Moreover, they have low Ti/Zr ratios and MORB‐like Ti/V ratios and HFSE contents, features typical of backarc basins. Dolerites of the Gamilaroi terrane also have predominantly backarc basin signatures. These features suggest that both the basalts and dolerites have been emplaced in an extensional environment produced during the rifting of the intra‐oceanic island arc lithosphere. A progressive increase in Ti/V ratios, and TiO2 and Fe2O3 contents at constant MgO, of stratigraphically equivalent basalts, towards the north‐northwest part of the belt, is consistent with either greater extension to the north or melting of a more fertile magma source. By contrast, basalts in the southeast part of the terrane have moderately high Ti/Zr and low Ti/V ratios and in some samples, exhibit depletion of HFSE, compositional features transitional between island arc and backarc basin basalts. The Lower to Middle Devonian mafic rocks in the Calliope Volcanic Assemblage show both LREE enriched and depleted chondrite normalised REE patterns. Further, the majority have high Ti/Zr ratios and low Zr contents as well as relatively high Th contents relative to MORB. These features are common to rocks of Middle Devonian age as well as those of Early Devonian age and are suggestive of eruption in an arc setting. Thus, the data from this study provide new evidence for the evolution of the New England Fold Belt from the Late Silurian to the Late Devonian and reveal a history more complicated than previously reported.  相似文献   

12.
The geochemical and SrNdPb isotope properties, as well as the Laser Ablation Inductively Coupled Plasma and Mass Spectrometry (LA-ICP-MS) UPb zircon age, of E?rikar Monzogranite in the eastern Pontides, are primarily investigated in this study with the aim of determining its magma source and geodynamic evolution. The U–Pb zircon age obtained from E?rikar Monzogranite is 78 ± 1.5 Ma, thereby re?ecting the age of monzogranite. The I-type E?rikar Monzogranite comprises quartz, plagioclase (An35–45), orthoclase, muscovite, and biotite. The geochemical analyses of the E?rikar Monzogranite indicate being medium K calc-alkaline, peraluminous, and resembling magmatic arc granite. The E?rikar Monzogranite is enriched in large ion lithophile elements and light rare earth elements relative to high field strength elements. Chondrite-normalized rare earth element patterns have concave upward shapes (LaN/YbN 2.47–8.58) with pronounced negative Eu anomalies (EuN/Eu* = 0.29–0.65). Initial εNd(i) values vary between 1.85 and 2.18 and initial 87Sr/86Sr values between 0.7048 and 0.7067. Fractionation of plagioclase, hornblende, and apatite played an important role in the evolution of E?rikar Monzogranite. The crystallization temperatures of the melts ranged from 770°C to 919°C based on zircon and apatite saturation temperatures. The geochemical and isotopic data suggest being generated by the partial melting of ma?c lower crustal sources.  相似文献   

13.
HAO  NANA  YUAN  WANMING  ZHANG  AIKUI  FENG  YUNLEI  CAO  JIANHUI  CHEN  XIAONING  CHENG  XUEQIN  MO  XUANXUE 《Journal of Earth System Science》2015,124(1):171-196
Journal of Earth System Science - The East Kunlun Orogenic Belt has undergone a composite orogenic process consisting of multiple orogenic cycles and involving many types of magmatic rocks spread...  相似文献   

14.
15.
The newly obtained Sm-Nd isochron ages are 1034 Ma and 935 Ma for ophiolites from northeasternJiangxi and Fuchuan, southern Anhui respectively. There exist two unconformity surfaces under the initialLate Proterozoic volcanics as well as the Sinian rocks. The Xiuning intrusive body which was intruded into theShangxi Group in southern Anhui yields a whole-rock Rb-Sr isochron age of 963 Ma. There occurs a belt ofLate Proterozoic calc-alkali volcanic rocks extending from northeastern Jiangxi to northwestern Zhejiang. Inthe light of the above facts, the authors consider that the southeastern margin of Jiangnania is an ancient islandarc. At about 1000 Ma ago, the Huanan (South China) oceanic crust was subducted along the line linking Dex-ing and Hangzhou, thus starting the accretion of the island arc system to Jiangnania. At 800 Ma ago Cathaysiaand Jiangnania converged together along the Jiangshan-Shaoxing line, marking the end of the accretion.  相似文献   

16.
The age ranges of Upper Cretaceous lithotectonic complexes of Western Kamchatka—terrigenous Kikhchik, volcanic Irunei, and terrigenous Omgon—are analyzed to reveal their almost simultaneous deposition. The pre-Cenozoic settings of these complexes are reconstructed. Based on analysis of the composition and structural features of Late Cretaceous lithotectonic complexes and on correlation of events, the Late Cretaceous paleogeography is reconstructed. It is found that the formation of the contemporary structure of the studied region would have required significant displacement of the volcanic Irunei complex from west to east and the terrigenous Omgon complex from north to south. It is concluded that the Western Kamchatka continental block (minor lithospheric plate) was independent in the Late Cretaceous.  相似文献   

17.
On the basis of exhaustive researches on the facies sequences and depositlonal evolutionary process of various depositional systems, the genetic stratigraphic framework of the extensional rifted oceanic basin, which has undergone strong structural destruction, has been reconstructed by means of dynamic genetic stratigraphic analysis. Five depositional episodes have been distinguished from various isochronous stratigraphic boundaries and stratigraphic sequences with the three-dimensional structure of each depositional episode analysed in detail. The tectonic paleogeographic environment corresponding to different stages of each depositional episode has been reconstructed for individual depositional system tracts. And the evolution history of this rifted basin has been divided into four stages' initial rifting and oceanization of continental crust, stretching and spreading of the basin, subduction and basin differentiation, and convergence and collision. A NNE-trending intracontinental soft collision sutur  相似文献   

18.
Doklady Earth Sciences - A complex of works including geomorphological deciphering, field survey, drilling, electric prospecting, and dating of deposits using the radiocarbon method and optically...  相似文献   

19.
Based essentially on research results of calcareous nannofossils, combined with some other microfossil da-ta and several secondary depositional breaks, this paper discusses the criteria of division and comparison of themiddle and late Tertiary marine sediments, palaeogeographical and palaeoenvironmental evolution andpalaeoclimates on the northern continental margin of the South China Sea, comprising the Tainan basin, PearlRiver Mouth basin. Southeast Hainan basin and Beibu Gulf basin. Study shows that the upper Oligocene toPliocene strata in the whole area consist essentially of marine sediments except in the Beibu Gulf basin. Theyinclude littoral. neritic and deltaic sediments as well as carbonate rock-bioherm limestone. The sea advancedfrom southeast to northwest. During the transgression there appeared three culminations coinciding to thestages of deposition of nannofossil zones NN4-5, NN11 and 13-15.  相似文献   

20.
This study deals with the relationship between sea-level changes and paleoclimatic fluctuations based on the analysis of stratigraphy, grain sizes, palynology, and radiometric dating of the Yellow River delta since the Late Pleistocene. Evidence from the sedimentary record, grain sizes, and pollen provides a paleoenvironmental history of the Late Pleistocene from the boreholes of the delta. Based on a combination of grain-size analysis with lithological studies, marine deposit units contain the intervals of 13.85–16.9, 18.5–19.69, 27.9–34.8, 36.4–37.2, 48.4–51.6, and 54.1–55.9 m, and transitional facies units contain the intervals of 10.25–13.85, 16.9–18.5, 19.69–27.9, 34.8–36.4, 37.2–48.4, 51.6–54.1, and 55.9–60 m, compared with fluvial(terrestrial facies) deposit units(3.36–10.25 m). Based on pollen analysis and pollen assemblages, there were three warm-wet periods from 9.1–0.16 ka BP, 16.1–60 ka BP, and 90.1–94.6 ka BP From the top to the bottom of the borehole, the paleoclimate has an evident fluctuation: warm and moist(Holocene Optimum) —cool and dry(Younger Dryas Event)—mild semi cool—cool and dry—warm and moist. There were three warm-wet periods from 9.1–0.16 ka BP, 16.1–60 ka BP, and 90.1–94.6 ka BP, corresponding to the Holocene Optimum stage, MIS 3, and MIS 5, respectively. The warm period allowed monsoonal evergreen and broadleaved deciduous forests that corresponded to Holocene hypsithermal climatic conditions and the Late Pleistocene climatic Optimum. Three warm-wet periods occurred in marine deposit units from 9.1–0.16 ka BP, 60.1–16.1 ka BP, and 94.6–90.1 ka BP. These periods correspond to the Cangzhou transgression, Xianxian transgression, and Huanghua transgression, respectively. From 90.1–60.1 ka BP, 17.5–9.1 ka BP, and 0. 16 ka BP–1855 AD, three dry and cold phases are recognized. The phases indicate the fluvial(flood plain) sedimentary environment, corresponding to cooler and mild dry periods based on palynological results and grain-size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号